void kinectPointCloudApp::createVbo() { gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticTexCoords2d(); layout.setStaticIndices(); std::vector<Vec3f> positions; std::vector<Vec2f> texCoords; std::vector<uint32_t> indices; int numVertices = VBO_X_RES * VBO_Y_RES; int numShapes = ( VBO_X_RES - 1 ) * ( VBO_Y_RES - 1 ); mVboMesh = gl::VboMesh( numVertices, numShapes, layout, GL_POINTS ); for( int x=0; x<VBO_X_RES; ++x ){ for( int y=0; y<VBO_Y_RES; ++y ){ indices.push_back( x * VBO_Y_RES + y ); float xPer = x / (float)(VBO_X_RES-1); float yPer = y / (float)(VBO_Y_RES-1); positions.push_back( Vec3f( ( xPer * 2.0f - 1.0f ) * VBO_X_RES, ( yPer * 2.0f - 1.0f ) * VBO_Y_RES, 0.0f ) ); texCoords.push_back( Vec2f( xPer, yPer ) ); } } mVboMesh.bufferPositions( positions ); mVboMesh.bufferIndices( indices ); mVboMesh.bufferTexCoords2d( 0, texCoords ); }
void Controller::createSphere( gl::VboMesh &vbo, int res ) { float X = 0.525731112119f; float Z = 0.850650808352f; static Vec3f verts[12] = { Vec3f( -X, 0.0f, Z ), Vec3f( X, 0.0f, Z ), Vec3f( -X, 0.0f, -Z ), Vec3f( X, 0.0f, -Z ), Vec3f( 0.0f, Z, X ), Vec3f( 0.0f, Z, -X ), Vec3f( 0.0f, -Z, X ), Vec3f( 0.0f, -Z, -X ), Vec3f( Z, X, 0.0f ), Vec3f( -Z, X, 0.0f ), Vec3f( Z, -X, 0.0f ), Vec3f( -Z, -X, 0.0f ) }; static GLuint triIndices[20][3] = { {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1}, {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3}, {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6}, {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} }; gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticNormals(); mPosCoords.clear(); mNormals.clear(); for( int i=0; i<20; i++ ){ drawSphereTri( verts[triIndices[i][0]], verts[triIndices[i][1]], verts[triIndices[i][2]], res ); } vbo = gl::VboMesh( mPosCoords.size(), 0, layout, GL_TRIANGLES ); vbo.bufferPositions( mPosCoords ); vbo.bufferNormals( mNormals ); }
void BouncingBallsApp::setup() { // randomize the random generator Rand::randSeed( clock() ); // mUseMotionBlur = true; // set some kind of sensible maximum to the frame rate setFrameRate(100.0f); // initialize simulator mStepsPerSecond = 60; mStepsPerformed = 0; // create a single ball mBalls.push_back( BallRef( new Ball() ) ); // create ball mesh ( much faster than using gl::drawSolidCircle() ) size_t slices = 20; std::vector<Vec3f> positions; std::vector<Vec2f> texcoords; std::vector<uint32_t> indices; indices.push_back( positions.size() ); texcoords.push_back( Vec2f(0.5f, 0.5f) ); positions.push_back( Vec3f::zero() ); for(size_t i=0;i<=slices;++i) { float angle = i / (float) slices * 2.0f * (float) M_PI; Vec2f v(sinf(angle), cosf(angle)); indices.push_back( positions.size() ); texcoords.push_back( Vec2f(0.5f, 0.5f) + 0.5f * v ); positions.push_back( Ball::RADIUS * Vec3f(v, 0.0f) ); } gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticTexCoords2d(); layout.setStaticIndices(); mMesh = gl::VboMesh( (size_t) (slices + 2), (size_t) (slices + 2), layout, GL_TRIANGLE_FAN ); mMesh.bufferPositions( &positions.front(), positions.size() ); mMesh.bufferTexCoords2d(0, texcoords); mMesh.bufferIndices( indices ); // load texture mTexture = gl::Texture( loadImage( loadAsset("ball.png") ) ); // start simulation mTimer.start(); }
void VboSampleApp::update() { // mCamera.lookAt(Vec3f(0, 0, 5.0f), Vec3f(0, 0, 0)); gl::setMatrices( mCamera ); vector<Vec3f> positions; positions.push_back(Vec3f(-1.0f+0.2f*sin(getElapsedSeconds()), 1.0f, 0)); positions.push_back(Vec3f(-1.0f, -1.0f, 0)); positions.push_back(Vec3f(1.0f, -1.0f, 0)); positions.push_back(Vec3f(1.0f, 1.0f, 0)); mVboMesh.bufferPositions(positions); }
void GeometryShaderApp::update() { // brute-force method: recreate mesh if anything changed if( !mVboMesh ) { if( mPoints.size() > 1 ) { // create a new vector that can contain 3D vertices std::vector<Vec3f> vertices; // to improve performance, make room for the vertices + 2 adjacency vertices vertices.reserve( mPoints.size() + 2); // first, add an adjacency vertex at the beginning vertices.push_back( 2.0f * Vec3f(mPoints[0]) - Vec3f(mPoints[1]) ); // next, add all 2D points as 3D vertices std::vector<Vec2f>::iterator itr; for(itr=mPoints.begin();itr!=mPoints.end();++itr) vertices.push_back( Vec3f( *itr ) ); // next, add an adjacency vertex at the end size_t n = mPoints.size(); vertices.push_back( 2.0f * Vec3f(mPoints[n-1]) - Vec3f(mPoints[n-2]) ); // now that we have a list of vertices, create the index buffer n = vertices.size() - 2; std::vector<uint32_t> indices; indices.reserve( n * 4 ); for(size_t i=1;i<vertices.size()-2;++i) { indices.push_back(i-1); indices.push_back(i); indices.push_back(i+1); indices.push_back(i+2); } // finally, create the mesh gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticIndices(); mVboMesh = gl::VboMesh( vertices.size(), indices.size(), layout, GL_LINES_ADJACENCY_EXT ); mVboMesh.bufferPositions( &(vertices.front()), vertices.size() ); mVboMesh.bufferIndices( indices ); } else mVboMesh = gl::VboMesh(); } }
void RepulsionApp::createSphere( gl::VboMesh &vbo, int res ) { float X = 0.525731112119f; float Z = 0.850650808352f; static Vec3f verts[12] = { Vec3f( -X, 0.0f, Z ), Vec3f( X, 0.0f, Z ), Vec3f( -X, 0.0f, -Z ), Vec3f( X, 0.0f, -Z ), Vec3f( 0.0f, Z, X ), Vec3f( 0.0f, Z, -X ), Vec3f( 0.0f, -Z, X ), Vec3f( 0.0f, -Z, -X ), Vec3f( Z, X, 0.0f ), Vec3f( -Z, X, 0.0f ), Vec3f( Z, -X, 0.0f ), Vec3f( -Z, -X, 0.0f ) }; static GLuint triIndices[20][3] = { {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1}, {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3}, {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6}, {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} }; gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticNormals(); layout.setStaticColorsRGB(); mPosCoords.clear(); mNormals.clear(); mColors.clear(); float invWidth = 1.0f/(float)FBO_WIDTH; float invHeight = 1.0f/(float)FBO_HEIGHT; for( int x = 0; x < FBO_WIDTH; ++x ) { for( int y = 0; y < FBO_HEIGHT; ++y ) { float u = ( (float)x + 0.5f ) * invWidth; float v = ( (float)y + 0.5f ) * invHeight; Colorf c = Colorf( u, v, 0.0f ); for( int i=0; i<20; i++ ){ drawSphereTri( verts[triIndices[i][0]], verts[triIndices[i][1]], verts[triIndices[i][2]], res, c ); } } } vbo = gl::VboMesh( mPosCoords.size(), 0, layout, GL_TRIANGLES ); vbo.bufferPositions( mPosCoords ); vbo.bufferNormals( mNormals ); vbo.bufferColorsRGB( mColors ); vbo.unbindBuffers(); }
void CatalogApp::initFaintVbo() { gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticColorsRGB(); int numFaintStars = mFaintStars.size(); mFaintVbo = gl::VboMesh( numFaintStars, 0, layout, GL_POINTS ); vector<Vec3f> positions; vector<Color> colors; for( int i=0; i<numFaintStars; i++ ){ positions.push_back( mFaintStars[i]->mPos ); colors.push_back( Color( mFaintStars[i]->mColor, 0.0f, 0.0f ) ); } mFaintVbo.bufferPositions( positions ); mFaintVbo.bufferColorsRGB( colors ); mFaintVbo.unbindBuffers(); }
void VboSampleApp::setup() { mCamera.setAspectRatio(getWindowAspectRatio()); mTexture = bluegin::getTextureAsset("cinder_logo.png"); mTexture.setMinFilter(GL_LINEAR); mTexture.setMagFilter(GL_LINEAR); gl::VboMesh::Layout layout; layout.setStaticIndices(); layout.setStaticPositions(); layout.setStaticTexCoords2d(); const int vertexCount = 4; const int indexCount = 6; mVboMesh = gl::VboMesh( vertexCount, indexCount, layout, GL_TRIANGLES ); vector<Vec3f> positions; positions.push_back(Vec3f(-1.0f, 1.0f, 0)); positions.push_back(Vec3f(-1.0f, -1.0f, 0)); positions.push_back(Vec3f(1.0f, -1.0f, 0)); positions.push_back(Vec3f(1.0f, 1.0f, 0)); mVboMesh.bufferPositions(positions); vector<Vec2f> texcoords; texcoords.push_back(Vec2f(0, 0)); texcoords.push_back(Vec2f(0, 1.0f)); texcoords.push_back(Vec2f(1.0f, 1.0f)); texcoords.push_back(Vec2f(1.0f, 0)); mVboMesh.bufferTexCoords2d(0, texcoords); vector<index_t> indices; indices.push_back(index_t(0)); indices.push_back(index_t(1)); indices.push_back(index_t(2)); indices.push_back(index_t(2)); indices.push_back(index_t(3)); indices.push_back(index_t(0)); mVboMesh.bufferIndices(indices); }
void FolApp::createVbo() { gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticTexCoords2d(); layout.setStaticIndices(); std::vector<Vec3f> positions; std::vector<Vec2f> texCoords; std::vector<uint32_t> indices; int numVertices = VBO_X_SIZE * VBO_Y_SIZE; int numShapes = ( VBO_X_SIZE - 1 ) * ( VBO_Y_SIZE - 1 ); mVboMesh = gl::VboMesh( numVertices, numShapes, layout, GL_POINTS ); for ( int x = 0; x < VBO_X_SIZE; x++ ) { for ( int y = 0; y < VBO_Y_SIZE; y++ ) { indices.push_back( x * VBO_Y_SIZE + y ); float xPer = x / (float)( VBO_X_SIZE - 1 ); float yPer = y / (float)( VBO_Y_SIZE - 1 ); /* positions.push_back( Vec3f( ( xPer * 2.0f - 1.0f ) * VBO_X_SIZE, ( yPer * 2.0f - 1.0f ) * VBO_Y_SIZE, 0.0f ) ); */ positions.push_back( Vec3f( x, y, 0 ) ); texCoords.push_back( Vec2f( xPer, yPer ) ); } } mVboMesh.bufferPositions( positions ); mVboMesh.bufferIndices( indices ); mVboMesh.bufferTexCoords2d( 0, texCoords ); //mVboMesh.unbindBuffers(); }
void AudioVisualizerApp::setup() { // initialize signals signalChannelEnd = false; // make a list of valid audio file extensions and initialize audio variables const char* extensions[] = {"mp3", "wav", "ogg"}; mAudioExtensions = vector<string>(extensions, extensions+2); mAudioPath = getAssetPath(""); mIsAudioPlaying = false; // setup camera mCamera.setPerspective(50.0f, 1.0f, 1.0f, 10000.0f); mCamera.setEyePoint( Vec3f(-kWidth/4, kHeight/2, -kWidth/8) ); mCamera.setCenterOfInterestPoint( Vec3f(kWidth/4, -kHeight/8, kWidth/4) ); // create channels from which we can construct our textures mChannelLeft = Channel32f(kBands, kHistory); mChannelRight = Channel32f(kBands, kHistory); memset( mChannelLeft.getData(), 0, mChannelLeft.getRowBytes() * kHistory ); memset( mChannelRight.getData(), 0, mChannelRight.getRowBytes() * kHistory ); // create texture format (wrap the y-axis, clamp the x-axis) mTextureFormat.setWrapS( GL_CLAMP ); mTextureFormat.setWrapT( GL_REPEAT ); mTextureFormat.setMinFilter( GL_LINEAR ); mTextureFormat.setMagFilter( GL_LINEAR ); // compile shader try { mShader = gl::GlslProg( loadAsset("shaders/spectrum.vert"), loadAsset("shaders/spectrum.frag") ); } catch( const std::exception& e ) { console() << e.what() << std::endl; quit(); return; } // create static mesh (all animation is done in the vertex shader) std::vector<Vec3f> vertices; std::vector<Colorf> colors; std::vector<Vec2f> coords; std::vector<size_t> indices; for(size_t h=0;h<kHeight;++h) { for(size_t w=0;w<kWidth;++w) { // add polygon indices if(h < kHeight-1 && w < kWidth-1) { size_t offset = vertices.size(); indices.push_back(offset); indices.push_back(offset+kWidth); indices.push_back(offset+kWidth+1); indices.push_back(offset); indices.push_back(offset+kWidth+1); indices.push_back(offset+1); } // add vertex vertices.push_back( Vec3f(float(w), 0, float(h)) ); // add texture coordinates // note: we only want to draw the lower part of the frequency bands, // so we scale the coordinates a bit const float part = 0.5f; float s = w / float(kWidth-1); float t = h / float(kHeight-1); coords.push_back( Vec2f(part - part * s, t) ); // add vertex colors colors.push_back( Color(CM_HSV, s, 0.5f, 0.75f) ); } } gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticColorsRGB(); layout.setStaticIndices(); layout.setStaticTexCoords2d(); mMesh = gl::VboMesh(vertices.size(), indices.size(), layout, GL_TRIANGLES); mMesh.bufferPositions(vertices); mMesh.bufferColorsRGB(colors); mMesh.bufferIndices(indices); mMesh.bufferTexCoords2d(0, coords); // play audio using the Cinder FMOD block FMOD::System_Create( &mFMODSystem ); mFMODSystem->init( 32, FMOD_INIT_NORMAL | FMOD_INIT_ENABLE_PROFILE, NULL ); mFMODSound = nullptr; mFMODChannel = nullptr; playAudio( findAudio( mAudioPath ) ); mIsMouseDown = false; mMouseUpDelay = 30.0; mMouseUpTime = getElapsedSeconds() - mMouseUpDelay; // the texture offset has two purposes: // 1) it tells us where to upload the next spectrum data // 2) we use it to offset the texture coordinates in the shader for the scrolling effect mOffset = 0; }
void CatalogApp::initBrightVbo() { gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticTexCoords2d(); layout.setStaticColorsRGB(); int numVertices = FBO_WIDTH * FBO_HEIGHT; // 1 quad per particle // 2 triangles make up the quad // 3 points per triangle mBrightVbo = gl::VboMesh( numVertices * 2 * 3, 0, layout, GL_TRIANGLES ); float s = 0.5f; Vec3f p0( -s, -s, 0.0f ); Vec3f p1( -s, s, 0.0f ); Vec3f p2( s, s, 0.0f ); Vec3f p3( s, -s, 0.0f ); Vec2f t0( 0.0f, 0.0f ); Vec2f t1( 0.0f, 1.0f ); Vec2f t2( 1.0f, 1.0f ); Vec2f t3( 1.0f, 0.0f ); vector<Vec3f> positions; vector<Vec2f> texCoords; vector<Color> colors; for( int x = 0; x < FBO_WIDTH; ++x ) { for( int y = 0; y < FBO_HEIGHT; ++y ) { float u = (float)x/(float)FBO_WIDTH; float v = (float)y/(float)FBO_HEIGHT; Color c = Color( u, v, 0.0f ); positions.push_back( p0 ); positions.push_back( p1 ); positions.push_back( p2 ); texCoords.push_back( t0 ); texCoords.push_back( t1 ); texCoords.push_back( t2 ); colors.push_back( c ); colors.push_back( c ); colors.push_back( c ); positions.push_back( p0 ); positions.push_back( p2 ); positions.push_back( p3 ); texCoords.push_back( t0 ); texCoords.push_back( t2 ); texCoords.push_back( t3 ); colors.push_back( c ); colors.push_back( c ); colors.push_back( c ); } } mBrightVbo.bufferPositions( positions ); mBrightVbo.bufferTexCoords2d( 0, texCoords ); mBrightVbo.bufferColorsRGB( colors ); mBrightVbo.unbindBuffers(); }
void Controller::createSphere( gl::VboMesh &vbo, int res ) { float X = 0.525731112119f; float Z = 0.850650808352f; static Vec3f verts[12] = { Vec3f( -X, 0.0f, Z ), Vec3f( X, 0.0f, Z ), Vec3f( -X, 0.0f, -Z ), Vec3f( X, 0.0f, -Z ), Vec3f( 0.0f, Z, X ), Vec3f( 0.0f, Z, -X ), Vec3f( 0.0f, -Z, X ), Vec3f( 0.0f, -Z, -X ), Vec3f( Z, X, 0.0f ), Vec3f( -Z, X, 0.0f ), Vec3f( Z, -X, 0.0f ), Vec3f( -Z, -X, 0.0f ) }; static GLuint triIndices[20][3] = { {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1}, {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3}, {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6}, {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} }; gl::VboMesh::Layout layout; layout.setStaticPositions(); layout.setStaticNormals(); mPosCoords.clear(); mNormals.clear(); for( int i=0; i<20; i++ ){ drawSphereTri( verts[triIndices[i][0]], verts[triIndices[i][1]], verts[triIndices[i][2]], res ); } float z = 0.0f; float s = 0.05f; float y1 = -0.975f; float y2 = -1.1f; Vec3f v0 = Vec3f( z, y1, z ); Vec3f v1 = Vec3f( s, y2, s ); Vec3f v2 = Vec3f(-s, y2, s ); Vec3f v3 = Vec3f(-s, y2,-s ); Vec3f v4 = Vec3f( s, y2,-s ); mPosCoords.push_back( v1 ); // back mPosCoords.push_back( v2 ); mPosCoords.push_back( v0 ); mPosCoords.push_back( v4 ); // right mPosCoords.push_back( v1 ); mPosCoords.push_back( v0 ); mPosCoords.push_back( v3 ); // front mPosCoords.push_back( v4 ); mPosCoords.push_back( v0 ); mPosCoords.push_back( v2 ); // left mPosCoords.push_back( v3 ); mPosCoords.push_back( v0 ); mPosCoords.push_back( v1 ); // bottom mPosCoords.push_back( v2 ); mPosCoords.push_back( v3 ); mPosCoords.push_back( v1 ); // bottom mPosCoords.push_back( v3 ); mPosCoords.push_back( v4 ); mNormals.push_back( Vec3f::zAxis() ); // back mNormals.push_back( Vec3f::zAxis() ); mNormals.push_back( Vec3f::zAxis() ); mNormals.push_back( Vec3f::xAxis() ); // right mNormals.push_back( Vec3f::xAxis() ); mNormals.push_back( Vec3f::xAxis() ); mNormals.push_back(-Vec3f::zAxis() ); // front mNormals.push_back(-Vec3f::zAxis() ); mNormals.push_back(-Vec3f::zAxis() ); mNormals.push_back( Vec3f::xAxis() ); // left mNormals.push_back( Vec3f::xAxis() ); mNormals.push_back( Vec3f::xAxis() ); mNormals.push_back( Vec3f::yAxis() ); // bottom mNormals.push_back( Vec3f::yAxis() ); mNormals.push_back( Vec3f::yAxis() ); mNormals.push_back( Vec3f::yAxis() ); // bottom mNormals.push_back( Vec3f::yAxis() ); mNormals.push_back( Vec3f::yAxis() ); vbo = gl::VboMesh( mPosCoords.size(), 0, layout, GL_TRIANGLES ); vbo.bufferPositions( mPosCoords ); vbo.bufferNormals( mNormals ); }