bool SparseOptimizer::buildIndexMapping
     (SparseOptimizer::VertexContainer& vlist)
  {
    if (! vlist.size())
    {
      _ivMap.clear();
      return false;
    }

    _ivMap.resize(vlist.size());
    size_t i = 0;
    // Recorre todos los vertices dandoles un indice.
    // Si el vertice es fijo, su indice sera -1
    // Para los vertices no fijos, les da un indice incremental.
    // Primero se les da a los vertices no marginalizables y luego a los que si.
    // Al final _ivMap contendra todos los vertices no fijos con los vertices
    // no marginalizables en las primeras posiciones de _ivMap
    for (int k=0; k<2; k++)
      for (VertexContainer::iterator it=vlist.begin(); it!=vlist.end(); it++)
      {
         OptimizableGraph::Vertex* v = *it;
         if (! v->fixed())
         {
            if (static_cast<int>(v->marginalized()) == k)
            {
               v->setTempIndex(i);
               _ivMap[i]=v;
               i++;
            }
         }else   v->setTempIndex(-1);
      }

    _ivMap.resize(i);
    return true;
  }
예제 #2
0
  bool SparseOptimizer::buildIndexMapping(SparseOptimizer::VertexContainer& vlist){
    if (! vlist.size()){
      _ivMap.clear();
      return false;
    }

    _ivMap.resize(vlist.size());
    size_t i = 0;
    for (int k=0; k<2; k++)
      for (VertexContainer::iterator it=vlist.begin(); it!=vlist.end(); ++it){
      OptimizableGraph::Vertex* v = *it;
      if (! v->fixed()){
        if (static_cast<int>(v->marginalized()) == k){
          v->setHessianIndex(i);
          _ivMap[i]=v;
          i++;
        }
      }
      else {
        v->setHessianIndex(-1);
      }
    }
    _ivMap.resize(i);
    return true;
  }
예제 #3
0
bool BlockSolver<Traits>::updateStructure(const std::vector<HyperGraph::Vertex*>& vset, const HyperGraph::EdgeSet& edges)
{
  for (std::vector<HyperGraph::Vertex*>::const_iterator vit = vset.begin(); vit != vset.end(); ++vit) {
    OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(*vit);
    int dim = v->dimension();
    if (! v->marginalized()){
      v->setColInHessian(_sizePoses);
      _sizePoses+=dim;
      _Hpp->rowBlockIndices().push_back(_sizePoses);
      _Hpp->colBlockIndices().push_back(_sizePoses);
      _Hpp->blockCols().push_back(typename SparseBlockMatrix<PoseMatrixType>::IntBlockMap());
      ++_numPoses;
      int ind = v->hessianIndex();
      PoseMatrixType* m = _Hpp->block(ind, ind, true);
      v->mapHessianMemory(m->data());
    } else {
      std::cerr << "updateStructure(): Schur not supported" << std::endl;
      abort();
    }
  }
  resizeVector(_sizePoses + _sizeLandmarks);

  for (HyperGraph::EdgeSet::const_iterator it = edges.begin(); it != edges.end(); ++it) {
    OptimizableGraph::Edge* e = static_cast<OptimizableGraph::Edge*>(*it);

    for (size_t viIdx = 0; viIdx < e->vertices().size(); ++viIdx) {
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertex(viIdx);
      int ind1 = v1->hessianIndex();
      int indexV1Bak = ind1;
      if (ind1 == -1)
        continue;
      for (size_t vjIdx = viIdx + 1; vjIdx < e->vertices().size(); ++vjIdx) {
        OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertex(vjIdx);
        int ind2 = v2->hessianIndex();
        if (ind2 == -1)
          continue;
        ind1 = indexV1Bak;
        bool transposedBlock = ind1 > ind2;
        if (transposedBlock) // make sure, we allocate the upper triangular block
          std::swap(ind1, ind2);

        if (! v1->marginalized() && !v2->marginalized()) {
          PoseMatrixType* m = _Hpp->block(ind1, ind2, true);
          e->mapHessianMemory(m->data(), viIdx, vjIdx, transposedBlock);
        } else { 
          std::cerr << __PRETTY_FUNCTION__ << ": not supported" << std::endl;
        }
      }
    }

  }

  return true;
}
예제 #4
0
bool BlockSolver<Traits>::buildStructure(bool zeroBlocks)
{
  assert(_optimizer);

  size_t sparseDim = 0;
  _numPoses=0;
  _numLandmarks=0;
  _sizePoses=0;
  _sizeLandmarks=0;
  int* blockPoseIndices = new int[_optimizer->indexMapping().size()];
  int* blockLandmarkIndices = new int[_optimizer->indexMapping().size()];

  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    int dim = v->dimension();
    if (! v->marginalized()){
      v->setColInHessian(_sizePoses);
      _sizePoses+=dim;
      blockPoseIndices[_numPoses]=_sizePoses;
      ++_numPoses;
    } else {
      v->setColInHessian(_sizeLandmarks);
      _sizeLandmarks+=dim;
      blockLandmarkIndices[_numLandmarks]=_sizeLandmarks;
      ++_numLandmarks;
    }
    sparseDim += dim;
  }
  resize(blockPoseIndices, _numPoses, blockLandmarkIndices, _numLandmarks, sparseDim);
  delete[] blockLandmarkIndices;
  delete[] blockPoseIndices;

  // allocate the diagonal on Hpp and Hll
  int poseIdx = 0;
  int landmarkIdx = 0;
  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    if (! v->marginalized()){
      //assert(poseIdx == v->hessianIndex());
      PoseMatrixType* m = _Hpp->block(poseIdx, poseIdx, true);
      if (zeroBlocks)
        m->setZero();
      v->mapHessianMemory(m->data());
      ++poseIdx;
    } else {
      LandmarkMatrixType* m = _Hll->block(landmarkIdx, landmarkIdx, true);
      if (zeroBlocks)
        m->setZero();
      v->mapHessianMemory(m->data());
      ++landmarkIdx;
    }
  }
  assert(poseIdx == _numPoses && landmarkIdx == _numLandmarks);

  // temporary structures for building the pattern of the Schur complement
  SparseBlockMatrixHashMap<PoseMatrixType>* schurMatrixLookup = 0;
  if (_doSchur) {
    schurMatrixLookup = new SparseBlockMatrixHashMap<PoseMatrixType>(_Hschur->rowBlockIndices(), _Hschur->colBlockIndices());
    schurMatrixLookup->blockCols().resize(_Hschur->blockCols().size());
  }

  // here we assume that the landmark indices start after the pose ones
  // create the structure in Hpp, Hll and in Hpl
  for (SparseOptimizer::EdgeContainer::const_iterator it=_optimizer->activeEdges().begin(); it!=_optimizer->activeEdges().end(); ++it){
    OptimizableGraph::Edge* e = *it;

    for (size_t viIdx = 0; viIdx < e->vertices().size(); ++viIdx) {
      OptimizableGraph::Vertex* v1 = (OptimizableGraph::Vertex*) e->vertex(viIdx);
      int ind1 = v1->hessianIndex();
      if (ind1 == -1)
        continue;
      int indexV1Bak = ind1;
      for (size_t vjIdx = viIdx + 1; vjIdx < e->vertices().size(); ++vjIdx) {
        OptimizableGraph::Vertex* v2 = (OptimizableGraph::Vertex*) e->vertex(vjIdx);
        int ind2 = v2->hessianIndex();
        if (ind2 == -1)
          continue;
        ind1 = indexV1Bak;
        bool transposedBlock = ind1 > ind2;
        if (transposedBlock){ // make sure, we allocate the upper triangle block
          std::swap(ind1, ind2);
        }
        if (! v1->marginalized() && !v2->marginalized()){
          PoseMatrixType* m = _Hpp->block(ind1, ind2, true);
          if (zeroBlocks)
            m->setZero();
          e->mapHessianMemory(m->data(), viIdx, vjIdx, transposedBlock);
          if (_Hschur) {// assume this is only needed in case we solve with the schur complement
            schurMatrixLookup->addBlock(ind1, ind2);
          }
        } else if (v1->marginalized() && v2->marginalized()){
          // RAINER hmm.... should we ever reach this here????
          LandmarkMatrixType* m = _Hll->block(ind1-_numPoses, ind2-_numPoses, true);
          if (zeroBlocks)
            m->setZero();
          e->mapHessianMemory(m->data(), viIdx, vjIdx, false);
        } else { 
          if (v1->marginalized()){ 
            PoseLandmarkMatrixType* m = _Hpl->block(v2->hessianIndex(),v1->hessianIndex()-_numPoses, true);
            if (zeroBlocks)
              m->setZero();
            e->mapHessianMemory(m->data(), viIdx, vjIdx, true); // transpose the block before writing to it
          } else {
            PoseLandmarkMatrixType* m = _Hpl->block(v1->hessianIndex(),v2->hessianIndex()-_numPoses, true);
            if (zeroBlocks)
              m->setZero();
            e->mapHessianMemory(m->data(), viIdx, vjIdx, false); // directly the block
          }
        }
      }
    }
  }

  if (! _doSchur)
    return true;

  _DInvSchur->diagonal().resize(landmarkIdx);
  _Hpl->fillSparseBlockMatrixCCS(*_HplCCS);

  for (size_t i = 0; i < _optimizer->indexMapping().size(); ++i) {
    OptimizableGraph::Vertex* v = _optimizer->indexMapping()[i];
    if (v->marginalized()){
      const HyperGraph::EdgeSet& vedges=v->edges();
      for (HyperGraph::EdgeSet::const_iterator it1=vedges.begin(); it1!=vedges.end(); ++it1){
        for (size_t i=0; i<(*it1)->vertices().size(); ++i)
        {
          OptimizableGraph::Vertex* v1= (OptimizableGraph::Vertex*) (*it1)->vertex(i);
          if (v1->hessianIndex()==-1 || v1==v)
            continue;
          for  (HyperGraph::EdgeSet::const_iterator it2=vedges.begin(); it2!=vedges.end(); ++it2){
            for (size_t j=0; j<(*it2)->vertices().size(); ++j)
            {
              OptimizableGraph::Vertex* v2= (OptimizableGraph::Vertex*) (*it2)->vertex(j);
              if (v2->hessianIndex()==-1 || v2==v)
                continue;
              int i1=v1->hessianIndex();
              int i2=v2->hessianIndex();
              if (i1<=i2) {
                schurMatrixLookup->addBlock(i1, i2);
              }
            }
          }
        }
      }
    }
  }

  _Hschur->takePatternFromHash(*schurMatrixLookup);
  delete schurMatrixLookup;
  _Hschur->fillSparseBlockMatrixCCSTransposed(*_HschurTransposedCCS);

  return true;
}