int main(int argc, char* argv[]) { OVR::System::Init(); ovrManager = *OVR::DeviceManager::Create(); { OVR::Ptr<OVR::HMDDevice> ovrHmd = *ovrManager->EnumerateDevices<OVR::HMDDevice>().CreateDevice(); if (ovrHmd) { ovrHmd->GetDeviceInfo(&ovrHmdInfo); ovrSensor = *ovrHmd->GetSensor(); } else { ovrHmdInfo.HResolution = 1280; ovrHmdInfo.VResolution = 800; ovrHmdInfo.HScreenSize = 0.14976f; ovrHmdInfo.VScreenSize = 0.09360f; ovrHmdInfo.VScreenCenter = 0.04680f; ovrHmdInfo.EyeToScreenDistance = 0.04100f; ovrHmdInfo.LensSeparationDistance = 0.06350f; ovrHmdInfo.InterpupillaryDistance = 0.06400f; ovrHmdInfo.DistortionK[0] = 1; ovrHmdInfo.DistortionK[1] = 0.22f; ovrHmdInfo.DistortionK[2] = 0.24f; ovrHmdInfo.DistortionK[3] = 0; ovrHmdInfo.DesktopX = 100; ovrHmdInfo.DesktopY = 100; ovrHmdInfo.ChromaAbCorrection[0] = 0.99600f; ovrHmdInfo.ChromaAbCorrection[1] = -0.00400f; ovrHmdInfo.ChromaAbCorrection[2] = 1.01400f; ovrHmdInfo.ChromaAbCorrection[3] = 0; } } ovrStereoConfig.SetHMDInfo(ovrHmdInfo); if (!ovrSensor) { ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); } ovrSensorFusion = new OVR::SensorFusion(); if (ovrSensor) { ovrSensorFusion->AttachToSensor(ovrSensor); } setlocale(LC_ALL, ""); setlocale(LC_NUMERIC, "C"); fprintf(stdout, "\nDone\n", SDL_GetError()); // bindtextdomain(PACKAGE, LOCALEDIR); // bind_textdomain_codeset(PACKAGE, "UTF-8"); // textdomain (PACKAGE); CONFIG_DATA_DIR = getenv("CELESTIA_HOME"); if (Directory::chdir(CONFIG_DATA_DIR) == -1) { cerr << "Cannot chdir to '" << CONFIG_DATA_DIR << "', probably due to improper installation\n"; } // Not ready to render yet ready = false; char c; int startfile = 0; //while ((c = getopt(argc, argv, "v::f")) > -1) { // if (c == '?') { // cout << "Usage: celestia [-v] [-f <filename>]\n"; // exit(1); // } // else if (c == 'v') { // if (optarg) // SetDebugVerbosity(atoi(optarg)); // else // SetDebugVerbosity(0); // } // else if (c == 'f') { // startfile = 1; // } //} appCore = new CelestiaCore(); if (appCore == NULL) { cerr << "Out of memory.\n"; return 1; } static SimpleNotifier notifier; if (!appCore->initSimulation(NULL, NULL, ¬ifier)) { return 1; } appCore->getSimulation()->getActiveObserver()->setFOV(ovrStereoConfig.GetYFOVDegrees()); if (0 != SDL_Init(SDL_INIT_EVERYTHING)) { cerr << endl << "Unable to initialize SDL: " << SDL_GetError() << endl; return 1; } SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1); SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24); sdlWindow = SDL_CreateWindow(AppName, ovrHmdInfo.DesktopX, ovrHmdInfo.DesktopY, ovrHmdInfo.HResolution, ovrHmdInfo.VResolution, SDL_WINDOW_OPENGL | SDL_WINDOW_SHOWN | SDL_WINDOW_BORDERLESS); // SDL_SetWindowPosition(); appCore->resize(ovrHmdInfo.HResolution, ovrHmdInfo.VResolution); sdlGlContext = SDL_GL_CreateContext(sdlWindow); SDL_GL_SetSwapInterval(1); glewExperimental = GL_TRUE; GLenum glewErr = glewInit(); // GL should be all set up, now initialize the renderer. appCore->initRenderer(); // Set the simulation starting time to the current system time time_t curtime = time(NULL); appCore->start( (double) curtime / 86400.0 + (double) astro::Date(1970, 1, 1)); localtime(&curtime); // Only doing this to set timezone as a side effect appCore->setTimeZoneBias(-timezone); appCore->setTimeZoneName(tzname[daylight ? 0 : 1]); if (startfile == 1) { if (argv[argc - 1][0] == '-') { cout << "Missing Filename.\n"; return 1; } cout << "*** Using CEL File: " << argv[argc - 1] << endl; appCore->runScript(argv[argc - 1]); } ready = true; SDL_Event event; while (!quit) { if (SDL_PollEvent(&event)) { switch (event.type) { case SDL_WINDOWEVENT: onWindowEvent(event.window); break; case SDL_KEYDOWN: case SDL_KEYUP: onKeyboardEvent(event.key); break; case SDL_MOUSEMOTION: onMouseMotion(event.motion); break; case SDL_MOUSEBUTTONDOWN: case SDL_MOUSEBUTTONUP: onMouseButton(event.button); break; case SDL_MOUSEWHEEL: onMouseWheel(event.wheel); break; } } else { appCore->tick(); if (ready) { appCore->draw(); SDL_GL_SwapWindow(sdlWindow); } } } SDL_DestroyWindow(sdlWindow); SDL_Quit(); delete appCore; appCore = NULL; delete ovrSensorFusion; ovrManager.Clear(); OVR::System::Destroy(); return 0; }
HelloRift() : useTracker(false) { ovrManager = *OVR::DeviceManager::Create(); if (!ovrManager) { FAIL("Unable to initialize OVR Device Manager"); } OVR::Ptr<OVR::HMDDevice> ovrHmd = *ovrManager->EnumerateDevices<OVR::HMDDevice>().CreateDevice(); OVR::HMDInfo hmdInfo; if (ovrHmd) { ovrHmd->GetDeviceInfo(&hmdInfo); ovrSensor = *ovrHmd->GetSensor(); } else { Rift::getDk1HmdValues(hmdInfo); } ovrHmd.Clear(); if (!ovrSensor) { ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); } if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); useTracker = sensorFusion.IsAttachedToSensor(); } ipd = hmdInfo.InterpupillaryDistance; distortionCoefficients = glm::vec4( hmdInfo.DistortionK[0], hmdInfo.DistortionK[1], hmdInfo.DistortionK[2], hmdInfo.DistortionK[3]); windowPosition = glm::ivec2(hmdInfo.DesktopX, hmdInfo.DesktopY); // The HMDInfo gives us the position of the Rift in desktop // coordinates as well as the native resolution of the Rift // display panel, but NOT the current resolution of the signal // being sent to the Rift. GLFWmonitor * hmdMonitor = GlfwApp::getMonitorAtPosition(windowPosition); if (!hmdMonitor) { FAIL("Unable to find Rift display"); } // For the current resoltuion we must find the appropriate GLFW monitor const GLFWvidmode * videoMode = glfwGetVideoMode(hmdMonitor); windowSize = glm::ivec2(videoMode->width, videoMode->height); // The eyeSize is used to help us set the viewport when rendering to // each eye. This should be based off the video mode that is / will // be sent to the Rift // We also use the eyeSize to set up the framebuffer which will be // used to render the scene to a texture for distortion and display // on the Rift. The Framebuffer resolution does not have to match // the Physical display resolution in either aspect ratio or // resolution, but using a resolution less than the native pixels can // negatively impact image quality. eyeSize = windowSize; eyeSize.x /= 2; eyeArgs[1].viewportLocation = glm::ivec2(eyeSize.x, 0); eyeArgs[0].viewportLocation = glm::ivec2(0, 0); // Notice that the eyeAspect we calculate is based on the physical // display resolution, regardless of the current resolution being // sent to the Rift. The Rift scales the image sent to it to fit // the display panel, so a 1920x1080 image (with an aspect ratio of // 16:9 will be displayed with the aspect ratio of the Rift display // (16:10 for the DK1). This means that if you're cloning a // 1920x1080 output to the rift and an conventional monitor of those // dimensions the conventional monitor's image will appear a bit // squished. This is expected and correct. eyeAspect = (float)(hmdInfo.HResolution / 2) / (float)hmdInfo.VResolution; // Some of the values needed by the rendering or distortion need some // calculation to find, but the OVR SDK includes a utility class to // do them, so we use it here to get the ProjectionOffset and the // post distortion scale. OVR::Util::Render::StereoConfig stereoConfig; stereoConfig.SetHMDInfo(hmdInfo); // The overall distortion effect has a shrinking effect. postDistortionScale = 1.0f / stereoConfig.GetDistortionScale(); // The projection offset and lens offset are both in normalized // device coordinates, i.e. [-1, 1] on both the X and Y axis glm::vec3 projectionOffsetVector = glm::vec3(stereoConfig.GetProjectionCenterOffset() / 2.0f, 0, 0); eyeArgs[0].projectionOffset = glm::translate(glm::mat4(), projectionOffsetVector); eyeArgs[1].projectionOffset = glm::translate(glm::mat4(), -projectionOffsetVector); eyeArgs[0].lensOffset = 1.0f - (2.0f * hmdInfo.LensSeparationDistance / hmdInfo.HScreenSize); eyeArgs[1].lensOffset = -eyeArgs[0].lensOffset; // The IPD and the modelview offset are in meters. If you wish to have a // different unit for the scale of your world coordinates, you would need // to apply the conversion factor here. glm::vec3 modelviewOffsetVector = glm::vec3(stereoConfig.GetIPD() / 2.0f, 0, 0); eyeArgs[0].modelviewOffset = glm::translate(glm::mat4(), modelviewOffsetVector); eyeArgs[1].modelviewOffset = glm::translate(glm::mat4(), -modelviewOffsetVector); gl::Stacks::projection().top() = glm::perspective( stereoConfig.GetYFOVDegrees() * DEGREES_TO_RADIANS, eyeAspect, Rift::ZNEAR, Rift::ZFAR); }