int main(int argc, char *argv[]) { int i,j; int surfID; if(argc != 5) { fprintf(stderr,"Usage: FldAddScalGrad meshfile infld outfld BoundaryID\n"); exit(1); } surfID = boost::lexical_cast<int>(argv[argc - 1]); argv[argc -1] = argv[argc - 2]; LibUtilities::SessionReaderSharedPtr vSession = LibUtilities::SessionReader::CreateInstance(argc, argv); //---------------------------------------------- // Read in mesh from input file string meshfile(argv[argc-4]); SpatialDomains::MeshGraphSharedPtr graphShPt = SpatialDomains::MeshGraph::Read(vSession); //---------------------------------------------- //---------------------------------------------- // Import field file. string fieldfile(argv[argc-3]); vector<LibUtilities::FieldDefinitionsSharedPtr> fielddef; vector<vector<NekDouble> > fielddata; LibUtilities::Import(fieldfile,fielddef,fielddata); //---------------------------------------------- //---------------------------------------------- // Define Expansion int expdim = graphShPt->GetMeshDimension(); int nfields = 1; int addfields = 7; Array<OneD, MultiRegions::ExpListSharedPtr> exp(nfields + addfields); MultiRegions::AssemblyMapCGSharedPtr m_locToGlobalMap; switch(expdim) { case 1: { ASSERTL0(false,"Expansion dimension not recognised"); } break; case 2: { ASSERTL0(false,"Expansion dimension not recognised"); } break; case 3: { MultiRegions::ContField3DSharedPtr originalfield = MemoryManager<MultiRegions::ContField3D> ::AllocateSharedPtr(vSession, graphShPt, vSession->GetVariable(0)); m_locToGlobalMap = originalfield->GetLocalToGlobalMap(); exp[0] = originalfield; for (i=0; i<addfields; i++) { exp[i+1] = MemoryManager<MultiRegions::ContField3D> ::AllocateSharedPtr(*originalfield, graphShPt, vSession->GetVariable(0)); } } break; default: ASSERTL0(false,"Expansion dimension not recognised"); break; } //---------------------------------------------- //---------------------------------------------- // Copy data from field file for(j = 0; j < nfields+addfields; ++j) { for(int i = 0; i < fielddata.size(); ++i) { exp[j]->ExtractDataToCoeffs(fielddef [i], fielddata[i], fielddef [i]->m_fields[0], exp[j]->UpdateCoeffs()); } exp[j]->BwdTrans(exp[j]->GetCoeffs(),exp[j]->UpdatePhys()); } //---------------------------------------------- //---------------------------------------------- int n, cnt, elmtid, nq, offset, nt, boundary, nfq; nt = exp[0]->GetNpoints(); Array<OneD, Array<OneD, NekDouble> > grad(expdim); Array<OneD, Array<OneD, NekDouble> > fgrad(expdim); Array<OneD, Array<OneD, NekDouble> > values(addfields); // Set up mapping from Boundary condition to element details. StdRegions::StdExpansionSharedPtr elmt; StdRegions::StdExpansion2DSharedPtr bc; Array<OneD, int> BoundarytoElmtID; Array<OneD, int> BoundarytoTraceID; Array<OneD, Array<OneD, MultiRegions::ExpListSharedPtr> > BndExp(addfields); Array<OneD, const NekDouble> U(nt); Array<OneD, NekDouble> outvalues; exp[0]->GetBoundaryToElmtMap(BoundarytoElmtID,BoundarytoTraceID); //get boundary expansions for each field for (i = 0; i<addfields; i++) { BndExp[i] = exp[i]->GetBndCondExpansions(); } // loop over the types of boundary conditions for(cnt = n = 0; n < BndExp[0].num_elements(); ++n) { // identify boundary which the user wanted if(n == surfID) { for(i = 0; i < BndExp[0][n]->GetExpSize(); ++i, cnt++) { // find element and face of this expansion. elmtid = BoundarytoElmtID[cnt]; elmt = exp[0]->GetExp(elmtid); nq = elmt->GetTotPoints(); offset = exp[0]->GetPhys_Offset(elmtid); // Initialise local arrays for the velocity gradients // size of total number of quadrature points for each element (hence local). for(j = 0; j < expdim; ++j) { grad[j] = Array<OneD, NekDouble>(nq); } if(expdim == 2) { } else { for (j = 0; j< addfields; j++) { values[j] = BndExp[j][n]->UpdateCoeffs() + BndExp[j][n]->GetCoeff_Offset(i); } // Get face 2D expansion from element expansion bc = boost::dynamic_pointer_cast<StdRegions::StdExpansion2D> (BndExp[0][n]->GetExp(i)); // Number of face quadrature points nfq = bc->GetTotPoints(); //identify boundary of element boundary = BoundarytoTraceID[cnt]; //Extract scalar field U = exp[0]->GetPhys() + offset; //Compute gradients elmt->PhysDeriv(U,grad[0],grad[1],grad[2]); if(i ==0) { for (j = 0; j< nq; j++) { cout << "element grad: " << grad[0][j] << endl; } } for(j = 0; j < expdim; ++j) { fgrad[j] = Array<OneD, NekDouble>(nfq); } // Get gradient at the quadrature points of the face for(j = 0; j < expdim; ++j) { elmt->GetFacePhysVals(boundary,bc,grad[j],fgrad[j]); bc->FwdTrans(fgrad[j],values[j]); } if(i ==0) { for (j = 0; j< nfq; j++) { cout << "face grad: " << fgrad[0][j] << endl; } } const SpatialDomains::GeomFactorsSharedPtr m_metricinfo=bc->GetMetricInfo(); const Array<OneD, const Array<OneD, NekDouble> > normals = elmt->GetFaceNormal(boundary); Array<OneD, NekDouble> gradnorm(nfq); if (m_metricinfo->GetGtype() == SpatialDomains::eDeformed) { Vmath::Vvtvvtp(nfq,normals[0],1,fgrad[0],1, normals[1],1,fgrad[1],1,gradnorm,1); Vmath::Vvtvp (nfq,normals[2],1,fgrad[2],1,gradnorm,1,gradnorm,1); } else { Vmath::Svtsvtp(nfq,normals[0][0],fgrad[0],1, normals[1][0],fgrad[1],1,gradnorm,1); Vmath::Svtvp(nfq,normals[2][0],fgrad[2],1,gradnorm,1,gradnorm,1); } for(j = 0; j<expdim; j++) { bc->FwdTrans(normals[j],values[j+expdim]); } //gradient (grad(u) n) Vmath::Smul(nfq,-1.0,gradnorm,1,gradnorm,1); bc->FwdTrans(gradnorm,values[expdim*2]); } } } else { cnt += BndExp[0][n]->GetExpSize(); } } for(int j = 0; j < addfields; ++j) { int ncoeffs = exp[0]->GetNcoeffs(); Array<OneD, NekDouble> output(ncoeffs); output=exp[j+1]->UpdateCoeffs(); int nGlobal=m_locToGlobalMap->GetNumGlobalCoeffs(); Array<OneD, NekDouble> outarray(nGlobal,0.0); int bndcnt=0; const Array<OneD,const int>& map = m_locToGlobalMap->GetBndCondCoeffsToGlobalCoeffsMap(); NekDouble sign; for(int i = 0; i < BndExp[j].num_elements(); ++i) { if(i==surfID) { const Array<OneD,const NekDouble>& coeffs = BndExp[j][i]->GetCoeffs(); for(int k = 0; k < (BndExp[j][i])->GetNcoeffs(); ++k) { sign = m_locToGlobalMap->GetBndCondCoeffsToGlobalCoeffsSign(bndcnt); outarray[map[bndcnt++]] = sign * coeffs[k]; } } else { bndcnt += BndExp[j][i]->GetNcoeffs(); } } m_locToGlobalMap->GlobalToLocal(outarray,output); } //----------------------------------------------- // Write solution to file with additional computed fields string out(argv[argc-2]); std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef = exp[0]->GetFieldDefinitions(); std::vector<std::vector<NekDouble> > FieldData(FieldDef.size()); vector<string > outname; outname.push_back("du/dx"); outname.push_back("du/dy"); outname.push_back("du/dz"); outname.push_back("nx"); outname.push_back("ny"); outname.push_back("nz"); outname.push_back("gradient"); for(j = 0; j < nfields+addfields; ++j) { for(i = 0; i < FieldDef.size(); ++i) { if (j >= nfields) { FieldDef[i]->m_fields.push_back(outname[j-nfields]); } else { FieldDef[i]->m_fields.push_back(fielddef[i]->m_fields[j]); } exp[j]->AppendFieldData(FieldDef[i], FieldData[i]); } } LibUtilities::Write(out, FieldDef, FieldData); //----------------------------------------------- return 0; }
NekDouble TimeMatrixOp(StdRegions::MatrixType &type, MultiRegions::ContField3DSharedPtr &Exp, MultiRegions::ContField3DSharedPtr &Fce, int &NumCalls, NekDouble lambda) { //---------------------------------------------- // Do the timings int i; timeval timer1, timer2; NekDouble time1, time2; NekDouble exeTime; // We first do a single run in order to estimate the number of calls // we are going to make gettimeofday(&timer1, NULL); //Exp->HelmSolve(Fce->GetPhys(), Exp->UpdateContCoeffs(),lambda,true); //Exp->BwdTrans (Exp->GetCoeffs(),Exp->UpdatePhys(),true); if (type == StdRegions::eBwdTrans) { Exp->BwdTrans(Exp->GetCoeffs(), Exp->UpdatePhys(), MultiRegions::eGlobal); } else if (type == StdRegions::eIProductWRTBase) { Exp->IProductWRTBase(Fce->GetPhys(), Exp->UpdateCoeffs(), MultiRegions::eGlobal); } else { StdRegions::ConstFactorMap factors; factors[StdRegions::eFactorLambda] = lambda; MultiRegions::GlobalMatrixKey key(type, Exp->GetLocalToGlobalMap(), factors); Exp->GeneralMatrixOp (key, Exp->GetCoeffs(),Exp->UpdatePhys(), MultiRegions::eGlobal); } gettimeofday(&timer2, NULL); time1 = timer1.tv_sec*1000000.0+(timer1.tv_usec); time2 = timer2.tv_sec*1000000.0+(timer2.tv_usec); exeTime = (time2-time1); NumCalls = (int) ceil(1.0e6/exeTime); if(NumCalls < 1) { NumCalls = 1; } #ifdef SHARK NumCalls *= 20; chudInitialize(); chudSetErrorLogFile(stderr); chudUmarkPID(getpid(), TRUE); chudAcquireRemoteAccess(); chudStartRemotePerfMonitor("TimingCGHelmSolve2D"); #endif gettimeofday(&timer1, NULL); if (type == StdRegions::eBwdTrans) { for(i = 0; i < NumCalls; ++i) { Exp->BwdTrans (Exp->GetCoeffs(),Exp->UpdatePhys(), MultiRegions::eGlobal); } } else if (type == StdRegions::eIProductWRTBase) { for(i = 0; i < NumCalls; ++i) { Exp->IProductWRTBase (Exp->GetPhys(),Exp->UpdateCoeffs(), MultiRegions::eGlobal); } } else { StdRegions::ConstFactorMap factors; factors[StdRegions::eFactorLambda] = lambda; MultiRegions::GlobalMatrixKey key(type, Exp->GetLocalToGlobalMap(), factors); for(i = 0; i < NumCalls; ++i) { Exp->GeneralMatrixOp (key, Exp->GetCoeffs(),Exp->UpdatePhys(), MultiRegions::eGlobal); } } gettimeofday(&timer2, NULL); #ifdef SHARK chudStopRemotePerfMonitor(); chudReleaseRemoteAccess(); chudCleanup(); #endif time1 = timer1.tv_sec*1000000.0+(timer1.tv_usec); time2 = timer2.tv_sec*1000000.0+(timer2.tv_usec); exeTime = (time2-time1); return exeTime; }