void BondOrientation::calculateVector( multicolvar::AtomValuePack& myatoms ) const { Vector distance=getSeparation( myatoms.getPosition(0), myatoms.getPosition(1) ); addAtomDerivatives( 2, 0, Vector(-1.0,0,0), myatoms ); addAtomDerivatives( 2, 1, Vector(+1.0,0,0), myatoms ); myatoms.addBoxDerivatives( 2, Tensor(distance,Vector(-1.0,0,0)) ); myatoms.addValue( 2, distance[0] ); addAtomDerivatives( 3, 0, Vector(0,-1.0,0), myatoms ); addAtomDerivatives( 3, 1, Vector(0,+1.0,0), myatoms ); myatoms.addBoxDerivatives( 3, Tensor(distance,Vector(0,-1.0,0)) ); myatoms.addValue( 3, distance[1] ); addAtomDerivatives( 4, 0, Vector(0,0,-1.0), myatoms ); addAtomDerivatives( 4, 1, Vector(0,0,+1.0), myatoms ); myatoms.addBoxDerivatives( 4, Tensor(distance,Vector(0,0,-1.0)) ); myatoms.addValue( 4, distance[2] ); }
void Steinhardt::calculateVector( multicolvar::AtomValuePack& myatoms ) const { double dfunc, dpoly_ass, md, tq6, itq6, real_z, imag_z; Vector dz, myrealvec, myimagvec, real_dz, imag_dz; // The square root of -1 std::complex<double> ii( 0.0, 1.0 ), dp_x, dp_y, dp_z; unsigned ncomp=2*tmom+1; double sw, poly_ass, d2, dlen, nbond=0.0; std::complex<double> powered; for(unsigned i=1;i<myatoms.getNumberOfAtoms();++i){ Vector& distance=myatoms.getPosition(i); // getSeparation( myatoms.getPosition(0), myatoms.getPosition(i) ); if ( (d2=distance[0]*distance[0])<rcut2 && (d2+=distance[1]*distance[1])<rcut2 && (d2+=distance[2]*distance[2])<rcut2) { dlen = sqrt(d2); sw = switchingFunction.calculate( dlen, dfunc ); nbond += sw; // Accumulate total number of bonds double dlen3 = d2*dlen; // Store derivatives of weight addAtomDerivatives( -1, 0, (-dfunc)*distance, myatoms ); addAtomDerivatives( -1, i, (+dfunc)*distance, myatoms ); myatoms.addTemporyBoxDerivatives( (-dfunc)*Tensor( distance,distance ) ); // Do stuff for m=0 poly_ass=deriv_poly( 0, distance[2]/dlen, dpoly_ass ); // Derivatives of z/r wrt x, y, z dz = -( distance[2] / dlen3 )*distance; dz[2] += (1.0 / dlen); // Derivative wrt to the vector connecting the two atoms myrealvec = (+sw)*dpoly_ass*dz + poly_ass*(+dfunc)*distance; // Accumulate the derivatives addAtomDerivatives( 2 + tmom, 0, -myrealvec, myatoms ); addAtomDerivatives( 2 + tmom, i, myrealvec, myatoms); myatoms.addBoxDerivatives( 2 + tmom, Tensor( -myrealvec,distance ) ); // And store the vector function myatoms.addValue( 2 + tmom, sw*poly_ass ); // The complex number of which we have to take powers std::complex<double> com1( distance[0]/dlen ,distance[1]/dlen ); // Do stuff for all other m values for(unsigned m=1;m<=tmom;++m){ // Calculate Legendre Polynomial poly_ass=deriv_poly( m, distance[2]/dlen, dpoly_ass ); // Calculate powe of complex number powered=pow(com1,m-1); md=static_cast<double>(m); // Real and imaginary parts of z real_z = real(com1*powered); imag_z = imag(com1*powered ); // Calculate steinhardt parameter tq6=poly_ass*real_z; // Real part of steinhardt parameter itq6=poly_ass*imag_z; // Imaginary part of steinhardt parameter // Derivatives wrt ( x/r + iy )^m dp_x = md*powered*( (1.0/dlen)-(distance[0]*distance[0])/dlen3-ii*(distance[0]*distance[1])/dlen3 ); dp_y = md*powered*( ii*(1.0/dlen)-(distance[0]*distance[1])/dlen3-ii*(distance[1]*distance[1])/dlen3 ); dp_z = md*powered*( -(distance[0]*distance[2])/dlen3-ii*(distance[1]*distance[2])/dlen3 ); // Derivatives of real and imaginary parts of above real_dz[0] = real( dp_x ); real_dz[1] = real( dp_y ); real_dz[2] = real( dp_z ); imag_dz[0] = imag( dp_x ); imag_dz[1] = imag( dp_y ); imag_dz[2] = imag( dp_z ); // Complete derivative of steinhardt parameter myrealvec = (+sw)*dpoly_ass*real_z*dz + (+dfunc)*distance*tq6 + (+sw)*poly_ass*real_dz; myimagvec = (+sw)*dpoly_ass*imag_z*dz + (+dfunc)*distance*itq6 + (+sw)*poly_ass*imag_dz; // Real part myatoms.addValue( 2+tmom+m, sw*tq6 ); addAtomDerivatives( 2+tmom+m, 0, -myrealvec, myatoms ); addAtomDerivatives( 2+tmom+m, i, myrealvec, myatoms ); myatoms.addBoxDerivatives( 2+tmom+m, Tensor( -myrealvec,distance ) ); // Imaginary part myatoms.addValue( 2+ncomp+tmom+m, sw*itq6 ); addAtomDerivatives( 2+ncomp+tmom+m, 0, -myimagvec, myatoms ); addAtomDerivatives( 2+ncomp+tmom+m, i, myimagvec, myatoms ); myatoms.addBoxDerivatives( 2+ncomp+tmom+m, Tensor( -myimagvec,distance ) ); // Store -m part of vector double pref=pow(-1.0,m); // -m part of vector is just +m part multiplied by (-1.0)**m and multiplied by complex // conjugate of Legendre polynomial // Real part myatoms.addValue( 2+tmom-m, pref*sw*tq6 ); addAtomDerivatives( 2+tmom-m, 0, -pref*myrealvec, myatoms ); addAtomDerivatives( 2+tmom-m, i, pref*myrealvec, myatoms ); myatoms.addBoxDerivatives( 2+tmom-m, pref*Tensor( -myrealvec,distance ) ); // Imaginary part myatoms.addValue( 2+ncomp+tmom-m, -pref*sw*itq6 ); addAtomDerivatives( 2+ncomp+tmom-m, 0, pref*myimagvec, myatoms ); addAtomDerivatives( 2+ncomp+tmom-m, i, -pref*myimagvec, myatoms ); myatoms.addBoxDerivatives( 2+ncomp+tmom-m, pref*Tensor( myimagvec,distance ) ); } } } // Normalize updateActiveAtoms( myatoms ); for(unsigned i=0;i<getNumberOfComponentsInVector();++i) myatoms.getUnderlyingMultiValue().quotientRule( 2+i, nbond, 2+i ); }
void TopologyMatrix::calculateForThreeAtoms( const unsigned& iat, const Vector& d1, const double& d1_len, HistogramBead& bead, multicolvar::AtomValuePack& myatoms ) const { // Calculate if there are atoms in the cylinder (can use delta here as pbc are done in atom setup) Vector d2 = getSeparation( myatoms.getPosition(0), myatoms.getPosition(iat) ); // Now calculate projection of d2 on d1 double proj=dotProduct(d2,d1); // This tells us if we are outside the end of the cylinder double excess = proj - d1_len; // Return if we are outside of the cylinder as calculated based on excess if( excess>low_sf( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ).get_dmax() ) return; // Find the length of the cylinder double binw = binw_mat( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ); double lcylinder = (std::floor( d1_len / binw ) + 1)*binw; // Return if the projection is outside the length of interest if( proj<-bead.getCutoff() || proj>(lcylinder+bead.getCutoff()) ) return; // Calculate the excess swiching function double edf, eval = low_sf( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ).calculate( excess, edf ); // Calculate the projection on the perpendicular distance from the center of the tube double cm = d2.modulo2() - proj*proj; // Now calculate the density in the cylinder if( cm<cylinder_sw( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ).get_dmax2() ) { double dfuncr, val = cylinder_sw( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ).calculateSqr( cm, dfuncr ); double cellv = cell_volume( getBaseColvarNumber( myatoms.getIndex(0) ), getBaseColvarNumber( myatoms.getIndex(1) ) ); Vector dc1, dc2, dc3, dd1, dd2, dd3, de1, de2, de3; if( !doNotCalculateDerivatives() ) { Tensor d1_a1; // Derivative of director connecting atom1 - atom2 wrt the position of atom 1 d1_a1(0,0) = ( -(d1[1]*d1[1]+d1[2]*d1[2])/d1_len ); // dx/dx d1_a1(0,1) = ( d1[0]*d1[1]/d1_len ); // dx/dy d1_a1(0,2) = ( d1[0]*d1[2]/d1_len ); // dx/dz d1_a1(1,0) = ( d1[1]*d1[0]/d1_len ); // dy/dx d1_a1(1,1) = ( -(d1[0]*d1[0]+d1[2]*d1[2])/d1_len ); // dy/dy d1_a1(1,2) = ( d1[1]*d1[2]/d1_len ); d1_a1(2,0) = ( d1[2]*d1[0]/d1_len ); d1_a1(2,1) = ( d1[2]*d1[1]/d1_len ); d1_a1(2,2) = ( -(d1[1]*d1[1]+d1[0]*d1[0])/d1_len ); // Calculate derivatives of dot product dd1 = matmul(d2, d1_a1) - d1; dd2 = matmul(d2, -d1_a1); dd3 = d1; // Calculate derivatives of cross product dc1 = dfuncr*( -d2 - proj*dd1 ); dc2 = dfuncr*( -proj*dd2 ); dc3 = dfuncr*( d2 - proj*dd3 ); // Calculate derivatives of excess de1 = edf*excess*( dd1 + d1 ); de2 = edf*excess*( dd2 - d1 ); de3 = edf*excess*dd3; } Vector pos1 = myatoms.getPosition(0) + d1_len*d1; Vector pos2 = myatoms.getPosition(0) + d2; Vector g1derivf,g2derivf,lderivf; Tensor vir; for(unsigned bin=0; bin<maxbins; ++bin) { bead.set( bin*binw, (bin+1)*binw, sigma ); if( proj<(bin*binw-bead.getCutoff()) || proj>binw*(bin+1)+bead.getCutoff() ) continue; double der, contr=bead.calculateWithCutoff( proj, der ) / cellv; der /= cellv; myatoms.addValue( 2+bin, contr*val*eval ); if( !doNotCalculateDerivatives() ) { g1derivf=contr*eval*dc1 + val*eval*der*dd1 + contr*val*de1; addAtomDerivatives( 2+bin, 0, g1derivf, myatoms ); g2derivf=contr*eval*dc2 + val*eval*der*dd2 + contr*val*de2; addAtomDerivatives( 2+bin, 1, g2derivf, myatoms ); lderivf=contr*eval*dc3 + val*eval*der*dd3 + contr*val*de3; addAtomDerivatives( 2+bin, iat, lderivf, myatoms ); // Virial vir = -Tensor( myatoms.getPosition(0), g1derivf ) - Tensor( pos1, g2derivf ) - Tensor( pos2, lderivf ); myatoms.addBoxDerivatives( 2+bin, vir ); } } } }