void AtomicCounterBufferBinding::readData(osg::State & state, osg::UIntArray & uintArray) const
{
    if (!_bufferObject) return;

    GLBufferObject* bo = _bufferObject->getOrCreateGLBufferObject( state.getContextID() );
    if (!bo) return;


    GLint previousID = 0;
    glGetIntegerv(GL_ATOMIC_COUNTER_BUFFER_BINDING, &previousID);

    if (static_cast<GLuint>(previousID) != bo->getGLObjectID())
        bo->_extensions->glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, bo->getGLObjectID());

    GLubyte* src = (GLubyte*)bo->_extensions->glMapBuffer(GL_ATOMIC_COUNTER_BUFFER,
                                                          GL_READ_ONLY_ARB);
    if(src)
    {
        size_t size = osg::minimum<int>(_size, uintArray.getTotalDataSize());
        memcpy((void*) &(uintArray.front()), src+_offset, size);
        bo->_extensions->glUnmapBuffer(GL_ATOMIC_COUNTER_BUFFER);
    }

    if (static_cast<GLuint>(previousID) != bo->getGLObjectID())
        bo->_extensions->glBindBuffer(GL_ATOMIC_COUNTER_BUFFER, static_cast<GLuint>(previousID));
}
예제 #2
0
파일: Validator.cpp 프로젝트: yueying/osg
void Validator::apply(osg::State& state) const
{
    if (!_effect) return;

    if (_effect->_tech_selected[state.getContextID()] == 0) {
        Effect::Technique_list::iterator i;
        int j = 0;
        for (i=_effect->_techs.begin(); i!=_effect->_techs.end(); ++i, ++j) {
            if ((*i)->validate(state)) {
                _effect->_sel_tech[state.getContextID()] = j;
                _effect->_tech_selected[state.getContextID()] = 1;
                return;
            }
        }
        OSG_WARN << "Warning: osgFX::Validator: could not find any techniques compatible with the current OpenGL context" << std::endl;
    }
}
예제 #3
0
bool Technique::validate(osg::State& state) const
{
    typedef std::vector<std::string> String_list;
    String_list extensions;

    getRequiredExtensions(extensions);

    for (String_list::const_iterator i=extensions.begin(); i!=extensions.end(); ++i) {
        if (!osg::isGLExtensionSupported(state.getContextID(),i->c_str())) return false;
    }

    return true;
}
예제 #4
0
std::string DepthPeelBin::createFileName( osg::State& state, int pass, bool depth )
{
    unsigned int contextID = state.getContextID();
    int frameNumber = state.getFrameStamp()->getFrameNumber();
    std::ostringstream ostr;
    ostr << std::setfill( '0' );
    ostr << "f" << std::setw( 6 ) << frameNumber <<
        "_c" << std::setw( 2 ) << contextID << "_";

    ostr << "peel_part" << _partitionNumber;
    if( pass == -1 )
        ostr << "_a";
    else
        ostr << "_b" << std::setw( 2 ) << pass;
    if( depth )
        ostr << "_z";
    ostr << ".png";
    return( ostr.str() );
}
예제 #5
0
void
DepthPeelBin::PerContextInfo::cleanup( const osg::State& state )
{
    TRACEDUMP("  PerContextInfo::cleanup");

    glDeleteTextures( 3, _depthTex );
    _depthTex[ 0 ] = _depthTex[ 1 ] = _depthTex[ 2 ] = 0;

    glDeleteTextures( 1, &_colorTex );
    _colorTex = 0;

    osg::FBOExtensions* fboExt( osg::FBOExtensions::instance( state.getContextID(), true ) );
    osgwTools::glBindFramebuffer( fboExt, GL_FRAMEBUFFER_EXT, 0 );
    osgwTools::glDeleteFramebuffers( fboExt, 1, &_fbo );
    _fbo = 0;

    _glDeleteQueries( 1, &_queryID );
    _queryID = 0;

    _init = false;
}
예제 #6
0
void Font::Glyph::draw(osg::State& state) const
{
    GLuint& globj = _globjList[state.getContextID()];

    // call the globj if already set otherwise compile and execute.
    if( globj != 0 )
    {
        glCallList( globj );
    }
    else 
    {
        globj = glGenLists( 1 );
        glNewList( globj, GL_COMPILE_AND_EXECUTE );

        glPixelStorei(GL_UNPACK_ALIGNMENT,getPacking());
        glDrawPixels(s(), t(),
                     (GLenum)getPixelFormat(),
                     (GLenum)getDataType(),
                     data() );

        glEndList();
    }
}
예제 #7
0
파일: Glyph.cpp 프로젝트: lindkvis/osg
void GlyphTexture::apply(osg::State& state) const
{
    // get the contextID (user defined ID of 0 upwards) for the 
    // current OpenGL context.
    const unsigned int contextID = state.getContextID();

    if (contextID>=_glyphsToSubload.size())
    {
        OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_mutex);

        // graphics context is beyond the number of glyphsToSubloads, so
        // we must now copy the glyph list across, this is a potential
        // threading issue though is multiple applies are happening the
        // same time on this object - to avoid this condition number of
        // graphics contexts should be set before create text.
        for(unsigned int i=_glyphsToSubload.size();i<=contextID;++i)
        {
            GlyphPtrList& glyphPtrs = _glyphsToSubload[i];
            for(GlyphRefList::const_iterator itr=_glyphs.begin();
                itr!=_glyphs.end();
                ++itr)
            {
                glyphPtrs.push_back(itr->get());
            }
        }
    }


    const Extensions* extensions = getExtensions(contextID,true);
    bool generateMipMapSupported = extensions->isGenerateMipMapSupported();

    // get the texture object for the current contextID.
    TextureObject* textureObject = getTextureObject(contextID);
    
    bool newTextureObject = (textureObject == 0);

    if (newTextureObject)
    {
        GLint maxTextureSize = 256;
        glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);
        if (maxTextureSize < getTextureWidth() || maxTextureSize < getTextureHeight())
        {
            OSG_WARN<<"Warning: osgText::Font texture size of ("<<getTextureWidth()<<", "<<getTextureHeight()<<") too large, unable to create font texture."<<std::endl;
            OSG_WARN<<"         Maximum supported by hardward by native OpenGL implementation is ("<<maxTextureSize<<","<<maxTextureSize<<")."<<std::endl;
            OSG_WARN<<"         Please set OSG_MAX_TEXTURE_SIZE lenvironment variable to "<<maxTextureSize<<" and re-run application."<<std::endl;
            return;
        }
        
        // being bound for the first time, need to allocate the texture

        _textureObjectBuffer[contextID] = textureObject = osg::Texture::generateTextureObject(
                this, contextID,GL_TEXTURE_2D,1,GL_ALPHA,getTextureWidth(), getTextureHeight(),1,0);

        textureObject->bind();


        applyTexParameters(GL_TEXTURE_2D,state);

        
        // need to look at generate mip map extension if mip mapping required.
        switch(_min_filter)
        {
        case NEAREST_MIPMAP_NEAREST:
        case NEAREST_MIPMAP_LINEAR:
        case LINEAR_MIPMAP_NEAREST:
        case LINEAR_MIPMAP_LINEAR:
            if (generateMipMapSupported)
            {
                glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS,GL_TRUE);
            }
            else glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, LINEAR);
            break;
        default:
            // not mip mapping so no problems.
            break;
        }
        
        unsigned int imageDataSize = getTextureHeight()*getTextureWidth();
        unsigned char* imageData = new unsigned char[imageDataSize];
        for(unsigned int i=0; i<imageDataSize; ++i)
        {
            imageData[i] = 0;
        }
        

        // allocate the texture memory.
        glTexImage2D( GL_TEXTURE_2D, 0, GL_ALPHA,
                getTextureWidth(), getTextureHeight(), 0,
                GL_ALPHA,
                GL_UNSIGNED_BYTE,
                imageData );
                
        delete [] imageData;
    
    }
    else
    {
        // reuse texture by binding.
        textureObject->bind();
        
        if (getTextureParameterDirty(contextID))
        {
            applyTexParameters(GL_TEXTURE_2D,state);
        }


    }
    
    static const GLubyte* s_renderer = 0;
    static bool s_subloadAllGlyphsTogether = false;
    if (!s_renderer)
    {
        OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_mutex);

        s_renderer = glGetString(GL_RENDERER);
        OSG_INFO<<"glGetString(GL_RENDERER)=="<<s_renderer<<std::endl;
        if (s_renderer && strstr((const char*)s_renderer,"IMPACT")!=0)
        {
            // we're running on an Octane, so need to work around its
            // subloading bugs by loading all at once.
            s_subloadAllGlyphsTogether = true;
        }
        
        if (s_renderer && 
            ((strstr((const char*)s_renderer,"Radeon")!=0) || 
            (strstr((const char*)s_renderer,"RADEON")!=0) ||
            (strstr((const char*)s_renderer,"ALL-IN-WONDER")!=0)))
        {
            // we're running on an ATI, so need to work around its
            // subloading bugs by loading all at once.
            s_subloadAllGlyphsTogether = true;
        }

        if (s_renderer && strstr((const char*)s_renderer,"Sun")!=0)
        {
            // we're running on an solaris x server, so need to work around its
            // subloading bugs by loading all at once.
            s_subloadAllGlyphsTogether = true;
        }

        const char* str = getenv("OSG_TEXT_INCREMENTAL_SUBLOADING");
        if (str)
        {
            s_subloadAllGlyphsTogether = strcmp(str,"OFF")==0 || strcmp(str,"Off")==0 || strcmp(str,"off")==0;
        }
    }


    // now subload the glyphs that are outstanding for this graphics context.
    GlyphPtrList& glyphsWereSubloading = _glyphsToSubload[contextID];

    if (!glyphsWereSubloading.empty() || newTextureObject)
    {
        OpenThreads::ScopedLock<OpenThreads::Mutex> lock(_mutex);

        if (!s_subloadAllGlyphsTogether)
        {
            if (newTextureObject)
            {
                for(GlyphRefList::const_iterator itr=_glyphs.begin();
                    itr!=_glyphs.end();
                    ++itr)
                {
                    (*itr)->subload();
                }
            }
            else // just subload the new entries.
            {            
                // default way of subloading as required.
                //std::cout<<"subloading"<<std::endl;
                for(GlyphPtrList::iterator itr=glyphsWereSubloading.begin();
                    itr!=glyphsWereSubloading.end();
                    ++itr)
                {
                    (*itr)->subload();
                }
            }
            
            // clear the list since we have now subloaded them.
            glyphsWereSubloading.clear();
            
        }
        else
        {
            OSG_INFO<<"osgText::Font loading all glyphs as a single subload."<<std::endl;

            // Octane has bugs in OGL driver which mean that subloads smaller
            // than 32x32 produce errors, and also cannot handle general alignment,
            // so to get round this copy all glyphs into a temporary image and
            // then subload the whole lot in one go.

            int tsize = getTextureHeight() * getTextureWidth();
            unsigned char *local_data = new unsigned char[tsize];
            memset( local_data, 0L, tsize);

            for(GlyphRefList::const_iterator itr=_glyphs.begin();
                itr!=_glyphs.end();
                ++itr)
            {
                //(*itr)->subload();

                // Rather than subloading to graphics, we'll write the values
                // of the glyphs into some intermediate data and subload the
                // whole thing at the end
                for( int t = 0; t < (*itr)->t(); t++ )
                {
                    for( int s = 0; s < (*itr)->s(); s++ )
                    {
                        int sindex = (t*(*itr)->s()+s);
                        int dindex =  
                            ((((*itr)->getTexturePositionY()+t) * getTextureWidth()) +
                            ((*itr)->getTexturePositionX()+s));

                        const unsigned char *sptr = &(*itr)->data()[sindex];
                        unsigned char *dptr       = &local_data[dindex];

                        (*dptr)   = (*sptr);
                    }
                }
            }

            // clear the list since we have now subloaded them.
            glyphsWereSubloading.clear();

            // Subload the image once
            glTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, 
                    getTextureWidth(),
                    getTextureHeight(),
                    GL_ALPHA, GL_UNSIGNED_BYTE, local_data );

            delete [] local_data;

        }
    }
    else
    {
//        OSG_INFO << "no need to subload "<<std::endl;
    }



//     if (generateMipMapTurnedOn)
//     {
//         glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP_SGIS,GL_FALSE);
//     }


}
예제 #8
0
void VertexArrayState::setArray(ArrayDispatch* vad, osg::State& state, const osg::Array* new_array)
{
    if (new_array)
    {
        if (!vad->active)
        {
            vad->active = true;
            _activeDispatchers.push_back(vad);
        }

        if (vad->array==0)
        {
            GLBufferObject* vbo = isVertexBufferObjectSupported() ? new_array->getOrCreateGLBufferObject(state.getContextID()) : 0;
            if (vbo)
            {
                bindVertexBufferObject(vbo);
                vad->enable_and_dispatch(state, new_array, vbo);
            }
            else
            {
                unbindVertexBufferObject();
                vad->enable_and_dispatch(state, new_array);
            }
        }
        else if (new_array!=vad->array || new_array->getModifiedCount()!=vad->modifiedCount)
        {
            GLBufferObject* vbo = isVertexBufferObjectSupported() ? new_array->getOrCreateGLBufferObject(state.getContextID()) : 0;
            if (vbo)
            {
                bindVertexBufferObject(vbo);
                vad->dispatch(state, new_array, vbo);
            }
            else
            {
                unbindVertexBufferObject();
                vad->dispatch(state, new_array);
            }
        }

        vad->array = new_array;
        vad->modifiedCount = new_array->getModifiedCount();

    }
    else if (vad->array)
    {
        disable(vad, state);
    }
}
예제 #9
0
파일: Shader.cpp 프로젝트: aoighost/osg
void Shader::compileShader( osg::State& state ) const
{
    PerContextShader* pcs = getPCS( state.getContextID() );
    if( pcs ) pcs->compileShader( state );
}
예제 #10
0
void 
SparseTexture2DArray::apply( osg::State& state ) const
{
    // get the contextID (user defined ID of 0 upwards) for the 
    // current OpenGL context.
    const unsigned int contextID = state.getContextID();

    Texture::TextureObjectManager* tom = Texture::getTextureObjectManager(contextID).get();
    //ElapsedTime elapsedTime(&(tom->getApplyTime()));
    tom->getNumberApplied()++;

    const Extensions* extensions = getExtensions(contextID,true);

    // if not supported, then return
    if (!extensions->isTexture2DArraySupported() || !extensions->isTexture3DSupported())
    {
        OSG_WARN<<"Warning: Texture2DArray::apply(..) failed, 2D texture arrays are not support by OpenGL driver."<<std::endl;
        return;
    }

    // get the texture object for the current contextID.
    TextureObject* textureObject = getTextureObject(contextID);

    if (textureObject && _textureDepth>0)
    {
        const osg::Image* image = firstValidImage();
        if (image && getModifiedCount(0, contextID) != image->getModifiedCount())
        {
            // compute the internal texture format, this set the _internalFormat to an appropriate value.
            computeInternalFormat();

            GLsizei new_width, new_height, new_numMipmapLevels;

            // compute the dimensions of the texture.
            computeRequiredTextureDimensions(state, *image, new_width, new_height, new_numMipmapLevels);

            if (!textureObject->match(GL_TEXTURE_2D_ARRAY_EXT, new_numMipmapLevels, _internalFormat, new_width, new_height, 1, _borderWidth))
            {
                Texture::releaseTextureObject(contextID, _textureObjectBuffer[contextID].get());
                _textureObjectBuffer[contextID] = 0;
                textureObject = 0;
            }
        }
    }

    // if we already have an texture object, then 
    if (textureObject)
    {
        // bind texture object
        textureObject->bind();

        // if texture parameters changed, then reset them
        if (getTextureParameterDirty(state.getContextID())) applyTexParameters(GL_TEXTURE_2D_ARRAY_EXT,state);

        // if subload is specified, then use it to subload the images to GPU memory
        //if (_subloadCallback.valid())
        //{
        //    _subloadCallback->subload(*this,state);
        //}
        //else
        {
            // for each image of the texture array do
            for (GLsizei n=0; n < _textureDepth; n++)
            {
                osg::Image* image = _images[n].get();

                // if image content is modified, then upload it to the GPU memory
                // GW: this means we have to "dirty" an image before setting it!
                if (image && getModifiedCount(n,contextID) != image->getModifiedCount())
                {
                    applyTexImage2DArray_subload(state, image, _textureWidth, _textureHeight, n, _internalFormat, _numMipmapLevels);
                    getModifiedCount(n,contextID) = image->getModifiedCount();
                }
            }
        }
    }

    // nothing before, but we have valid images, so do manual upload and create texture object manually
    else if ( firstValidImage() != 0L ) // if (imagesValid())
    {
        // compute the internal texture format, this set the _internalFormat to an appropriate value.
        computeInternalFormat();

        // compute the dimensions of the texture.
        osg::Image* firstImage = firstValidImage();
        computeRequiredTextureDimensions(state, *firstImage, _textureWidth, _textureHeight, _numMipmapLevels);

        // create texture object
        textureObject = generateTextureObject(
            this, contextID,GL_TEXTURE_2D_ARRAY_EXT,_numMipmapLevels,_internalFormat,_textureWidth,_textureHeight,_textureDepth,0);

        // bind texture
        textureObject->bind();
        applyTexParameters(GL_TEXTURE_2D_ARRAY_EXT, state);

        _textureObjectBuffer[contextID] = textureObject;

        // First we need to allocate the texture memory
        int sourceFormat = _sourceFormat ? _sourceFormat : _internalFormat;

        if( isCompressedInternalFormat( sourceFormat ) && 
            sourceFormat == _internalFormat &&
            extensions->isCompressedTexImage3DSupported() )
        {
            extensions->glCompressedTexImage3D( GL_TEXTURE_2D_ARRAY_EXT, 0, _internalFormat,
                _textureWidth, _textureHeight, _textureDepth, _borderWidth,
                firstImage->getImageSizeInBytes() * _textureDepth,
                0);
        }
        else
        {   
            // Override compressed source format with safe GL_RGBA value which not generate error
            // We can safely do this as source format is not important when source data is NULL
            if( isCompressedInternalFormat( sourceFormat ) )
                sourceFormat = GL_RGBA;

            extensions->glTexImage3D( GL_TEXTURE_2D_ARRAY_EXT, 0, _internalFormat,
                _textureWidth, _textureHeight, _textureDepth, _borderWidth,
                sourceFormat, _sourceType ? _sourceType : GL_UNSIGNED_BYTE,
                0); 
        }

        // For certain we have to manually allocate memory for mipmaps if images are compressed
        // if not allocated OpenGL will produce errors on mipmap upload.
        // I have not tested if this is neccessary for plain texture formats but 
        // common sense suggests its required as well.
        if( _min_filter != LINEAR && _min_filter != NEAREST && firstImage->isMipmap() )
            allocateMipmap( state );

        // now for each layer we upload it into the memory
        for (GLsizei n=0; n<_textureDepth; n++)
        {
            // if image is valid then upload it to the texture memory
            osg::Image* image = _images[n].get();
            if (image)
            {
                // now load the image data into the memory, this will also check if image do have valid properties
                applyTexImage2DArray_subload(state, image, _textureWidth, _textureHeight, n, _internalFormat, _numMipmapLevels);
                getModifiedCount(n,contextID) = image->getModifiedCount();
            }
        }

        const Texture::Extensions* texExtensions = Texture::getExtensions(contextID,true);
        // source images have no mipmamps but we could generate them...  
        if( _min_filter != LINEAR && _min_filter != NEAREST && !firstImage->isMipmap() &&  
            _useHardwareMipMapGeneration && texExtensions->isGenerateMipMapSupported() )
        {
            _numMipmapLevels = osg::Image::computeNumberOfMipmapLevels( _textureWidth, _textureHeight );
            generateMipmap( state );
        }

        textureObject->setAllocated(_numMipmapLevels,_internalFormat,_textureWidth,_textureHeight,_textureDepth,0);

        // unref image data?
        if (isSafeToUnrefImageData(state))
        {
            SparseTexture2DArray* non_const_this = const_cast<SparseTexture2DArray*>(this);
            for (int n=0; n<_textureDepth; n++)
            {                
                if (_images[n].valid() && _images[n]->getDataVariance()==STATIC)
                {
                    non_const_this->_images[n] = NULL;
                }
            }
        }

    }

    // No images present, but dimensions are set. So create empty texture
    else if ( (_textureWidth > 0) && (_textureHeight > 0) && (_textureDepth > 0) && (_internalFormat!=0) )
    {
        // generate texture 
        _textureObjectBuffer[contextID] = textureObject = generateTextureObject(
            this, contextID, GL_TEXTURE_2D_ARRAY_EXT,_numMipmapLevels,_internalFormat,_textureWidth,_textureHeight,_textureDepth,0);

        textureObject->bind();
        applyTexParameters(GL_TEXTURE_2D_ARRAY_EXT,state);

        extensions->glTexImage3D( GL_TEXTURE_2D_ARRAY_EXT, 0, _internalFormat,
            _textureWidth, _textureHeight, _textureDepth,
            _borderWidth,
            _sourceFormat ? _sourceFormat : _internalFormat,
            _sourceType ? _sourceType : GL_UNSIGNED_BYTE,
            0); 

    }

    // nothing before, so just unbind the texture target
    else
    {
        glBindTexture( GL_TEXTURE_2D_ARRAY_EXT, 0 );
    }

    // if texture object is now valid and we have to allocate mipmap levels, then
    if (textureObject != 0 && _texMipmapGenerationDirtyList[contextID])
    {
        generateMipmap(state);
    }
}
예제 #11
0
// replaces the same func in the superclass
void
SparseTexture2DArray::applyTexImage2DArray_subload(osg::State& state, osg::Image* image,
                                                   GLsizei inwidth, GLsizei inheight, GLsizei indepth, 
                                                   GLint inInternalFormat, GLsizei& numMipmapLevels) const
{
    //// if we don't have a valid image we can't create a texture!
    //if (!imagesValid())
    //    return;

    // get the contextID (user defined ID of 0 upwards) for the 
    // current OpenGL context.
    const unsigned int contextID = state.getContextID();
    const Extensions* extensions = getExtensions(contextID,true);    
    const Texture::Extensions* texExtensions = Texture::getExtensions(contextID,true);
    GLenum target = GL_TEXTURE_2D_ARRAY_EXT;

    // compute the internal texture format, this set the _internalFormat to an appropriate value.
    computeInternalFormat();

    // select the internalFormat required for the texture.
    // bool compressed = isCompressedInternalFormat(_internalFormat);
    bool compressed_image = isCompressedInternalFormat((GLenum)image->getPixelFormat());

    // if the required layer is exceeds the maximum allowed layer sizes
    if (indepth > extensions->maxLayerCount())
    {
        // we give a warning and do nothing
        OSG_WARN<<"Warning: Texture2DArray::applyTexImage2DArray_subload(..) the given layer number exceeds the maximum number of supported layers."<<std::endl;
        return;        
    }

    //Rescale if resize hint is set or NPOT not supported or dimensions exceed max size
    if( _resizeNonPowerOfTwoHint || !texExtensions->isNonPowerOfTwoTextureSupported(_min_filter)
        || inwidth > extensions->max2DSize()
        || inheight > extensions->max2DSize())
        image->ensureValidSizeForTexturing(extensions->max2DSize());

    // image size or format has changed, this is not allowed, hence return
    if (image->s()!=inwidth || 
        image->t()!=inheight || 
        image->getInternalTextureFormat()!=inInternalFormat ) 
    {
        OSG_WARN<<"Warning: Texture2DArray::applyTexImage2DArray_subload(..) given image do have wrong dimension or internal format."<<std::endl;
        return;        
    }    

    glPixelStorei(GL_UNPACK_ALIGNMENT,image->getPacking());

    bool useHardwareMipmapGeneration = 
        !image->isMipmap() && _useHardwareMipMapGeneration && texExtensions->isGenerateMipMapSupported();

    // if no special mipmapping is required, then
    if( _min_filter == LINEAR || _min_filter == NEAREST || useHardwareMipmapGeneration )
    {
        if( _min_filter == LINEAR || _min_filter == NEAREST )
            numMipmapLevels = 1;
        else //Hardware Mipmap Generation
            numMipmapLevels = image->getNumMipmapLevels();

        // upload non-compressed image
        if ( !compressed_image )
        {
            extensions->glTexSubImage3D( target, 0,
                0, 0, indepth,
                inwidth, inheight, 1,
                (GLenum)image->getPixelFormat(),
                (GLenum)image->getDataType(),
                image->data() );
        }

        // if we support compression and image is compressed, then
        else if (extensions->isCompressedTexImage3DSupported())
        {
            // OSG_WARN<<"glCompressedTexImage3D "<<inwidth<<", "<<inheight<<", "<<indepth<<std::endl;

            GLint blockSize, size;
            getCompressedSize(_internalFormat, inwidth, inheight, 1, blockSize,size);

            extensions->glCompressedTexSubImage3D(target, 0,
                0, 0, indepth,  
                inwidth, inheight, 1, 
                (GLenum)image->getPixelFormat(),
                size, 
                image->data());
        }

        // we want to use mipmapping, so enable it
    }else
    {
        // image does not provide mipmaps, so we have to create them
        if( !image->isMipmap() )
        {
            numMipmapLevels = 1;
            OSG_WARN<<"Warning: Texture2DArray::applyTexImage2DArray_subload(..) mipmap layer not passed, and auto mipmap generation turned off or not available. Check texture's min/mag filters & hardware mipmap generation."<<std::endl;

            // the image object does provide mipmaps, so upload the in the certain levels of a layer
        }else
        {
            numMipmapLevels = image->getNumMipmapLevels();

            int width  = image->s();
            int height = image->t();

            if( !compressed_image )
            {

                for( GLsizei k = 0 ; k < numMipmapLevels  && (width || height ) ;k++)
                {
                    if (width == 0)
                        width = 1;
                    if (height == 0)
                        height = 1;

                    extensions->glTexSubImage3D( target, k, 0, 0, indepth,
                        width, height, 1, 
                        (GLenum)image->getPixelFormat(),
                        (GLenum)image->getDataType(),
                        image->getMipmapData(k));

                    width >>= 1;
                    height >>= 1;
                }
            }
            else if (extensions->isCompressedTexImage3DSupported())
            {
                GLint blockSize,size;
                for( GLsizei k = 0 ; k < numMipmapLevels  && (width || height) ;k++)
                {
                    if (width == 0)
                        width = 1;
                    if (height == 0)
                        height = 1;

                    getCompressedSize(image->getInternalTextureFormat(), width, height, 1, blockSize,size);

                    //                    state.checkGLErrors("before extensions->glCompressedTexSubImage3D(");

                    extensions->glCompressedTexSubImage3D(target, k, 0, 0, indepth,
                        width, height, 1,
                        (GLenum)image->getPixelFormat(),
                        size,
                        image->getMipmapData(k));

                    //                    state.checkGLErrors("after extensions->glCompressedTexSubImage3D(");

                    width >>= 1;
                    height >>= 1;
                }
            }
        }
예제 #12
0
void
MPGeometry::renderPrimitiveSets(osg::State& state,
                                bool        usingVBOs) const
{
    // check the map frame to see if it's up to date
    if ( _frame.needsSync() )
    {
        // this lock protects a MapFrame sync when we have multiple DRAW threads.
        Threading::ScopedMutexLock exclusive( _frameSyncMutex );

        if ( _frame.needsSync() && _frame.sync() ) // always double check
        {
            // This should only happen is the layer ordering changes;
            // If layers are added or removed, the Tile gets rebuilt and
            // the point is moot.
            std::vector<Layer> reordered;
            const ImageLayerVector& layers = _frame.imageLayers();
            reordered.reserve( layers.size() );
            for( ImageLayerVector::const_iterator i = layers.begin(); i != layers.end(); ++i )
            {
                std::vector<Layer>::iterator j = std::find( _layers.begin(), _layers.end(), i->get()->getUID() );
                if ( j != _layers.end() )
                    reordered.push_back( *j );
            }
            _layers.swap( reordered );
        }
    }

    unsigned layersDrawn = 0;


    // access the GL extensions interface for the current GC:
    osg::ref_ptr<osg::GL2Extensions> ext = osg::GL2Extensions::Get( state.getContextID(), true );
    const osg::Program::PerContextProgram* pcp = state.getLastAppliedProgramObject();

    // cannot store these in the object since there could be multiple GCs (and multiple
    // PerContextPrograms) at large
    GLint tileKeyLocation;
    GLint opacityLocation;
    GLint uidLocation;
    GLint orderLocation;
    GLint texMatParentLocation;

    // The PCP can change (especially in a VirtualProgram environment). So we do need to
    // requery the uni locations each time unfortunately. TODO: explore optimizations.
    if ( pcp )
    {
        tileKeyLocation      = pcp->getUniformLocation( _tileKeyUniformNameID );
        opacityLocation      = pcp->getUniformLocation( _opacityUniformNameID );
        uidLocation          = pcp->getUniformLocation( _uidUniformNameID );
        orderLocation        = pcp->getUniformLocation( _orderUniformNameID );
        texMatParentLocation = pcp->getUniformLocation( _texMatParentUniformNameID );
    }
    
    // apply the tilekey uniform once.
    ext->glUniform4fv( tileKeyLocation, 1, _tileKeyValue.ptr() );

    // activate the tile coordinate set - same for all layers
    state.setTexCoordPointer( _imageUnit+1, _tileCoords.get() );

    if ( _layers.size() > 0 )
    {
        float prev_opacity        = -1.0f;
        float prev_alphaThreshold = -1.0f;

        // first bind any shared layers
        // TODO: optimize by pre-storing shared indexes
        for(unsigned i=0; i<_layers.size(); ++i)
        {
            const Layer& layer = _layers[i];

            // a "shared" layer binds to a secondary texture unit so that other layers
            // can see it and use it.
            if ( layer._imageLayer->isShared() )
            {
                int sharedUnit = layer._imageLayer->shareImageUnit().get();
                {
                    state.setActiveTextureUnit( sharedUnit );
                    state.setTexCoordPointer( sharedUnit, layer._texCoords.get() );
                    // bind the texture for this layer to the active share unit.
                    layer._tex->apply( state );

                    // no texture LOD blending for shared layers for now. maybe later.
                }
            }
        }

        // track the active image unit.
        int activeImageUnit = -1;

        // interate over all the image layers
        //glDepthMask(GL_TRUE);
        for(unsigned i=0; i<_layers.size(); ++i)
        {
          //  if ( i > 0 )
            //    glDepthMask(GL_FALSE);

            const Layer& layer = _layers[i];

            if ( layer._imageLayer->getVisible() )
            {       
                // activate the visible unit if necessary:
                if ( activeImageUnit != _imageUnit )
                {
                    state.setActiveTextureUnit( _imageUnit );
                    activeImageUnit = _imageUnit;
                }

                // bind the texture for this layer:
                layer._tex->apply( state );

                // if we're using a parent texture for blending, activate that now
                if ( layer._texParent.valid() )
                {
                    state.setActiveTextureUnit( _imageUnitParent );
                    activeImageUnit = _imageUnitParent;
                    layer._texParent->apply( state );
                }

                // bind the texture coordinates for this layer.
                // TODO: can probably optimize this by sharing or using texture matrixes.
                // State::setTexCoordPointer does some redundant work under the hood.
                state.setTexCoordPointer( _imageUnit, layer._texCoords.get() );

                // apply uniform values:
                if ( pcp )
                {
                    // apply opacity:
                    float opacity = layer._imageLayer->getOpacity();
                    if ( opacity != prev_opacity )
                    {
                        ext->glUniform1f( opacityLocation, (GLfloat)opacity );
                        prev_opacity = opacity;
                    }

                    // assign the layer UID:
                    ext->glUniform1i( uidLocation, (GLint)layer._layerID );

                    // assign the layer order:
                    ext->glUniform1i( orderLocation, (GLint)layersDrawn );

                    // assign the parent texture matrix
                    if ( layer._texParent.valid() )
                    {
                        ext->glUniformMatrix4fv( texMatParentLocation, 1, GL_FALSE, layer._texMatParent.ptr() );
                    }
                }

                // draw the primitive sets.
                for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
                {
                    const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
                    primitiveset->draw(state, usingVBOs);
                }

                ++layersDrawn;
            }
        }

        // prevent texture leakage
        // TODO: find a way to remove this to speed things up
        glBindTexture( GL_TEXTURE_2D, 0 );
    }

    // if we didn't draw anything, draw the raw tiles anyway with no texture.
    if ( layersDrawn == 0 )
    {
        ext->glUniform1f( opacityLocation, (GLfloat)1.0f );
        ext->glUniform1i( uidLocation, (GLint)-1 );
        ext->glUniform1i( orderLocation, (GLint)0 );

        // draw the primitives themselves.
        for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
        {
            const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
            primitiveset->draw(state, usingVBOs);
        }
    }
}
예제 #13
0
void
VirtualProgram::apply( osg::State& state ) const
{
    if (_shaderMap.empty() && !_inheritSet)
    {
        // If there's no data in the VP, and never has been, unload any existing program.
        // NOTE: OSG's State processor creates a "global default attribute" for each type.
        // Sine we have no way of knowing whether the user created the VP or OSG created it
        // as the default fallback, we use the "_inheritSet" flag to differeniate. This
        // prevents any shader leakage from a VP-enabled node.
        const unsigned int contextID = state.getContextID();
        const osg::GL2Extensions* extensions = osg::GL2Extensions::Get(contextID,true);
        if( ! extensions->isGlslSupported() ) return;

        extensions->glUseProgram( 0 );
        state.setLastAppliedProgramObject(0);
        return;
    }

    // first, find and collect all the VirtualProgram attributes:
    ShaderMap         accumShaderMap;
    AttribBindingList accumAttribBindings;
    AttribAliasMap    accumAttribAliases;
    
    // Build the active shader map up to this point:
    if ( _inherit )
    {
        accumulateShaders(state, _mask, accumShaderMap, accumAttribBindings, accumAttribAliases);
    }

    // next add the local shader components to the map, respecting the override values:
    {
        Threading::ScopedReadLock readonly(_dataModelMutex);

        for( ShaderMap::const_iterator i = _shaderMap.begin(); i != _shaderMap.end(); ++i )
        {
            if ( i->second.accept(state) )
            {
                addToAccumulatedMap( accumShaderMap, i->first, i->second );
            }
        }

        const AttribBindingList& abl = this->getAttribBindingList();
        accumAttribBindings.insert( abl.begin(), abl.end() );

#ifdef USE_ATTRIB_ALIASES
        const AttribAliasMap& aliases = this->getAttribAliases();
        accumAttribAliases.insert( aliases.begin(), aliases.end() );
#endif
    }


    // next, assemble a list of the shaders in the map so we can use it as our
    // program cache key.
    // (Note: at present, the "cache key" does not include any information on the vertex
    // attribute bindings. Technically it should, but in practice this might not be an
    // issue; it is unlikely one would have two identical shader programs with different
    // bindings.)
    ShaderVector vec;
    vec.reserve( accumShaderMap.size() );
    for( ShaderMap::iterator i = accumShaderMap.begin(); i != accumShaderMap.end(); ++i )
    {
        ShaderEntry& entry = i->second;
        if ( i->second.accept(state) )
        {
            vec.push_back( entry._shader.get() );
        }
    }

    // see if there's already a program associated with this list:
    osg::ref_ptr<osg::Program> program;

    // look up the program:
    {
        Threading::ScopedReadLock shared( _programCacheMutex );

        ProgramMap::const_iterator p = _programCache.find( vec );
        if ( p != _programCache.end() )
        {
            program = p->second.get();
        }
    }

    // if not found, lock and build it:
    if ( !program.valid() )
    {
        // build a new set of accumulated functions, to support the creation of main()
        ShaderComp::FunctionLocationMap accumFunctions;
        accumulateFunctions( state, accumFunctions );

        // now double-check the program cache, and failing that, build the
        // new shader Program.
        {
            Threading::ScopedWriteLock exclusive( _programCacheMutex );

            // double-check: look again ito negate race conditions
            ProgramMap::const_iterator p = _programCache.find( vec );
            if ( p != _programCache.end() )
            {
                program = p->second.get();
            }
            else
            {
                ShaderVector keyVector;

                //OE_NOTICE << LC << "Building new Program for VP " << getName() << std::endl;

                program = buildProgram(
                    getName(),
                    state,
                    accumFunctions,
                    accumShaderMap, 
                    accumAttribBindings, 
                    accumAttribAliases, 
                    _template.get(),
                    keyVector);

                // global sharing.
                s_programRepo.share(program);

                // finally, put own new program in the cache.
                _programCache[ keyVector ] = program;
            }
        }
    }

    // finally, apply the program attribute.
    if ( program.valid() )
    {
        const unsigned int contextID = state.getContextID();
        const osg::GL2Extensions* extensions = osg::GL2Extensions::Get(contextID,true);

        osg::Program::PerContextProgram* pcp = program->getPCP( contextID );
        bool useProgram = state.getLastAppliedProgramObject() != pcp;

#ifdef DEBUG_APPLY_COUNTS
        {
            // debugging

            static int s_framenum = 0;
            static Threading::Mutex s_mutex;
            static std::map< const VirtualProgram*, std::pair<int,int> > s_counts;

            Threading::ScopedMutexLock lock(s_mutex);

            int framenum = state.getFrameStamp()->getFrameNumber();
            if ( framenum > s_framenum )
            {
                OE_NOTICE << LC << "Applies in last frame: " << std::endl;
                for(std::map<const VirtualProgram*,std::pair<int,int> >::iterator i = s_counts.begin(); i != s_counts.end(); ++i)
                {
                    std::pair<int,int>& counts = i->second;
                    OE_NOTICE << LC << "  " 
                        << i->first->getName() << " : " << counts.second << "/" << counts.first << std::endl;
                }
                s_framenum = framenum;
                s_counts.clear();
            }
            s_counts[this].first++;
            if ( useProgram )
                s_counts[this].second++;
        }
#endif

        if ( useProgram )
        {
            if( pcp->needsLink() )
                program->compileGLObjects( state );

            if( pcp->isLinked() )
            {
                if( osg::isNotifyEnabled(osg::INFO) )
                    pcp->validateProgram();

                pcp->useProgram();
                state.setLastAppliedProgramObject( pcp );
            }
            else
            {
                // program not usable, fallback to fixed function.
                extensions->glUseProgram( 0 );
                state.setLastAppliedProgramObject(0);
                OE_WARN << LC << "Program link failure!" << std::endl;
            }
        }

        //program->apply( state );

#if 0 // test code for detecting race conditions
        for(int i=0; i<10000; ++i) {
            state.setLastAppliedProgramObject(0L);
            program->apply( state );
        }
#endif
    }
}
예제 #14
0
void
VirtualProgram::apply( osg::State& state ) const
{
    if (_shaderMap.empty() && !_inheritSet)
    {
        // If there's no data in the VP, and never has been, unload any existing program.
        // NOTE: OSG's State processor creates a "global default attribute" for each type.
        // Sine we have no way of knowing whether the user created the VP or OSG created it
        // as the default fallback, we use the "_inheritSet" flag to differeniate. This
        // prevents any shader leakage from a VP-enabled node.
        const unsigned int contextID = state.getContextID();
        const osg::GL2Extensions* extensions = osg::GL2Extensions::Get(contextID,true);
        if( ! extensions->isGlslSupported() ) return;

        extensions->glUseProgram( 0 );
        state.setLastAppliedProgramObject(0);
        return;
    }

    // first, find and collect all the VirtualProgram attributes:
    ShaderMap         accumShaderMap;
    AttribBindingList accumAttribBindings;
    AttribAliasMap    accumAttribAliases;
    
    if ( _inherit )
    {
        const StateHack::AttributeVec* av = StateHack::GetAttributeVec( state, this );
        if ( av && av->size() > 0 )
        {
            // find the deepest VP that doesn't inherit:
            unsigned start = 0;
            for( start = (int)av->size()-1; start > 0; --start )
            {
                const VirtualProgram* vp = dynamic_cast<const VirtualProgram*>( (*av)[start].first );
                if ( vp && (vp->_mask & _mask) && vp->_inherit == false )
                    break;
            }
            
            // collect shaders from there to here:
            for( unsigned i=start; i<av->size(); ++i )
            {
                const VirtualProgram* vp = dynamic_cast<const VirtualProgram*>( (*av)[i].first );
                if ( vp && (vp->_mask && _mask) )
                {
                    ShaderMap vpShaderMap;
                    vp->getShaderMap( vpShaderMap );

                    for( ShaderMap::const_iterator i = vpShaderMap.begin(); i != vpShaderMap.end(); ++i )
                    {
                        addToAccumulatedMap( accumShaderMap, i->first, i->second );
                    }

                    const AttribBindingList& abl = vp->getAttribBindingList();
                    accumAttribBindings.insert( abl.begin(), abl.end() );

#ifdef USE_ATTRIB_ALIASES
                    const AttribAliasMap& aliases = vp->getAttribAliases();
                    accumAttribAliases.insert( aliases.begin(), aliases.end() );
#endif
                }
            }
        }
    }

    // next add the local shader components to the map, respecting the override values:
    {
        Threading::ScopedReadLock readonly(_dataModelMutex);

        for( ShaderMap::const_iterator i = _shaderMap.begin(); i != _shaderMap.end(); ++i )
        {
            addToAccumulatedMap( accumShaderMap, i->first, i->second );
        }

        const AttribBindingList& abl = this->getAttribBindingList();
        accumAttribBindings.insert( abl.begin(), abl.end() );

#ifdef USE_ATTRIB_ALIASES
        const AttribAliasMap& aliases = this->getAttribAliases();
        accumAttribAliases.insert( aliases.begin(), aliases.end() );
#endif
    }


    if ( true ) //even with nothing in the map, we still want mains! -gw  //accumShaderMap.size() )
    {
        // next, assemble a list of the shaders in the map so we can use it as our
        // program cache key.
        // (Note: at present, the "cache key" does not include any information on the vertex
        // attribute bindings. Technically it should, but in practice this might not be an
        // issue; it is unlikely one would have two identical shader programs with different
        // bindings.)
        ShaderVector vec;
        vec.reserve( accumShaderMap.size() );
        for( ShaderMap::iterator i = accumShaderMap.begin(); i != accumShaderMap.end(); ++i )
        {
            ShaderEntry& entry = i->second;
            vec.push_back( entry.first.get() );
        }
        
        // see if there's already a program associated with this list:
        osg::ref_ptr<osg::Program> program;
        
        // look up the program:
        {
            Threading::ScopedReadLock shared( _programCacheMutex );
            
            ProgramMap::const_iterator p = _programCache.find( vec );
            if ( p != _programCache.end() )
            {
                program = p->second.get();
            }
        }
        
        // if not found, lock and build it:
        if ( !program.valid() )
        {
            // build a new set of accumulated functions, to support the creation of main()
            ShaderComp::FunctionLocationMap accumFunctions;
            accumulateFunctions( state, accumFunctions );

            // now double-check the program cache, and failing that, build the
            // new shader Program.
            {
                Threading::ScopedWriteLock exclusive( _programCacheMutex );
                
                // double-check: look again ito negate race conditions
                ProgramMap::const_iterator p = _programCache.find( vec );
                if ( p != _programCache.end() )
                {
                    program = p->second.get();
                }
                else
                {
                    ShaderVector keyVector;

                    //OE_NOTICE << LC << "Building new Program for VP " << getName() << std::endl;

                    program = buildProgram(
                        getName(),
                        state,
                        accumFunctions,
                        accumShaderMap, 
                        accumAttribBindings, 
                        accumAttribAliases, 
                        _template.get(),
                        keyVector);

                    // finally, put own new program in the cache.
                    _programCache[ keyVector ] = program;
                }
            }
        }
        
        // finally, apply the program attribute.
        if ( program.valid() )
        {
            program->apply( state );

#if 0 // test code for detecting race conditions
            for(int i=0; i<10000; ++i) {
                state.setLastAppliedProgramObject(0L);
                program->apply( state );
            }
#endif
        }
    }
}
예제 #15
0
void
DepthPeelBin::PerContextInfo::init( const osg::State& state, const GLsizei width, const GLsizei height )
{
    TRACEDUMP("PerContextInfo::init");

    _width = width;
    _height = height;


    // Create two depth buffers; First two are ping-pong buffers for each pass.
    // The third is the persistent depth buffer from the opaque pass.
    glGenTextures( 3, _depthTex );
    UTIL_GL_ERROR_CHECK( "DepthPeelBin PerContext Depth Tex" );
    int idx;
    for( idx=0; idx<3; idx++ )
    {
        glBindTexture( GL_TEXTURE_2D, _depthTex[ idx ] );
        glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
        glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
        glTexParameteri( GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE_ARB, GL_ALPHA );
        glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB );
        glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL ); // Alpha == 1.0 if R [func] texel.

        glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, _width, _height,
            0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL );
    }


    glGenTextures( 1, &_colorTex );
    UTIL_GL_ERROR_CHECK( "DepthPeelBin PerContextInfo Color Tex" );
    glBindTexture( GL_TEXTURE_2D, _colorTex );
    glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, _width, _height,
        0, GL_RGBA, GL_UNSIGNED_BYTE, NULL );
    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
    glBindTexture( GL_TEXTURE_2D, 0 );


    osg::FBOExtensions* fboExt( osg::FBOExtensions::instance( state.getContextID(), true ) );

    osgwTools::glGenFramebuffers( fboExt, 1, &_fbo );
    osgwTools::glBindFramebuffer( fboExt, GL_FRAMEBUFFER_EXT, _fbo );
    osgwTools::glFramebufferTexture2D( fboExt, GL_DRAW_FRAMEBUFFER_EXT,
        GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, _colorTex, 0 );

    UTIL_GL_ERROR_CHECK( "DepthPeenBin PerContextInfo" );


    osg::setGLExtensionFuncPtr( _glGenQueries, "glGenQueries", "glGenQueriesARB");
    osg::setGLExtensionFuncPtr( _glDeleteQueries, "glDeleteQueries", "glDeleteQueriesARB");
    osg::setGLExtensionFuncPtr( _glBeginQuery, "glBeginQuery", "glBeginQueryARB");
    osg::setGLExtensionFuncPtr( _glEndQuery, "glEndQuery", "glEndQueryARB");
    osg::setGLExtensionFuncPtr( _glGetQueryObjectiv, "glGetQueryObjectiv","glGetQueryObjectivARB");
    osg::setGLExtensionFuncPtr( _glGetFramebufferAttachmentParameteriv, "glGetFramebufferAttachmentParameteriv","glGetFramebufferAttachmentParameterivEXT");

    _glGenQueries( 1, &_queryID );


    UTIL_GL_ERROR_CHECK( "DepthPeelBin PerContextInfo end" );
    UTIL_GL_FBO_ERROR_CHECK( "DepthPeelBin PerContextInfo end", fboExt );
    _init = true;
}
예제 #16
0
void
MPGeometry::renderPrimitiveSets(osg::State& state,
                                bool        usingVBOs) const
{
    // check the map frame to see if it's up to date
    if ( _frame.needsSync() )
    {
        // this lock protects a MapFrame sync when we have multiple DRAW threads.
        Threading::ScopedMutexLock exclusive( _frameSyncMutex );

        if ( _frame.needsSync() && _frame.sync() ) // always double check
        {
            // This should only happen is the layer ordering changes;
            // If layers are added or removed, the Tile gets rebuilt and
            // the point is moot.
            std::vector<Layer> reordered;
            const ImageLayerVector& layers = _frame.imageLayers();
            reordered.reserve( layers.size() );
            for( ImageLayerVector::const_iterator i = layers.begin(); i != layers.end(); ++i )
            {
                std::vector<Layer>::iterator j = std::find( _layers.begin(), _layers.end(), i->get()->getUID() );
                if ( j != _layers.end() )
                    reordered.push_back( *j );
            }
            _layers.swap( reordered );
        }
    }

    unsigned layersDrawn = 0;


    osg::ref_ptr<osg::GL2Extensions> ext = osg::GL2Extensions::Get( state.getContextID(), true );
    const osg::Program::PerContextProgram* pcp = state.getLastAppliedProgramObject();

    GLint opacityLocation;
    GLint uidLocation;
    GLint orderLocation;
    GLint texMatParentLocation;

    // yes, it's possible that the PCP is not set up yet.
    // TODO: can we optimize this so we don't need to get uni locations every time?
    if ( pcp )
    {
        opacityLocation      = pcp->getUniformLocation( _opacityUniform->getNameID() );
        uidLocation          = pcp->getUniformLocation( _layerUIDUniform->getNameID() );
        orderLocation        = pcp->getUniformLocation( _layerOrderUniform->getNameID() );
        texMatParentLocation = pcp->getUniformLocation( _texMatParentUniform->getNameID() );
    }

    // activate the tile coordinate set - same for all layers
    state.setTexCoordPointer( _imageUnit+1, _tileCoords.get() );

    if ( _layers.size() > 0 )
    {
        float prev_opacity        = -1.0f;
        float prev_alphaThreshold = -1.0f;

        // first bind any shared layers
        // TODO: optimize by pre-storing shared indexes
        for(unsigned i=0; i<_layers.size(); ++i)
        {
            const Layer& layer = _layers[i];

            // a "shared" layer binds to a secondary texture unit so that other layers
            // can see it and use it.
            if ( layer._imageLayer->isShared() )
            {
                int sharedUnit = layer._imageLayer->shareImageUnit().get();
                {
                    state.setActiveTextureUnit( sharedUnit );
                    state.setTexCoordPointer( sharedUnit, layer._texCoords.get() );
                    // bind the texture for this layer to the active share unit.
                    layer._tex->apply( state );

                    // no texture LOD blending for shared layers for now. maybe later.
                }
            }
        }

        // track the active image unit.
        int activeImageUnit = -1;

        // interate over all the image layers
        for(unsigned i=0; i<_layers.size(); ++i)
        {
            const Layer& layer = _layers[i];

            if ( layer._imageLayer->getVisible() )
            {
                // activate the visible unit if necessary:
                if ( activeImageUnit != _imageUnit )
                {
                    state.setActiveTextureUnit( _imageUnit );
                    activeImageUnit = _imageUnit;
                }

                // bind the texture for this layer:
                layer._tex->apply( state );

                // if we're using a parent texture for blending, activate that now
                if ( layer._texParent.valid() )
                {
                    state.setActiveTextureUnit( _imageUnitParent );
                    activeImageUnit = _imageUnitParent;
                    layer._texParent->apply( state );
                }

                // bind the texture coordinates for this layer.
                // TODO: can probably optimize this by sharing or using texture matrixes.
                // State::setTexCoordPointer does some redundant work under the hood.
                state.setTexCoordPointer( _imageUnit, layer._texCoords.get() );

                // apply uniform values:
                if ( pcp )
                {
                    // apply opacity:
                    float opacity = layer._imageLayer->getOpacity();
                    if ( opacity != prev_opacity )
                    {
                        _opacityUniform->set( opacity );
                        _opacityUniform->apply( ext, opacityLocation );
                        prev_opacity = opacity;
                    }

                    // assign the layer UID:
                    _layerUIDUniform->set( layer._layerID );
                    _layerUIDUniform->apply( ext, uidLocation );

                    // assign the layer order:
                    _layerOrderUniform->set( (int)layersDrawn );
                    _layerOrderUniform->apply( ext, orderLocation );

                    // assign the parent texture matrix
                    if ( layer._texParent.valid() )
                    {
                        _texMatParentUniform->set( layer._texMatParent );
                        _texMatParentUniform->apply( ext, texMatParentLocation );
                    }
                }

                // draw the primitive sets.
                for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
                {
                    const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
                    primitiveset->draw(state, usingVBOs);
                }

                ++layersDrawn;
            }
        }

        // prevent texture leakage
        glBindTexture( GL_TEXTURE_2D, 0 );
    }

    // if we didn't draw anything, draw the raw tiles anyway with no texture.
    if ( layersDrawn == 0 )
    {
        _opacityUniform->set( 1.0f );
        _opacityUniform->apply( ext, opacityLocation );

        _layerUIDUniform->set( (int)-1 ); // indicates a non-textured layer
        _layerUIDUniform->apply( ext, uidLocation );

        _layerOrderUniform->set( (int)0 );
        _layerOrderUniform->apply( ext, orderLocation );

        // draw the primitives themselves.
        for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
        {
            const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
            primitiveset->draw(state, usingVBOs);
        }
    }
}
예제 #17
0
void
MPGeometry::renderPrimitiveSets(osg::State& state,
                                bool        renderColor,
                                bool        usingVBOs) const
{
    // check the map frame to see if it's up to date
    if ( _frame.needsSync() )
    {
        // this lock protects a MapFrame sync when we have multiple DRAW threads.
        Threading::ScopedMutexLock exclusive( _frameSyncMutex );

        if ( _frame.needsSync() && _frame.sync() ) // always double check
        {
            // This should only happen is the layer ordering changes;
            // If layers are added or removed, the Tile gets rebuilt and
            // the point is moot.
            std::vector<Layer> reordered;
            const ImageLayerVector& layers = _frame.imageLayers();
            reordered.reserve( layers.size() );
            for( ImageLayerVector::const_iterator i = layers.begin(); i != layers.end(); ++i )
            {
                std::vector<Layer>::iterator j = std::find( _layers.begin(), _layers.end(), i->get()->getUID() );
                if ( j != _layers.end() )
                    reordered.push_back( *j );
            }
            _layers.swap( reordered );
        }
    }

    unsigned layersDrawn = 0;

    // access the GL extensions interface for the current GC:
    const osg::Program::PerContextProgram* pcp = 0L;

#if OSG_MIN_VERSION_REQUIRED(3,3,3)
	osg::ref_ptr<osg::GLExtensions> ext;
#else
    osg::ref_ptr<osg::GL2Extensions> ext;
#endif
    unsigned contextID;

    if (_supportsGLSL)
    {
        contextID = state.getContextID();
#if OSG_MIN_VERSION_REQUIRED(3,3,3)
		ext = osg::GLExtensions::Get(contextID, true);
#else
		ext = osg::GL2Extensions::Get( contextID, true );
#endif
        pcp = state.getLastAppliedProgramObject();
    }

    // cannot store these in the object since there could be multiple GCs (and multiple
    // PerContextPrograms) at large
    GLint tileKeyLocation       = -1;
    GLint birthTimeLocation     = -1;
    GLint opacityLocation       = -1;
    GLint uidLocation           = -1;
    GLint orderLocation         = -1;
    GLint texMatParentLocation  = -1;
    GLint minRangeLocation      = -1;
    GLint maxRangeLocation      = -1;

    // The PCP can change (especially in a VirtualProgram environment). So we do need to
    // requery the uni locations each time unfortunately. TODO: explore optimizations.
    if ( pcp )
    {
        tileKeyLocation      = pcp->getUniformLocation( _tileKeyUniformNameID );
        birthTimeLocation    = pcp->getUniformLocation( _birthTimeUniformNameID );
        opacityLocation      = pcp->getUniformLocation( _opacityUniformNameID );
        uidLocation          = pcp->getUniformLocation( _uidUniformNameID );
        orderLocation        = pcp->getUniformLocation( _orderUniformNameID );
        texMatParentLocation = pcp->getUniformLocation( _texMatParentUniformNameID );
        minRangeLocation = pcp->getUniformLocation( _minRangeUniformNameID );
        maxRangeLocation = pcp->getUniformLocation( _maxRangeUniformNameID );
    }
    
    // apply the tilekey uniform once.
    if ( tileKeyLocation >= 0 )
    {
        ext->glUniform4fv( tileKeyLocation, 1, _tileKeyValue.ptr() );
    }

    // set the "birth time" - i.e. the time this tile last entered the scene in the current GC.
    if ( birthTimeLocation >= 0 )
    {
        PerContextData& pcd = _pcd[contextID];
        if ( pcd.birthTime < 0.0f )
        {
            const osg::FrameStamp* stamp = state.getFrameStamp();
            if ( stamp )
            {
                pcd.birthTime = stamp->getReferenceTime();
            }
        }
        ext->glUniform1f( birthTimeLocation, pcd.birthTime );
    }

    // activate the tile coordinate set - same for all layers
    if ( renderColor )
    {
        state.setTexCoordPointer( _imageUnit+1, _tileCoords.get() );
    }

#ifndef OSG_GLES2_AVAILABLE
    if ( renderColor )
    {
        // emit a default terrain color since we're not binding a color array:
        glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
    }
#endif

    // activate the elevation texture if there is one. Same for all layers.
    //if ( _elevTex.valid() )
    //{
    //    state.setActiveTextureUnit( 2 );
    //    state.setTexCoordPointer( 1, _tileCoords.get() ); // necessary?? since we do it above
    //    _elevTex->apply( state );
    //    // todo: probably need an elev texture matrix as well. -gw
    //}
    

    // track the active image unit.
    int activeImageUnit = -1;

    // remember whether we applied a parent texture.
    bool usedTexParent = false;

    if ( _layers.size() > 0 )
    {
        float prev_opacity        = -1.0f;

        // first bind any shared layers. We still have to do this even if we are
        // in !renderColor mode b/c these textures could be used by vertex shaders
        // to alter the geometry.
        int sharedLayers = 0;
        if ( pcp )
        {
            for(unsigned i=0; i<_layers.size(); ++i)
            {
                const Layer& layer = _layers[i];

                // a "shared" layer binds to a secondary texture unit so that other layers
                // can see it and use it.
                if ( layer._imageLayer->isShared() )
                {
                    ++sharedLayers;
                    int sharedUnit = layer._imageLayer->shareImageUnit().get();
                    {
                        state.setActiveTextureUnit( sharedUnit );

                        state.setTexCoordPointer( sharedUnit, layer._texCoords.get() );
                        // bind the texture for this layer to the active share unit.
                        layer._tex->apply( state );

                        // Shared layers need a texture matrix since the terrain engine doesn't
                        // provide a "current texture coordinate set" uniform (i.e. oe_layer_texc)
                        GLint texMatLocation = 0;
                        texMatLocation = pcp->getUniformLocation( layer._texMatUniformID );
                        if ( texMatLocation >= 0 )
                        {
                            ext->glUniformMatrix4fv( texMatLocation, 1, GL_FALSE, layer._texMat.ptr() );
                        }
                    }
                }
            }
        }
        if (renderColor)
        {
            // find the first opaque layer, top-down, and start there:
            unsigned first = 0;
            for(first = _layers.size()-1; first > 0; --first)
            {
                const Layer& layer = _layers[first];
                if (layer._opaque &&
                    //Color filters can modify the opacity
                    layer._imageLayer->getColorFilters().empty() &&
                    layer._imageLayer->getVisible() &&
                    layer._imageLayer->getOpacity() >= 1.0f)
                {
                    break;
                }
            }

            // interate over all the image layers
            for(unsigned i=first; i<_layers.size(); ++i)
            {
                const Layer& layer = _layers[i];

                if ( layer._imageLayer->getVisible() && layer._imageLayer->getOpacity() > 0.0f )
                {       
                    // activate the visible unit if necessary:
                    if ( activeImageUnit != _imageUnit )
                    {
                        state.setActiveTextureUnit( _imageUnit );
                        activeImageUnit = _imageUnit;
                    }

                    // bind the texture for this layer:
                    layer._tex->apply( state );

                    // in FFP mode, we need to enable the GL mode for texturing:
                    if ( !pcp ) //!_supportsGLSL)
                    {
                        state.applyMode(GL_TEXTURE_2D, true);
                    }

                    // if we're using a parent texture for blending, activate that now
                    if ( texMatParentLocation >= 0 && layer._texParent.valid() )
                    {
                        state.setActiveTextureUnit( _imageUnitParent );
                        activeImageUnit = _imageUnitParent;
                        layer._texParent->apply( state );
                        usedTexParent = true;
                    }

                    // bind the texture coordinates for this layer.
                    // TODO: can probably optimize this by sharing or using texture matrixes.
                    // State::setTexCoordPointer does some redundant work under the hood.
                    state.setTexCoordPointer( _imageUnit, layer._texCoords.get() );

                    // apply uniform values:
                    if ( pcp )
                    {
                        // apply opacity:
                        if ( opacityLocation >= 0 )
                        {
                            float opacity = layer._imageLayer->getOpacity();
                            if ( opacity != prev_opacity )
                            {
                                ext->glUniform1f( opacityLocation, (GLfloat)opacity );
                                prev_opacity = opacity;
                            }
                        }

                        // assign the layer UID:
                        if ( uidLocation >= 0 )
                        {
                            ext->glUniform1i( uidLocation, (GLint)layer._layerID );
                        }

                        // assign the layer order:
                        if ( orderLocation >= 0 )
                        {
                            ext->glUniform1i( orderLocation, (GLint)layersDrawn );
                        }

                        // assign the parent texture matrix
                        if ( texMatParentLocation >= 0 && layer._texParent.valid() )
                        {
                            ext->glUniformMatrix4fv( texMatParentLocation, 1, GL_FALSE, layer._texMatParent.ptr() );
                        }

                        // assign the min range
                        if ( minRangeLocation >= 0 )
                        {
                            ext->glUniform1f( minRangeLocation, layer._imageLayer->getImageLayerOptions().minVisibleRange().get() );
                        }

                        // assign the max range
                        if ( maxRangeLocation >= 0 )
                        {
                            ext->glUniform1f( maxRangeLocation, layer._imageLayer->getImageLayerOptions().maxVisibleRange().get() );
                        }
                    }

                    // draw the primitive sets.
                    for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
                    {
                        const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
                        if ( primitiveset )
                        {
                            primitiveset->draw(state, usingVBOs);
                        }
                        else
                        {
                            OE_WARN << LC << "Strange, MPGeometry had a 0L primset" << std::endl;
                        }
                    }

                    ++layersDrawn;
                }
            }
        }
    }

    // if we didn't draw anything, draw the raw tiles anyway with no texture.
    if ( layersDrawn == 0 )
    {
        if ( pcp )
        {
            if ( opacityLocation >= 0 )
                ext->glUniform1f( opacityLocation, (GLfloat)1.0f );
            if ( uidLocation >= 0 )
                ext->glUniform1i( uidLocation, (GLint)-1 );
            if ( orderLocation >= 0 )
                ext->glUniform1i( orderLocation, (GLint)0 );
        }

        // draw the primitives themselves.
        for(unsigned int primitiveSetNum=0; primitiveSetNum!=_primitives.size(); ++primitiveSetNum)
        {
            const osg::PrimitiveSet* primitiveset = _primitives[primitiveSetNum].get();
            primitiveset->draw(state, usingVBOs);
        }
    }

    else // at least one textured layer was drawn:
    {
        // prevent texture leakage
        // TODO: find a way to remove this to speed things up
        if ( renderColor )
        {
            glBindTexture( GL_TEXTURE_2D, 0 );

            // if a parent texture was applied, need to disable both.
            if ( usedTexParent )
            {
                state.setActiveTextureUnit(
                    activeImageUnit != _imageUnitParent ? _imageUnitParent :
                    _imageUnit );

                glBindTexture( GL_TEXTURE_2D, 0);
            }
        }
    }
}
예제 #18
0
void
VirtualProgram::apply( osg::State& state ) const
{
    if (_shaderMap.empty() && !_inheritSet)
    {
        // If there's no data in the VP, and never has been, unload any existing program.
        // NOTE: OSG's State processor creates a "global default attribute" for each type.
        // Sine we have no way of knowing whether the user created the VP or OSG created it
        // as the default fallback, we use the "_inheritSet" flag to differeniate. This
        // prevents any shader leakage from a VP-enabled node.
        const unsigned int contextID = state.getContextID();
        const osg::GL2Extensions* extensions = osg::GL2Extensions::Get(contextID,true);
        if( ! extensions->isGlslSupported() ) return;

        extensions->glUseProgram( 0 );
        state.setLastAppliedProgramObject(0);
        return;
    }

    // first, find and collect all the VirtualProgram attributes:
    ShaderMap         accumShaderMap;
    AttribBindingList accumAttribBindings;
    AttribAliasMap    accumAttribAliases;
    
    if ( _inherit )
    {
        const StateHack::AttributeVec* av = StateHack::GetAttributeVec( state, this );
        if ( av && av->size() > 0 )
        {
            // find the deepest VP that doesn't inherit:
            unsigned start = 0;
            for( start = (int)av->size()-1; start > 0; --start )
            {
                const VirtualProgram* vp = dynamic_cast<const VirtualProgram*>( (*av)[start].first );
                if ( vp && (vp->_mask & _mask) && vp->_inherit == false )
                    break;
            }
            
            // collect shaders from there to here:
            for( unsigned i=start; i<av->size(); ++i )
            {
                const VirtualProgram* vp = dynamic_cast<const VirtualProgram*>( (*av)[i].first );
                if ( vp && (vp->_mask && _mask) )
                {
                    for( ShaderMap::const_iterator i = vp->_shaderMap.begin(); i != vp->_shaderMap.end(); ++i )
                    {
                        addToAccumulatedMap( accumShaderMap, i->first, i->second );
                    }

                    const AttribBindingList& abl = vp->getAttribBindingList();
                    accumAttribBindings.insert( abl.begin(), abl.end() );

                    const AttribAliasMap& aliases = vp->getAttribAliases();
                    accumAttribAliases.insert( aliases.begin(), aliases.end() );
                }
            }
        }
    }
    
    // next add the local shader components to the map, respecting the override values:
    for( ShaderMap::const_iterator i = _shaderMap.begin(); i != _shaderMap.end(); ++i )
    {
        addToAccumulatedMap( accumShaderMap, i->first, i->second );
    }
    const AttribBindingList& abl = this->getAttribBindingList();
    accumAttribBindings.insert( abl.begin(), abl.end() );

    const AttribAliasMap& aliases = this->getAttribAliases();
    accumAttribAliases.insert( aliases.begin(), aliases.end() );


    if ( true ) //even with nothing in the map, we still want mains! -gw  //accumShaderMap.size() )
    {
        // next, assemble a list of the shaders in the map so we can use it as our
        // program cache key.
        // (Note: at present, the "cache key" does not include any information on the vertex
        // attribute bindings. Technically it should, but in practice this might not be an
        // issue; it is unlikely one would have two identical shader programs with different
        // bindings.)
        ShaderVector vec;
        vec.reserve( accumShaderMap.size() );
        for( ShaderMap::iterator i = accumShaderMap.begin(); i != accumShaderMap.end(); ++i )
        {
            ShaderEntry& entry = i->second;
            vec.push_back( entry.first.get() );
        }
        
        // see if there's already a program associated with this list:
        osg::Program* program = 0L;
        
        // look up the program:
        {
            Threading::ScopedReadLock shared( _programCacheMutex );
            
            ProgramMap::const_iterator p = _programCache.find( vec );
            if ( p != _programCache.end() )
            {
                program = p->second.get();
            }
        }
        
        // if not found, lock and build it:
        if ( !program )
        {
            Threading::ScopedWriteLock exclusive( _programCacheMutex );
            
            // look again in case of contention:
            ProgramMap::const_iterator p = _programCache.find( vec );
            if ( p != _programCache.end() )
            {
                program = p->second.get();
            }
            else
            {
                VirtualProgram* nc = const_cast<VirtualProgram*>(this);
                program = nc->buildProgram( state, accumShaderMap, accumAttribBindings, accumAttribAliases);
            }
        }
        
        // finally, apply the program attribute.
        program->apply( state );
    }
}