void solve_nonlinear () { for (size_t i = 0; i < signals.rows(); ++i) { const Math::Vector<cost_value_type> signal (signals.row(i)); Math::Vector<cost_value_type> values (tensors.row(i)); cost.set_voxel (&signal, &values); Math::Vector<cost_value_type> x (cost.size()); cost.init (x); //Math::check_function_gradient (cost, x, 1e-10, true); Math::GradientDescent<Cost> optim (cost); try { optim.run (10000, 1e-8); } catch (Exception& E) { E.display(); } //x = optim.state(); //Math::check_function_gradient (cost, x, 1e-10, true); cost.get_values (values, optim.state()); } }
void run () { try { Math::Matrix<value_type> directions = DWI::Directions::load_cartesian<value_type> (argument[0]); report (str(argument[0]), directions); } catch (Exception& E) { Math::Matrix<value_type> directions (str(argument[0])); DWI::normalise_grad (directions); if (directions.columns() < 3) throw Exception ("unexpected matrix size for DW scheme \"" + str(argument[0]) + "\""); print (str(argument[0]) + " [ " + str(directions.rows()) + " volumes ]\n"); DWI::Shells shells (directions); for (size_t n = 0; n < shells.count(); ++n) { Math::Matrix<value_type> subset (shells[n].count(), 3); for (size_t i = 0; i < subset.rows(); ++i) subset.row(i) = directions.row(shells[n].get_volumes()[i]).sub(0,3); report ("\nb = " + str(shells[n].get_mean()), subset); } } }
void run () { Math::Matrix<value_type> directions = DWI::Directions::load_cartesian<value_type> (argument[0]); size_t num_permutations = 1e8; Options opt = get_options ("permutations"); if (opt.size()) num_permutations = opt[0][0]; Shared eddy_shared (directions, num_permutations); Thread::run (Thread::multi (Processor (eddy_shared)), "eval thread"); auto& signs = eddy_shared.get_best_signs(); for (size_t n = 0; n < directions.rows(); ++n) if (signs[n] < 0) directions.row(n) *= -1.0; bool cartesian = get_options("cartesian").size(); DWI::Directions::save (directions, argument[1], cartesian); }
void report (const std::string& title, const Math::Matrix<value_type>& directions) { std::vector<value_type> NN_bipolar (directions.rows(), 0.0); std::vector<value_type> NN_unipolar (directions.rows(), 0.0); std::vector<value_type> E_bipolar (directions.rows(), 0.0); std::vector<value_type> E_unipolar (directions.rows(), 0.0); for (size_t i = 0; i < directions.rows()-1; ++i) { for (size_t j = i+1; j < directions.rows(); ++j) { value_type cos_angle = Math::dot (directions.row(i).sub(0,3), directions.row(j).sub(0,3)); NN_unipolar[i] = std::max (NN_unipolar[i], cos_angle); NN_unipolar[j] = std::max (NN_unipolar[j], cos_angle); cos_angle = std::abs(cos_angle); NN_bipolar[i] = std::max (NN_bipolar[i], cos_angle); NN_bipolar[j] = std::max (NN_bipolar[j], cos_angle); value_type E = Math::pow2 (directions(i,0) - directions(j,0)) + Math::pow2 (directions(i,1) - directions(j,1)) + Math::pow2 (directions(i,2) - directions(j,2)); E = value_type (1.0) / E; E_unipolar[i] += E; E_unipolar[j] += E; value_type E2 = Math::pow2 (directions(i,0) + directions(j,0)) + Math::pow2 (directions(i,1) + directions(j,1)) + Math::pow2 (directions(i,2) + directions(j,2)); E += value_type (1.0) / E2; E_bipolar[i] += E; E_bipolar[j] += E; } } auto report_NN = [](const std::vector<value_type>& NN) { value_type min = std::numeric_limits<value_type>::max(); value_type mean = 0.0; value_type max = 0.0; for (auto a : NN) { a = (180.0/Math::pi) * std::acos (a); mean += a; min = std::min (min, a); max = std::max (max, a); } mean /= NN.size(); print (" nearest-neighbour angles: mean = " + str(mean) + ", range [ " + str(min) + " - " + str(max) + " ]\n"); }; auto report_E = [](const std::vector<value_type>& E) { value_type min = std::numeric_limits<value_type>::max(); value_type total = 0.0; value_type max = 0.0; for (auto e : E) { total += e; min = std::min (min, e); max = std::max (max, e); } print (" energy: total = " + str(total) + ", mean = " + str(total/E.size()) + ", range [ " + str(min) + " - " + str(max) + " ]\n"); }; print (title + " [ " + str(directions.rows()) + " directions ]\n\n"); print (" Bipolar electrostatic repulsion model:\n"); report_NN (NN_bipolar); report_E (E_bipolar); print ("\n Unipolar electrostatic repulsion model:\n"); report_NN (NN_unipolar); report_E (E_unipolar); std::string lmax_results; for (size_t lmax = 2; lmax <= Math::SH::LforN (directions.rows()); lmax += 2) lmax_results += " " + str(DWI::condition_number_for_lmax (directions, lmax)); print ("\n Spherical Harmonic fit:\n condition numbers for lmax = " + str(2) + " -> " + str(Math::SH::LforN (directions.rows())) + ":" + lmax_results + "\n\n"); }
void run() { Image::BufferPreload<float> data_in (argument[0], Image::Stride::contiguous_along_axis (3)); auto voxel_in = data_in.voxel(); Math::Matrix<value_type> grad (DWI::get_valid_DW_scheme<float> (data_in)); // Want to support non-shell-like data if it's just a straight extraction // of all dwis or all bzeros i.e. don't initialise the Shells class std::vector<size_t> volumes; bool bzero = get_options ("bzero").size(); Options opt = get_options ("shell"); if (opt.size()) { DWI::Shells shells (grad); shells.select_shells (false, false); for (size_t s = 0; s != shells.count(); ++s) { DEBUG ("Including data from shell b=" + str(shells[s].get_mean()) + " +- " + str(shells[s].get_stdev())); for (std::vector<size_t>::const_iterator v = shells[s].get_volumes().begin(); v != shells[s].get_volumes().end(); ++v) volumes.push_back (*v); } // Remove DW information from header if b=0 is the only 'shell' selected bzero = (shells.count() == 1 && shells[0].is_bzero()); } else { const float bzero_threshold = File::Config::get_float ("BValueThreshold", 10.0); for (size_t row = 0; row != grad.rows(); ++row) { if ((bzero && (grad (row, 3) < bzero_threshold)) || (!bzero && (grad (row, 3) > bzero_threshold))) volumes.push_back (row); } } if (volumes.empty()) throw Exception ("No " + str(bzero ? "b=0" : "dwi") + " volumes present"); std::sort (volumes.begin(), volumes.end()); Image::Header header (data_in); if (volumes.size() == 1) header.set_ndim (3); else header.dim (3) = volumes.size(); Math::Matrix<value_type> new_grad (volumes.size(), grad.columns()); for (size_t i = 0; i < volumes.size(); i++) new_grad.row (i) = grad.row (volumes[i]); header.DW_scheme() = new_grad; Image::Buffer<value_type> data_out (argument[1], header); auto voxel_out = data_out.voxel(); Image::Loop outer ("extracting volumes...", 0, 3); if (voxel_out.ndim() == 4) { for (auto i = outer (voxel_out, voxel_in); i; ++i) { for (size_t i = 0; i < volumes.size(); i++) { voxel_in[3] = volumes[i]; voxel_out[3] = i; voxel_out.value() = voxel_in.value(); } } } else { const size_t volume = volumes[0]; for (auto i = outer (voxel_out, voxel_in); i; ++i) { voxel_in[3] = volume; voxel_out.value() = voxel_in.value(); } } }