Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) { order = b->order(); } if (order == 1) { // line segment bbox.expandTo(c.finalPoint() * t); // TODO: we can make the case for quadratics faster by degree elevating them to // cubic and then taking the bbox of that. } else if (order == 3) { // cubic bezier Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c); Geom::Point c0 = cubic_bezier[0] * t; Geom::Point c1 = cubic_bezier[1] * t; Geom::Point c2 = cubic_bezier[2] * t; Geom::Point c3 = cubic_bezier[3] * t; cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }
Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; if( is_straight_curve(c) ) { bbox.expandTo( c.finalPoint() * t ); } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c)) { Geom::Point c0 = (*cubic_bezier)[0] * t; Geom::Point c1 = (*cubic_bezier)[1] * t; Geom::Point c2 = (*cubic_bezier)[2] * t; Geom::Point c3 = (*cubic_bezier)[3] * t; cubic_bbox( c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox ); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }