static bool AddLinearSystem_Poisson2D_P1 (double alpha, double source, Fem::Ls::CLinearSystem_Field& ls, const unsigned int id_field_val, const CFieldWorld& world, const unsigned int id_ea ) { // std::cout << "Poisson2D Triangle 3-point 1st order" << std::endl; assert( world.IsIdEA(id_ea) ); const CElemAry& ea = world.GetEA(id_ea); assert( ea.ElemType() == TRI ); if( !world.IsIdField(id_field_val) ) return false; const CField& field_val = world.GetField(id_field_val); const CElemAry::CElemSeg& es_c_va = field_val.GetElemSeg(id_ea,CORNER,true, world); const CElemAry::CElemSeg& es_c_co = field_val.GetElemSeg(id_ea,CORNER,false,world); const unsigned int nno = 3; const unsigned int ndim = 2; unsigned int no_c[nno]; // 要素節点の全体節点番号 double value_c[nno]; // 要素節点の値 double coord_c[nno][ndim]; // 要素節点の座標 double emat[nno][nno]; // 要素剛性行列 double eres_c[nno]; // 要素節点等価内力、外力、残差ベクトル CMatDia_BlkCrs& mat_cc = ls.GetMatrix( id_field_val,CORNER,world); CVector_Blk& res_c = ls.GetResidual(id_field_val,CORNER,world); const CNodeAry::CNodeSeg& ns_c_val = field_val.GetNodeSeg(CORNER,true,world); const CNodeAry::CNodeSeg& ns_c_co = field_val.GetNodeSeg(CORNER,false,world); for(unsigned int ielem=0;ielem<ea.Size();ielem++){ // 要素配列から要素セグメントの節点番号を取り出す es_c_co.GetNodes(ielem,no_c); for(unsigned int inoes=0;inoes<nno;inoes++){ ns_c_co.GetValue(no_c[inoes],coord_c[inoes]); } // 節点の値を取って来る es_c_va.GetNodes(ielem,no_c); for(unsigned int inoes=0;inoes<nno;inoes++){ ns_c_val.GetValue(no_c[inoes],&value_c[inoes]); } // 面積を求める const double area = TriArea(coord_c[0],coord_c[1],coord_c[2]); // 形状関数の微分を求める double dldx[nno][ndim]; // 形状関数のxy微分 double const_term[nno]; // 形状関数の定数項 TriDlDx(dldx,const_term,coord_c[0],coord_c[1],coord_c[2]); // 要素剛性行列を作る for(unsigned int ino=0;ino<nno;ino++){ for(unsigned int jno=0;jno<nno;jno++){ emat[ino][jno] = alpha*area*(dldx[ino][0]*dldx[jno][0]+dldx[ino][1]*dldx[jno][1]); } } // 要素節点等価外力ベクトルを求める for(unsigned int ino=0;ino<nno;ino++){ eres_c[ino] = source*area*0.33333333333333333; } // 要素節点等価内力ベクトルを求める for(unsigned int ino=0;ino<nno;ino++){ for(unsigned int jno=0;jno<nno;jno++){ eres_c[ino] -= emat[ino][jno]*value_c[jno]; } } // 要素剛性行列にマージする mat_cc.Mearge(nno,no_c,nno,no_c,1,&emat[0][0]); // 残差ベクトルにマージする for(unsigned int inoes=0;inoes<nno;inoes++){ res_c.AddValue( no_c[inoes],0,eres_c[inoes]); } } return true; }
static bool AddLinearSystem_Poisson3D_Q1( double alpha, double source, Fem::Ls::CLinearSystem_Field& ls, const unsigned int id_field_val, const CFieldWorld& world, const unsigned int id_ea) { // std::cout << "Poisson3D Hex" << std::endl; assert( world.IsIdEA(id_ea) ); const CElemAry& ea = world.GetEA(id_ea); assert( ea.ElemType() == HEX ); if( !world.IsIdField(id_field_val) ) return false; const CField& field_val = world.GetField(id_field_val); const CElemAry::CElemSeg& es_c_co = field_val.GetElemSeg(id_ea,CORNER,false,world); const CElemAry::CElemSeg& es_c_va = field_val.GetElemSeg(id_ea,CORNER,true, world); unsigned int num_integral = 1; const unsigned int nInt = NIntLineGauss[num_integral]; const double (*Gauss)[2] = LineGauss[num_integral]; const unsigned int nno = 8; const unsigned int ndim = 3; unsigned int no_c_co[nno]; // 要素節点の全体節点番号 unsigned int no_c_va[nno]; // 要素節点の全体節点番号 double value_c[nno]; // 要素節点の値 double coord_c[nno][ndim]; // 要素節点の座標 double dndx[nno][ndim]; // 形状関数のxy微分 double an_c[nno]; double emat[nno][nno]; // 要素剛性行列 double eres_c[nno]; // 要素節点等価内力、外力、残差ベクトル CMatDia_BlkCrs& mat_cc = ls.GetMatrix( id_field_val,CORNER,world); CVector_Blk& res_c = ls.GetResidual(id_field_val,CORNER,world); const CNodeAry::CNodeSeg& ns_c_val = field_val.GetNodeSeg(CORNER,true, world); const CNodeAry::CNodeSeg& ns_c_co = field_val.GetNodeSeg(CORNER,false,world); for(unsigned int ielem=0;ielem<ea.Size();ielem++){ // 要素配列から要素セグメントの節点番号を取り出す es_c_co.GetNodes(ielem,no_c_co); for(unsigned int ino=0;ino<nno;ino++){ ns_c_co.GetValue(no_c_co[ino],coord_c[ino]); } es_c_va.GetNodes(ielem,no_c_va); for(unsigned int ino=0;ino<nno;ino++){ ns_c_val.GetValue(no_c_va[ino],&value_c[ino]); } for(unsigned int ino=0;ino<nno;ino++){ for(unsigned int jno=0;jno<nno;jno++){ emat[ino][jno] = 0.0; } } for(unsigned int ino=0;ino<nno;ino++){ eres_c[ino] = 0.0; } double vol = 0.0; for(unsigned int ir1=0;ir1<nInt;ir1++){ for(unsigned int ir2=0;ir2<nInt;ir2++){ for(unsigned int ir3=0;ir3<nInt;ir3++){ const double r1 = Gauss[ir1][0]; const double r2 = Gauss[ir2][0]; const double r3 = Gauss[ir3][0]; double detjac; ShapeFunc_Hex8(r1,r2,r3,coord_c,detjac,dndx,an_c); const double detwei = detjac*Gauss[ir1][1]*Gauss[ir2][1]*Gauss[ir3][1]; vol += detwei; for(unsigned int ino=0;ino<nno;ino++){ for(unsigned int jno=0;jno<nno;jno++){ emat[ino][jno] += alpha*detwei*(dndx[ino][0]*dndx[jno][0]+dndx[ino][1]*dndx[jno][1]+dndx[ino][2]*dndx[jno][2]); } } // 要素節点等価外力ベクトルを積n分毎に足し合わせる for(unsigned int ino=0;ino<nno;ino++){ eres_c[ino] += detwei*source*an_c[ino]; } } } } // 要素節点等価内力ベクトルを求める for(unsigned int ino=0;ino<nno;ino++){ for(unsigned int jno=0;jno<nno;jno++){ eres_c[ino] -= emat[ino][jno]*value_c[jno]; } } // 要素剛性行列にマージする mat_cc.Mearge(nno,no_c_va,nno,no_c_va,1,&emat[0][0]); // 残差ベクトルにマージする for(unsigned int ino=0;ino<nno;ino++){ res_c.AddValue( no_c_va[ino],0,eres_c[ino]); } } return true; }
bool AddLinSys_FrictionalContact_Penalty_NonStatic_Sensitivity (Fem::Ls::CLinearSystem_Field& ls, const CContactTarget3D& ct, double stiff_n, double stiff_f, double myu_s, double myu_k, double offset, unsigned int id_field_disp, Fem::Field::CFieldWorld& world, std::vector<CFrictionPoint>& aFrictionPoint ) { if( !world.IsIdField(id_field_disp) ) return false; const Fem::Field::CField& field_disp = world.GetField(id_field_disp); if( field_disp.GetFieldType() != Fem::Field::VECTOR3 ) return false; //////////////// MatVec::CMatDia_BlkCrs& pmat_dd = ls.GetMatrix(id_field_disp, CORNER,world); MatVec::CVector_Blk& res_d = ls.GetResidual(id_field_disp, CORNER,world); const unsigned int ndim = 3; const CNodeAry::CNodeSeg& ns_co = field_disp.GetNodeSeg( CORNER,false,world,VALUE); const CNodeAry::CNodeSeg& ns_udisp = field_disp.GetNodeSeg( CORNER,true, world,VALUE); const CNodeAry::CNodeSeg& ns_vdisp = field_disp.GetNodeSeg( CORNER,true, world,VELOCITY); assert( aFrictionPoint.size() == ns_co.Size() ); for(unsigned int inode=0;inode<ns_co.Size();inode++) { double Co[ndim]; ns_co.GetValue( inode,Co); double ud[ndim]; ns_udisp.GetValue(inode,ud); double co[3] = { Co[0]+ud[0], Co[1]+ud[1], Co[2]+ud[2] }; CFrictionPoint& fp = aFrictionPoint[inode]; double n0[3]; const double pd = ct.Projection(co[0],co[1],co[2], n0)+offset; fp.pd = pd; if( pd < 0 ){ fp.itype_contact = 0; continue; } double eKmat[3][3]; for(unsigned int i=0;i<3;i++){ for(unsigned int j=0;j<3;j++){ eKmat[i][j] = stiff_n*n0[i]*n0[j]; } } double eres_d[3]; eres_d[0] = stiff_n*n0[0]*pd; eres_d[1] = stiff_n*n0[1]*pd; eres_d[2] = stiff_n*n0[2]*pd; for(unsigned int i=0;i<3;i++){ for(unsigned int j=0;j<3;j++){ eKmat[i][j] += -n0[i]*n0[j]*stiff_f; } eKmat[i][i] += stiff_f; } double ap_t[3] = { co[0]-fp.aloc[0], co[1]-fp.aloc[1], co[2]-fp.aloc[2] }; for(unsigned int i=0;i<3;i++){ eres_d[i] += -stiff_f*ap_t[i]; } pmat_dd.Mearge(1,&inode, 1,&inode, 9, &eKmat[0][0]); res_d.AddValue(inode,0,eres_d[0]); res_d.AddValue(inode,1,eres_d[1]); res_d.AddValue(inode,2,eres_d[2]); } return true; }
static bool AddLinearSystem_Poisson2D_P1b( double alpha, double source, Fem::Ls::CLinearSystem_Field& ls, const unsigned int id_field_val, const CFieldWorld& world, const unsigned int id_ea) { // std::cout << "Poisson2D TriP1b" << std::endl; assert( world.IsIdEA(id_ea) ); const CElemAry& ea = world.GetEA(id_ea); assert( ea.ElemType() == TRI ); if( !world.IsIdField(id_field_val) ) return false; const CField& field_val = world.GetField(id_field_val); const CElemAry::CElemSeg& es_c = field_val.GetElemSeg(id_ea,CORNER,true,world); const CElemAry::CElemSeg& es_b = field_val.GetElemSeg(id_ea,BUBBLE,true,world); const unsigned int nno_c = 3; const unsigned int nno_b = 1; const unsigned int ndim = 2; unsigned int no_c[nno_c]; // 要素節点の全体節点番号 unsigned int no_b; // 要素節点の全体節点番号 double value_c[nno_c], value_b; // 要素節点の値 double coord_c[nno_c][ndim]; // 要素節点の座標 double dldx[nno_c][ndim]; // 形状関数のxy微分 double const_term[nno_c]; // 形状関数の定数項 double emat_cc[nno_c][nno_c], emat_bb, emat_cb[nno_c], emat_bc[nno_c]; // 要素剛性行列 double eqf_in_c[nno_c], eqf_out_c[nno_c], eres_c[nno_c]; // 要素節点等価内力、外力、残差ベクトル double eqf_in_b, eqf_out_b, eres_b; // 要素節点等価内力、外力、残差ベクトル CMatDia_BlkCrs& mat_cc = ls.GetMatrix(id_field_val,CORNER,world); CMatDia_BlkCrs& mat_bb = ls.GetMatrix(id_field_val,BUBBLE,world); CMat_BlkCrs& mat_cb = ls.GetMatrix(id_field_val,CORNER, id_field_val,BUBBLE, world); CMat_BlkCrs& mat_bc = ls.GetMatrix(id_field_val,BUBBLE, id_field_val,CORNER, world); CVector_Blk& res_c = ls.GetResidual(id_field_val,CORNER,world); CVector_Blk& res_b = ls.GetResidual(id_field_val,BUBBLE,world); const CNodeAry::CNodeSeg& ns_c_val = field_val.GetNodeSeg(CORNER,true, world); const CNodeAry::CNodeSeg& ns_b_val = field_val.GetNodeSeg(BUBBLE,true, world); const CNodeAry::CNodeSeg& ns_c_co = field_val.GetNodeSeg(CORNER,false,world); for(unsigned int ielem=0;ielem<ea.Size();ielem++) { // 要素配列から要素セグメントの節点番号を取り出す es_c.GetNodes(ielem,no_c); es_b.GetNodes(ielem,&no_b); // 節点の値を取ってくる for(unsigned int inoes=0;inoes<nno_c;inoes++){ ns_c_co.GetValue(no_c[inoes],coord_c[inoes]); ns_c_val.GetValue(no_c[inoes],&value_c[inoes]); } ns_b_val.GetValue(no_b,&value_b); // 面積を求める const double area = TriArea(coord_c[0],coord_c[1],coord_c[2]); // 形状関数の微分を求める TriDlDx(dldx,const_term,coord_c[0],coord_c[1],coord_c[2]); { // 要素剛性行列を作る double vc_b[4]; vc_b[0] = 1.0/3.0; vc_b[1] = 1.0/3.0; vc_b[2] = 1.0/3.0; vc_b[3] = 27.0; const double tmp_val1 = vc_b[3]*vc_b[3]*area/180.0*( dldx[0][0]*dldx[0][0]+dldx[0][1]*dldx[0][1]+ dldx[1][0]*dldx[1][0]+dldx[1][1]*dldx[1][1]+ dldx[2][0]*dldx[2][0]+dldx[2][1]*dldx[2][1] ); double tmp1; for(unsigned int ino_c=0;ino_c<nno_c;ino_c++){ for(unsigned int jno_c=0;jno_c<nno_c;jno_c++){ tmp1 = area*(dldx[ino_c][0]*dldx[jno_c][0]+dldx[ino_c][1]*dldx[jno_c][1]) +vc_b[ino_c]*vc_b[jno_c]*tmp_val1; emat_cc[ino_c][jno_c] = tmp1; } } for(unsigned int ino_c=0;ino_c<nno_c;ino_c++){ tmp1 = -1.0*vc_b[ino_c]*tmp_val1; emat_cb[ino_c] = tmp1; emat_bc[ino_c] = tmp1; } emat_bb = tmp_val1; } // 要素節点等価外力ベクトルを求める for(unsigned int ino_c=0;ino_c<nno_c;ino_c++){ eqf_out_c[ino_c] = source*area*11.0/60.0; } eqf_out_b = source*area*27.0/60.0; // 要素節点等価内力ベクトルを求める for(unsigned int ino_c=0;ino_c<nno_c;ino_c++){ eqf_in_c[ino_c] = 0.0; for(unsigned int jno_c=0;jno_c<nno_c;jno_c++){ eqf_in_c[ino_c] += emat_cc[ino_c][jno_c]*value_c[jno_c]; } eqf_in_c[ino_c] += emat_cb[ino_c]*value_b; } eqf_in_b = 0.0; for(unsigned int jno_c=0;jno_c<nno_c;jno_c++){ eqf_in_b += emat_bc[jno_c]*value_c[jno_c]; } eqf_in_b += emat_bb*value_b; // 要素節点等価残差ベクトルを求める for(unsigned int ino_c=0;ino_c<nno_c;ino_c++){ eres_c[ino_c] = eqf_out_c[ino_c] - eqf_in_c[ino_c]; } eres_b = eqf_out_b - eqf_in_b; // 要素剛性行列の全体剛性行列へのマージ mat_cc.Mearge(nno_c,no_c,nno_c,no_c, 1,&emat_cc[0][0]); mat_cb.Mearge(nno_c,no_c,nno_b,&no_b, 1,&emat_cb[0] ); mat_bc.Mearge(nno_b,&no_b,nno_c,no_c, 1,&emat_bc[0] ); mat_bb.Mearge(nno_b,&no_b,nno_b,&no_b, 1,&emat_bb ); // 残差ベクトルのマージ for(unsigned int inoes=0;inoes<nno_c;inoes++){ res_c.AddValue( no_c[inoes],0,eres_c[inoes]); } res_b.AddValue( no_b,0,eres_b ); } return true; }
bool AddLinSys_FrictionalContact_Penalty_NonStatic_BackwardEular (double dt, Fem::Ls::CLinearSystem_Field& ls, const CContactTarget3D& ct, double stiff_n, double stiff_f, double myu_s, double myu_k, double offset, unsigned int id_field_disp, Fem::Field::CFieldWorld& world, std::vector<CFrictionPoint>& aFrictionPoint ) { if( !world.IsIdField(id_field_disp) ) return false; const Fem::Field::CField& field_disp = world.GetField(id_field_disp); if( field_disp.GetFieldType() != Fem::Field::VECTOR3 ) return false; //////////////// MatVec::CMatDia_BlkCrs& pmat_dd = ls.GetMatrix(id_field_disp, CORNER,world); MatVec::CVector_Blk& res_d = ls.GetResidual(id_field_disp, CORNER,world); const unsigned int ndim = 3; const CNodeAry::CNodeSeg& ns_co = field_disp.GetNodeSeg( CORNER,false,world,VALUE); const CNodeAry::CNodeSeg& ns_udisp = field_disp.GetNodeSeg( CORNER,true, world,VALUE); const CNodeAry::CNodeSeg& ns_vdisp = field_disp.GetNodeSeg( CORNER,true, world,VELOCITY); assert( aFrictionPoint.size() == ns_co.Size() ); for(unsigned int inode=0;inode<ns_co.Size();inode++) { double Co[ndim]; ns_co.GetValue( inode,Co); double ud[ndim]; ns_udisp.GetValue(inode,ud); double uv[ndim]; ns_vdisp.GetValue(inode,uv); double co[3] = { Co[0]+ud[0], Co[1]+ud[1], Co[2]+ud[2] }; CFrictionPoint& fp = aFrictionPoint[inode]; if( fp.is_pin ) { double n[3] = { fp.aloc[0]-co[0], fp.aloc[1]-co[1], fp.aloc[2]-co[2] }; double eKmat[3][3] = { {0,0,0},{0,0,0},{0,0,0} }; for(unsigned int i=0;i<3;i++){ eKmat[i][i] = stiff_n; } double eres_d[3]; eres_d[0] = stiff_n*n[0]*dt; eres_d[1] = stiff_n*n[1]*dt; eres_d[2] = stiff_n*n[2]*dt; double emat_dd[3][3]; for(unsigned int i=0;i<9;i++){ (&emat_dd[0][0])[i] = dt*dt*(&eKmat[0][0])[i]; } { eres_d[0] -= (eKmat[0][0]*uv[0]+eKmat[0][1]*uv[1]+eKmat[0][2]*uv[2])*dt*dt; eres_d[1] -= (eKmat[1][0]*uv[0]+eKmat[1][1]*uv[1]+eKmat[1][2]*uv[2])*dt*dt; eres_d[2] -= (eKmat[2][0]*uv[0]+eKmat[2][1]*uv[1]+eKmat[2][2]*uv[2])*dt*dt; } pmat_dd.Mearge(1,&inode, 1,&inode, 9, &emat_dd[0][0]); res_d.AddValue(inode,0,eres_d[0]); res_d.AddValue(inode,1,eres_d[1]); res_d.AddValue(inode,2,eres_d[2]); continue; } double n0[3]; const double pd = ct.Projection(co[0],co[1],co[2], n0)+offset; fp.pd = pd; if( pd < 0 ){ fp.itype_contact = 0; continue; } double eKmat[3][3]; for(unsigned int i=0;i<3;i++){ for(unsigned int j=0;j<3;j++){ eKmat[i][j] = stiff_n*n0[i]*n0[j]; } } double eres_d[3]; eres_d[0] = stiff_n*n0[0]*pd*dt; eres_d[1] = stiff_n*n0[1]*pd*dt; eres_d[2] = stiff_n*n0[2]*pd*dt; // friction handling double ap_t[3] = { co[0]-fp.aloc[0], co[1]-fp.aloc[1], co[2]-fp.aloc[2] }; { // tangent vector from anchor to point const double t = Com::Dot3D(n0,ap_t); for(unsigned int i=0;i<3;i++){ ap_t[i] -= t*n0[i]; } } double velo_t[3] = { uv[0],uv[1],uv[2] }; { // tangent velocity const double t = Com::Dot3D(n0,velo_t); for(unsigned int i=0;i<3;i++){ velo_t[i] -= t*n0[i]; } } const double len_ap_t = Com::Length3D(ap_t); const double len_velo_t = Com::Length3D(velo_t); const double force_f = len_ap_t*stiff_f; const double force_n = pd*stiff_n; if( force_f < force_n*myu_s && len_velo_t < 1.0e-1 ){ fp.itype_contact = 1; for(unsigned int i=0;i<3;i++){ eres_d[i] += -dt*stiff_f*ap_t[i]; } for(unsigned int i=0;i<3;i++){ for(unsigned int j=0;j<3;j++){ eKmat[i][j] += -n0[i]*n0[j]*stiff_f; } eKmat[i][i] += stiff_f; } } else{ // std::cout << "dynamic friction" << std::endl; fp.itype_contact = 2; if( len_velo_t > 1.0e-10 ){ const double invlen = 1.0/len_velo_t; for(unsigned int i=0;i<3;i++){ velo_t[i] *= invlen; } for(unsigned int i=0;i<3;i++){ eres_d[i] += -dt*velo_t[i]*force_n*myu_k; } for(unsigned int i=0;i<3;i++){ for(unsigned int j=0;j<3;j++){ eKmat[i][j] += -velo_t[i]*velo_t[j]*force_n*myu_k*invlen; } eKmat[i][i] += force_n*myu_k*invlen; } } } //////////////// double emat_dd[3][3]; for(unsigned int i=0;i<9;i++){ (&emat_dd[0][0])[i] = dt*dt*(&eKmat[0][0])[i]; } { eres_d[0] -= (eKmat[0][0]*uv[0]+eKmat[0][1]*uv[1]+eKmat[0][2]*uv[2])*dt*dt; eres_d[1] -= (eKmat[1][0]*uv[0]+eKmat[1][1]*uv[1]+eKmat[1][2]*uv[2])*dt*dt; eres_d[2] -= (eKmat[2][0]*uv[0]+eKmat[2][1]*uv[1]+eKmat[2][2]*uv[2])*dt*dt; } pmat_dd.Mearge(1,&inode, 1,&inode, 9, &emat_dd[0][0]); res_d.AddValue(inode,0,eres_d[0]); res_d.AddValue(inode,1,eres_d[1]); res_d.AddValue(inode,2,eres_d[2]); } return true; }