void run() { value_type cluster_forming_threshold = get_option_value ("threshold", NAN); value_type tfce_dh = get_option_value ("tfce_dh", DEFAULT_TFCE_DH); value_type tfce_H = get_option_value ("tfce_h", DEFAULT_TFCE_H); value_type tfce_E = get_option_value ("tfce_e", DEFAULT_TFCE_E); int num_perms = get_option_value ("nperms", DEFAULT_PERMUTATIONS); int nperms_nonstationary = get_option_value ("nperms_nonstationary", DEFAULT_PERMUTATIONS_NONSTATIONARITY); bool do_26_connectivity = get_options("connectivity").size(); bool do_nonstationary_adjustment = get_options ("nonstationary").size(); // Read filenames std::vector<std::string> subjects; { std::string folder = Path::dirname (argument[0]); std::ifstream ifs (argument[0].c_str()); std::string temp; while (getline (ifs, temp)) subjects.push_back (Path::join (folder, temp)); } // Load design matrix: Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> design = load_matrix<value_type> (argument[1]); if (design.rows() != (ssize_t)subjects.size()) throw Exception ("number of input files does not match number of rows in design matrix"); // Load contrast matrix: Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> contrast = load_matrix<value_type> (argument[2]); if (contrast.cols() != design.cols()) throw Exception ("the number of contrasts does not equal the number of columns in the design matrix"); // Load Mask auto header = Header::open (argument[3]); auto mask_image = header.get_image<value_type>(); Filter::Connector connector (do_26_connectivity); std::vector<std::vector<int> > mask_indices = connector.precompute_adjacency (mask_image); const size_t num_vox = mask_indices.size(); Eigen::Matrix<value_type, Eigen::Dynamic, Eigen::Dynamic> data (num_vox, subjects.size()); { // Load images ProgressBar progress("loading images", subjects.size()); for (size_t subject = 0; subject < subjects.size(); subject++) { LogLevelLatch log_level (0); auto input_image = Image<float>::open(subjects[subject]).with_direct_io (3); check_dimensions (input_image, mask_image, 0, 3); int index = 0; std::vector<std::vector<int> >::iterator it; for (it = mask_indices.begin(); it != mask_indices.end(); ++it) { input_image.index(0) = (*it)[0]; input_image.index(1) = (*it)[1]; input_image.index(2) = (*it)[2]; data (index++, subject) = input_image.value(); } progress++; } } Header output_header (header); output_header.datatype() = DataType::Float32; output_header.keyval()["num permutations"] = str(num_perms); output_header.keyval()["26 connectivity"] = str(do_26_connectivity); output_header.keyval()["nonstationary adjustment"] = str(do_nonstationary_adjustment); if (std::isfinite (cluster_forming_threshold)) { output_header.keyval()["threshold"] = str(cluster_forming_threshold); } else { output_header.keyval()["tfce_dh"] = str(tfce_dh); output_header.keyval()["tfce_e"] = str(tfce_E); output_header.keyval()["tfce_h"] = str(tfce_H); } std::string prefix (argument[4]); std::string cluster_name (prefix); if (std::isfinite (cluster_forming_threshold)) cluster_name.append ("cluster_sizes.mif"); else cluster_name.append ("tfce.mif"); auto cluster_image = Image<value_type>::create (cluster_name, output_header); auto tvalue_image = Image<value_type>::create (prefix + "tvalue.mif", output_header); auto fwe_pvalue_image = Image<value_type>::create (prefix + "fwe_pvalue.mif", output_header); auto uncorrected_pvalue_image = Image<value_type>::create (prefix + "uncorrected_pvalue.mif", output_header); Image<value_type> cluster_image_neg; Image<value_type> fwe_pvalue_image_neg; Image<value_type> uncorrected_pvalue_image_neg; Eigen::Matrix<value_type, Eigen::Dynamic, 1> perm_distribution (num_perms); std::shared_ptr<Eigen::Matrix<value_type, Eigen::Dynamic, 1> > perm_distribution_neg; std::vector<value_type> default_cluster_output (num_vox, 0.0); std::shared_ptr<std::vector<value_type> > default_cluster_output_neg; std::vector<value_type> tvalue_output (num_vox, 0.0); std::shared_ptr<std::vector<double> > empirical_tfce_statistic; std::vector<value_type> uncorrected_pvalue (num_vox, 0.0); std::shared_ptr<std::vector<value_type> > uncorrected_pvalue_neg; bool compute_negative_contrast = get_options("negative").size() ? true : false; if (compute_negative_contrast) { std::string cluster_neg_name (prefix); if (std::isfinite (cluster_forming_threshold)) cluster_neg_name.append ("cluster_sizes_neg.mif"); else cluster_neg_name.append ("tfce_neg.mif"); cluster_image_neg = Image<value_type>::create (cluster_neg_name, output_header); perm_distribution_neg.reset (new Eigen::Matrix<value_type, Eigen::Dynamic, 1> (num_perms)); default_cluster_output_neg.reset (new std::vector<value_type> (num_vox, 0.0)); fwe_pvalue_image_neg = Image<value_type>::create (prefix + "fwe_pvalue_neg.mif", output_header); uncorrected_pvalue_neg.reset (new std::vector<value_type> (num_vox, 0.0)); uncorrected_pvalue_image_neg = Image<value_type>::create (prefix + "uncorrected_pvalue_neg.mif", output_header); } { // Do permutation testing: Math::Stats::GLMTTest glm (data, design, contrast); // Suprathreshold clustering if (std::isfinite (cluster_forming_threshold)) { if (do_nonstationary_adjustment) throw Exception ("nonstationary adjustment is not currently implemented for threshold-based cluster analysis"); Stats::Cluster::ClusterSize cluster_size_test (connector, cluster_forming_threshold); Stats::PermTest::precompute_default_permutation (glm, cluster_size_test, empirical_tfce_statistic, default_cluster_output, default_cluster_output_neg, tvalue_output); Stats::PermTest::run_permutations (glm, cluster_size_test, num_perms, empirical_tfce_statistic, default_cluster_output, default_cluster_output_neg, perm_distribution, perm_distribution_neg, uncorrected_pvalue, uncorrected_pvalue_neg); // TFCE } else { Stats::TFCE::Enhancer tfce_integrator (connector, tfce_dh, tfce_E, tfce_H); if (do_nonstationary_adjustment) { empirical_tfce_statistic.reset (new std::vector<double> (num_vox, 0.0)); Stats::PermTest::precompute_empirical_stat (glm, tfce_integrator, nperms_nonstationary, *empirical_tfce_statistic); } Stats::PermTest::precompute_default_permutation (glm, tfce_integrator, empirical_tfce_statistic, default_cluster_output, default_cluster_output_neg, tvalue_output); Stats::PermTest::run_permutations (glm, tfce_integrator, num_perms, empirical_tfce_statistic, default_cluster_output, default_cluster_output_neg, perm_distribution, perm_distribution_neg, uncorrected_pvalue, uncorrected_pvalue_neg); } } save_matrix (perm_distribution, prefix + "perm_dist.txt"); std::vector<value_type> pvalue_output (num_vox, 0.0); Math::Stats::statistic2pvalue (perm_distribution, default_cluster_output, pvalue_output); { ProgressBar progress ("generating output"); for (size_t i = 0; i < num_vox; i++) { for (size_t dim = 0; dim < cluster_image.ndim(); dim++) tvalue_image.index(dim) = cluster_image.index(dim) = fwe_pvalue_image.index(dim) = uncorrected_pvalue_image.index(dim) = mask_indices[i][dim]; tvalue_image.value() = tvalue_output[i]; cluster_image.value() = default_cluster_output[i]; fwe_pvalue_image.value() = pvalue_output[i]; uncorrected_pvalue_image.value() = uncorrected_pvalue[i]; } } { if (compute_negative_contrast) { save_matrix (*perm_distribution_neg, prefix + "perm_dist_neg.txt"); std::vector<value_type> pvalue_output_neg (num_vox, 0.0); Math::Stats::statistic2pvalue (*perm_distribution_neg, *default_cluster_output_neg, pvalue_output_neg); ProgressBar progress ("generating negative contrast output"); for (size_t i = 0; i < num_vox; i++) { for (size_t dim = 0; dim < cluster_image.ndim(); dim++) cluster_image_neg.index(dim) = fwe_pvalue_image_neg.index(dim) = uncorrected_pvalue_image_neg.index(dim) = mask_indices[i][dim]; cluster_image_neg.value() = (*default_cluster_output_neg)[i]; fwe_pvalue_image_neg.value() = pvalue_output_neg[i]; uncorrected_pvalue_image_neg.value() = (*uncorrected_pvalue_neg)[i]; } } } }
void run() { const value_type cluster_forming_threshold = get_option_value ("threshold", NaN); const value_type tfce_dh = get_option_value ("tfce_dh", DEFAULT_TFCE_DH); const value_type tfce_H = get_option_value ("tfce_h", DEFAULT_TFCE_H); const value_type tfce_E = get_option_value ("tfce_e", DEFAULT_TFCE_E); const bool use_tfce = !std::isfinite (cluster_forming_threshold); int num_perms = get_option_value ("nperms", DEFAULT_NUMBER_PERMUTATIONS); int nperms_nonstationary = get_option_value ("nperms_nonstationary", DEFAULT_NUMBER_PERMUTATIONS_NONSTATIONARITY); const bool do_26_connectivity = get_options("connectivity").size(); const bool do_nonstationary_adjustment = get_options ("nonstationary").size(); // Read filenames vector<std::string> subjects; { std::string folder = Path::dirname (argument[0]); std::ifstream ifs (argument[0].c_str()); std::string temp; while (getline (ifs, temp)) subjects.push_back (Path::join (folder, temp)); } // Load design matrix const matrix_type design = load_matrix<value_type> (argument[1]); if (design.rows() != (ssize_t)subjects.size()) throw Exception ("number of input files does not match number of rows in design matrix"); // Load permutations file if supplied auto opt = get_options("permutations"); vector<vector<size_t> > permutations; if (opt.size()) { permutations = Math::Stats::Permutation::load_permutations_file (opt[0][0]); num_perms = permutations.size(); if (permutations[0].size() != (size_t)design.rows()) throw Exception ("number of rows in the permutations file (" + str(opt[0][0]) + ") does not match number of rows in design matrix"); } // Load non-stationary correction permutations file if supplied opt = get_options("permutations_nonstationary"); vector<vector<size_t> > permutations_nonstationary; if (opt.size()) { permutations_nonstationary = Math::Stats::Permutation::load_permutations_file (opt[0][0]); nperms_nonstationary = permutations.size(); if (permutations_nonstationary[0].size() != (size_t)design.rows()) throw Exception ("number of rows in the nonstationary permutations file (" + str(opt[0][0]) + ") does not match number of rows in design matrix"); } // Load contrast matrix const matrix_type contrast = load_matrix<value_type> (argument[2]); if (contrast.cols() != design.cols()) throw Exception ("the number of contrasts does not equal the number of columns in the design matrix"); auto mask_header = Header::open (argument[3]); // Load Mask and compute adjacency auto mask_image = mask_header.get_image<value_type>(); Filter::Connector connector (do_26_connectivity); vector<vector<int> > mask_indices = connector.precompute_adjacency (mask_image); const size_t num_vox = mask_indices.size(); matrix_type data (num_vox, subjects.size()); { // Load images ProgressBar progress("loading images", subjects.size()); for (size_t subject = 0; subject < subjects.size(); subject++) { LogLevelLatch log_level (0); auto input_image = Image<float>::open (subjects[subject]); //.with_direct_io (3); <- Should be inputting 3D images? check_dimensions (input_image, mask_image, 0, 3); int index = 0; vector<vector<int> >::iterator it; for (it = mask_indices.begin(); it != mask_indices.end(); ++it) { input_image.index(0) = (*it)[0]; input_image.index(1) = (*it)[1]; input_image.index(2) = (*it)[2]; data (index++, subject) = input_image.value(); } progress++; } } if (!data.allFinite()) WARN ("input data contains non-finite value(s)"); Header output_header (mask_header); output_header.datatype() = DataType::Float32; output_header.keyval()["num permutations"] = str(num_perms); output_header.keyval()["26 connectivity"] = str(do_26_connectivity); output_header.keyval()["nonstationary adjustment"] = str(do_nonstationary_adjustment); if (use_tfce) { output_header.keyval()["tfce_dh"] = str(tfce_dh); output_header.keyval()["tfce_e"] = str(tfce_E); output_header.keyval()["tfce_h"] = str(tfce_H); } else { output_header.keyval()["threshold"] = str(cluster_forming_threshold); } const std::string prefix (argument[4]); bool compute_negative_contrast = get_options("negative").size(); vector_type default_cluster_output (num_vox); std::shared_ptr<vector_type> default_cluster_output_neg; vector_type tvalue_output (num_vox); vector_type empirical_enhanced_statistic; if (compute_negative_contrast) default_cluster_output_neg.reset (new vector_type (num_vox)); Math::Stats::GLMTTest glm (data, design, contrast); std::shared_ptr<Stats::EnhancerBase> enhancer; if (use_tfce) { std::shared_ptr<Stats::TFCE::EnhancerBase> base (new Stats::Cluster::ClusterSize (connector, cluster_forming_threshold)); enhancer.reset (new Stats::TFCE::Wrapper (base, tfce_dh, tfce_E, tfce_H)); } else { enhancer.reset (new Stats::Cluster::ClusterSize (connector, cluster_forming_threshold)); } if (do_nonstationary_adjustment) { if (!use_tfce) throw Exception ("nonstationary adjustment is not currently implemented for threshold-based cluster analysis"); empirical_enhanced_statistic = vector_type::Zero (num_vox); if (permutations_nonstationary.size()) { Stats::PermTest::PermutationStack permutations (permutations_nonstationary, "precomputing empirical statistic for non-stationarity adjustment..."); Stats::PermTest::precompute_empirical_stat (glm, enhancer, permutations, empirical_enhanced_statistic); } else { Stats::PermTest::PermutationStack permutations (nperms_nonstationary, design.rows(), "precomputing empirical statistic for non-stationarity adjustment...", false); Stats::PermTest::precompute_empirical_stat (glm, enhancer, permutations, empirical_enhanced_statistic); } save_matrix (empirical_enhanced_statistic, prefix + "empirical.txt"); } Stats::PermTest::precompute_default_permutation (glm, enhancer, empirical_enhanced_statistic, default_cluster_output, default_cluster_output_neg, tvalue_output); { ProgressBar progress ("generating pre-permutation output", (compute_negative_contrast ? 3 : 2) + contrast.cols() + 3); { auto tvalue_image = Image<float>::create (prefix + "tvalue.mif", output_header); write_output (tvalue_output, mask_indices, tvalue_image); } ++progress; { auto cluster_image = Image<float>::create (prefix + (use_tfce ? "tfce.mif" : "cluster_sizes.mif"), output_header); write_output (default_cluster_output, mask_indices, cluster_image); } ++progress; if (compute_negative_contrast) { assert (default_cluster_output_neg); auto cluster_image_neg = Image<float>::create (prefix + (use_tfce ? "tfce_neg.mif" : "cluster_sizes_neg.mif"), output_header); write_output (*default_cluster_output_neg, mask_indices, cluster_image_neg); ++progress; } auto temp = Math::Stats::GLM::solve_betas (data, design); for (ssize_t i = 0; i < contrast.cols(); ++i) { auto beta_image = Image<float>::create (prefix + "beta" + str(i) + ".mif", output_header); write_output (temp.row(i), mask_indices, beta_image); ++progress; } { const auto temp = Math::Stats::GLM::abs_effect_size (data, design, contrast); auto abs_effect_image = Image<float>::create (prefix + "abs_effect.mif", output_header); write_output (temp.row(0), mask_indices, abs_effect_image); } ++progress; { const auto temp = Math::Stats::GLM::std_effect_size (data, design, contrast); auto std_effect_image = Image<float>::create (prefix + "std_effect.mif", output_header); write_output (temp.row(0), mask_indices, std_effect_image); } ++progress; { const auto temp = Math::Stats::GLM::stdev (data, design); auto std_dev_image = Image<float>::create (prefix + "std_dev.mif", output_header); write_output (temp.row(0), mask_indices, std_dev_image); } } if (!get_options ("notest").size()) { vector_type perm_distribution (num_perms); std::shared_ptr<vector_type> perm_distribution_neg; vector_type uncorrected_pvalue (num_vox); std::shared_ptr<vector_type> uncorrected_pvalue_neg; if (compute_negative_contrast) { perm_distribution_neg.reset (new vector_type (num_perms)); uncorrected_pvalue_neg.reset (new vector_type (num_vox)); } if (permutations.size()) { Stats::PermTest::run_permutations (permutations, glm, enhancer, empirical_enhanced_statistic, default_cluster_output, default_cluster_output_neg, perm_distribution, perm_distribution_neg, uncorrected_pvalue, uncorrected_pvalue_neg); } else { Stats::PermTest::run_permutations (num_perms, glm, enhancer, empirical_enhanced_statistic, default_cluster_output, default_cluster_output_neg, perm_distribution, perm_distribution_neg, uncorrected_pvalue, uncorrected_pvalue_neg); } save_matrix (perm_distribution, prefix + "perm_dist.txt"); if (compute_negative_contrast) { assert (perm_distribution_neg); save_matrix (*perm_distribution_neg, prefix + "perm_dist_neg.txt"); } ProgressBar progress ("generating output", compute_negative_contrast ? 4 : 2); { auto uncorrected_pvalue_image = Image<float>::create (prefix + "uncorrected_pvalue.mif", output_header); write_output (uncorrected_pvalue, mask_indices, uncorrected_pvalue_image); } ++progress; { vector_type fwe_pvalue_output (num_vox); Math::Stats::Permutation::statistic2pvalue (perm_distribution, default_cluster_output, fwe_pvalue_output); auto fwe_pvalue_image = Image<float>::create (prefix + "fwe_pvalue.mif", output_header); write_output (fwe_pvalue_output, mask_indices, fwe_pvalue_image); } ++progress; if (compute_negative_contrast) { assert (uncorrected_pvalue_neg); assert (perm_distribution_neg); auto uncorrected_pvalue_image_neg = Image<float>::create (prefix + "uncorrected_pvalue_neg.mif", output_header); write_output (*uncorrected_pvalue_neg, mask_indices, uncorrected_pvalue_image_neg); ++progress; vector_type fwe_pvalue_output_neg (num_vox); Math::Stats::Permutation::statistic2pvalue (*perm_distribution_neg, *default_cluster_output_neg, fwe_pvalue_output_neg); auto fwe_pvalue_image_neg = Image<float>::create (prefix + "fwe_pvalue_neg.mif", output_header); write_output (fwe_pvalue_output_neg, mask_indices, fwe_pvalue_image_neg); } } }