// runOnMachineBasicBlock - Fill in delay slots for the given basic block. // There is one or two delay slot per delayed instruction. bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; LastFiller = MBB.instr_end(); for (MachineBasicBlock::instr_iterator I = MBB.instr_begin(); I != MBB.instr_end(); ++I) { if (I->getDesc().hasDelaySlot()) { MachineBasicBlock::instr_iterator InstrWithSlot = I; MachineBasicBlock::instr_iterator J = I; // Treat RET specially as it is only instruction with 2 delay slots // generated while all others generated have 1 delay slot. if (I->getOpcode() == Lanai::RET) { // RET is generated as part of epilogue generation and hence we know // what the two instructions preceding it are and that it is safe to // insert RET above them. MachineBasicBlock::reverse_instr_iterator RI(I); assert(RI->getOpcode() == Lanai::LDW_RI && RI->getOperand(0).isReg() && RI->getOperand(0).getReg() == Lanai::FP && RI->getOperand(1).isReg() && RI->getOperand(1).getReg() == Lanai::FP && RI->getOperand(2).isImm() && RI->getOperand(2).getImm() == -8); ++RI; assert(RI->getOpcode() == Lanai::ADD_I_LO && RI->getOperand(0).isReg() && RI->getOperand(0).getReg() == Lanai::SP && RI->getOperand(1).isReg() && RI->getOperand(1).getReg() == Lanai::FP); ++RI; MachineBasicBlock::instr_iterator FI(RI.base()); MBB.splice(std::next(I), &MBB, FI, I); FilledSlots += 2; } else { if (!NopDelaySlotFiller && findDelayInstr(MBB, I, J)) { MBB.splice(std::next(I), &MBB, J); } else { BuildMI(MBB, std::next(I), DebugLoc(), TII->get(Lanai::NOP)); } ++FilledSlots; } Changed = true; // Record the filler instruction that filled the delay slot. // The instruction after it will be visited in the next iteration. LastFiller = ++I; // Bundle the delay slot filler to InstrWithSlot so that the machine // verifier doesn't expect this instruction to be a terminator. MIBundleBuilder(MBB, InstrWithSlot, std::next(LastFiller)); } } return Changed; }
void SparcCodeEmitter::emitInstruction(MachineBasicBlock::instr_iterator MI, MachineBasicBlock &MBB) { DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << *MI); MCE.processDebugLoc(MI->getDebugLoc(), true); ++NumEmitted; switch (MI->getOpcode()) { default: { emitWord(getBinaryCodeForInstr(*MI)); break; } case TargetOpcode::INLINEASM: { // We allow inline assembler nodes with empty bodies - they can // implicitly define registers, which is ok for JIT. if (MI->getOperand(0).getSymbolName()[0]) { report_fatal_error("JIT does not support inline asm!"); } break; } case TargetOpcode::CFI_INSTRUCTION: break; case TargetOpcode::EH_LABEL: { MCE.emitLabel(MI->getOperand(0).getMCSymbol()); break; } case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: { // Do nothing. break; } case SP::GETPCX: { report_fatal_error("JIT does not support pseudo instruction GETPCX yet!"); break; } } MCE.processDebugLoc(MI->getDebugLoc(), false); }
bool PatmosDelaySlotKiller::killDelaySlots(MachineBasicBlock &MBB) { bool Changed = false; DEBUG( dbgs() << "Killing slots in BB#" << MBB.getNumber() << " (" << MBB.getFullName() << ")\n" ); // consider the basic block from top to bottom for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { // Control-flow instructions ("proper" delay slots) if (I->hasDelaySlot()) { assert( ( I->isCall() || I->isReturn() || I->isBranch() ) && "Unexpected instruction with delay slot."); MachineBasicBlock::instr_iterator MI = *I; if (I->isBundle()) { ++MI; } unsigned Opcode = MI->getOpcode(); if (Opcode == Patmos::BR || Opcode == Patmos::BRu || Opcode == Patmos::BRR || Opcode == Patmos::BRRu || Opcode == Patmos::BRT || Opcode == Patmos::BRTu || Opcode == Patmos::BRCF || Opcode == Patmos::BRCFu || Opcode == Patmos::BRCFR || Opcode == Patmos::BRCFRu || Opcode == Patmos::BRCFT || Opcode == Patmos::BRCFTu || Opcode == Patmos::CALL || Opcode == Patmos::CALLR || Opcode == Patmos::RET || Opcode == Patmos::XRET) { bool onlyNops = true; unsigned maxCount = TM.getSubtargetImpl()->getDelaySlotCycles(&*I); unsigned count = 0; for (MachineBasicBlock::iterator K = llvm::next(I), E = MBB.end(); K != E && count < maxCount; ++K, ++count) { TII->skipPseudos(MBB, K); if (K->getOpcode() != Patmos::NOP) { onlyNops = false; } } if (onlyNops) { unsigned NewOpcode = 0; switch(Opcode) { case Patmos::BR: NewOpcode = Patmos::BRND; break; case Patmos::BRu: NewOpcode = Patmos::BRNDu; break; case Patmos::BRR: NewOpcode = Patmos::BRRND; break; case Patmos::BRRu: NewOpcode = Patmos::BRRNDu; break; case Patmos::BRT: NewOpcode = Patmos::BRTND; break; case Patmos::BRTu: NewOpcode = Patmos::BRTNDu; break; case Patmos::BRCF: NewOpcode = Patmos::BRCFND; break; case Patmos::BRCFu: NewOpcode = Patmos::BRCFNDu; break; case Patmos::BRCFR: NewOpcode = Patmos::BRCFRND; break; case Patmos::BRCFRu: NewOpcode = Patmos::BRCFRNDu; break; case Patmos::BRCFT: NewOpcode = Patmos::BRCFTND; break; case Patmos::BRCFTu: NewOpcode = Patmos::BRCFTNDu; break; case Patmos::CALL: NewOpcode = Patmos::CALLND; break; case Patmos::CALLR: NewOpcode = Patmos::CALLRND; break; case Patmos::RET: NewOpcode = Patmos::RETND; break; case Patmos::XRET: NewOpcode = Patmos::XRETND; break; } const MCInstrDesc &nonDelayed = TII->get(NewOpcode); MI->setDesc(nonDelayed); unsigned killCount = 0; MachineBasicBlock::iterator K = llvm::next(I); for (MachineBasicBlock::iterator E = MBB.end(); K != E && killCount < count; ++K, ++killCount) { TII->skipPseudos(MBB, K); KilledSlots++; } MBB.erase(llvm::next(I), K); } } Changed = true; // pass result } } return Changed; }