예제 #1
0
void  viewerOneOff(pcl::visualization::PCLVisualizer& viewer)
{
    viewer.setBackgroundColor (0.3, 0.3, 0.3);
    viewer.addCoordinateSystem(1.0, 0);
    viewer.initCameraParameters();
    viewer.camera_.pos[2] = 30;
	viewer.updateCamera();
}
void initViewer(pcl::visualization::PCLVisualizer &viewer) {
	viewer.setBackgroundColor(0, 0, 0);
	viewer.addCoordinateSystem(1.0, "reference");
	viewer.initCameraParameters();
	viewer.setRepresentationToPointsForAllActors();
	viewer.setCameraPosition(0, 0, -1, 0, 0, 0, 0, -1, 0);
	viewer.registerKeyboardCallback(keyboardCallback);
}
 PCDOrganizedMultiPlaneSegmentation (typename pcl::PointCloud<PointT>::ConstPtr cloud_, bool refine)
 : viewer ("Viewer")
 , cloud (cloud_)
 , refine_ (refine)
 , threshold_ (0.02f)
 , depth_dependent_ (true)
 , polygon_refinement_ (false)
 {
   viewer.setBackgroundColor (0, 0, 0);
   //viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "cloud");
   //viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY, 0.15, "cloud");
   viewer.addCoordinateSystem (1.0, "global");
   viewer.initCameraParameters ();
   viewer.registerKeyboardCallback(&PCDOrganizedMultiPlaneSegmentation::keyboard_callback, *this, 0);
 }
void
initVisualizer (pcl::visualization::PCLVisualizer &viewer)
{
  // Setting the initial viewer parameters
  viewer.initCameraParameters ();
  viewer.setBackgroundColor (0, 0, 0);
  viewer.addCoordinateSystem (1000);
  viewer.camera_.view[0] = 0;
  viewer.camera_.view[1] = 0;
  viewer.camera_.view[2] = 1;
  viewer.camera_.pos[0] = 8000;
  viewer.camera_.pos[1] = 20000;
  viewer.camera_.pos[2] = 2500;
  viewer.updateCamera ();
  viewer.addText ("Shift + click to select noisy objects. \nPress 0 to confirm the removal.", 50, 300, "user");
}
예제 #5
0
void
compute (const sensor_msgs::PointCloud2::ConstPtr &input, sensor_msgs::PointCloud2 &output,
         float th_dd, int max_search)
{
  CloudPtr cloud (new Cloud);
  fromROSMsg (*input, *cloud);

  pcl::PointCloud<pcl::Normal>::Ptr normal (new pcl::PointCloud<pcl::Normal>);
  pcl::IntegralImageNormalEstimation<PointXYZRGBA, pcl::Normal> ne;
  ne.setNormalEstimationMethod (ne.COVARIANCE_MATRIX);
  ne.setNormalSmoothingSize (10.0f);
  ne.setBorderPolicy (ne.BORDER_POLICY_MIRROR);
  ne.setInputCloud (cloud);
  ne.compute (*normal);

  TicToc tt;
  tt.tic ();

  //OrganizedEdgeBase<PointXYZRGBA, Label> oed;
  //OrganizedEdgeFromRGB<PointXYZRGBA, Label> oed;
  //OrganizedEdgeFromNormals<PointXYZRGBA, Normal, Label> oed;
  OrganizedEdgeFromRGBNormals<PointXYZRGBA, Normal, Label> oed;
  oed.setInputNormals (normal);
  oed.setInputCloud (cloud);
  oed.setDepthDisconThreshold (th_dd);
  oed.setMaxSearchNeighbors (max_search);
  oed.setEdgeType (oed.EDGELABEL_NAN_BOUNDARY | oed.EDGELABEL_OCCLUDING | oed.EDGELABEL_OCCLUDED | oed.EDGELABEL_HIGH_CURVATURE | oed.EDGELABEL_RGB_CANNY);
  PointCloud<Label> labels;
  std::vector<PointIndices> label_indices;
  oed.compute (labels, label_indices);
  print_info ("Detecting all edges... [done, "); print_value ("%g", tt.toc ()); print_info (" ms]\n");

  // Make gray point clouds
  for (int idx = 0; idx < (int)cloud->points.size (); idx++)
  {
    uint8_t gray = (cloud->points[idx].r + cloud->points[idx].g + cloud->points[idx].b)/3;
    cloud->points[idx].r = cloud->points[idx].g = cloud->points[idx].b = gray;
  }

  // Display edges in PCLVisualizer
  viewer.setSize (640, 480);
  viewer.addCoordinateSystem (0.2f);
  viewer.addPointCloud (cloud, "original point cloud");
  viewer.registerKeyboardCallback(&keyboard_callback);

  pcl::PointCloud<pcl::PointXYZRGBA>::Ptr occluding_edges (new pcl::PointCloud<pcl::PointXYZRGBA>), 
    occluded_edges (new pcl::PointCloud<pcl::PointXYZRGBA>), 
    nan_boundary_edges (new pcl::PointCloud<pcl::PointXYZRGBA>),
    high_curvature_edges (new pcl::PointCloud<pcl::PointXYZRGBA>),
    rgb_edges (new pcl::PointCloud<pcl::PointXYZRGBA>);

  pcl::copyPointCloud (*cloud, label_indices[0].indices, *nan_boundary_edges);
  pcl::copyPointCloud (*cloud, label_indices[1].indices, *occluding_edges);
  pcl::copyPointCloud (*cloud, label_indices[2].indices, *occluded_edges);
  pcl::copyPointCloud (*cloud, label_indices[3].indices, *high_curvature_edges);
  pcl::copyPointCloud (*cloud, label_indices[4].indices, *rgb_edges);

  const int point_size = 2;
  viewer.addPointCloud<pcl::PointXYZRGBA> (nan_boundary_edges, "nan boundary edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, point_size, "nan boundary edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 0.0f, 0.0f, 1.0f, "nan boundary edges");

  viewer.addPointCloud<pcl::PointXYZRGBA> (occluding_edges, "occluding edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, point_size, "occluding edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 0.0f, 1.0f, 0.0f, "occluding edges");

  viewer.addPointCloud<pcl::PointXYZRGBA> (occluded_edges, "occluded edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, point_size, "occluded edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0f, 0.0f, 0.0f, "occluded edges");

  viewer.addPointCloud<pcl::PointXYZRGBA> (high_curvature_edges, "high curvature edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, point_size, "high curvature edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0f, 1.0f, 0.0f, "high curvature edges");

  viewer.addPointCloud<pcl::PointXYZRGBA> (rgb_edges, "rgb edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, point_size, "rgb edges");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 0.0f, 1.0f, 1.0f, "rgb edges");

  while (!viewer.wasStopped ())
  {
    viewer.spinOnce ();
    pcl_sleep(0.1);
  }

  // Combine point clouds and edge labels
  sensor_msgs::PointCloud2 output_edges;  
  toROSMsg (labels, output_edges);
  concatenateFields (*input, output_edges, output);
}
예제 #6
0
void run(pcl::RFFaceDetectorTrainer & fdrf, typename pcl::PointCloud<PointInT>::Ptr & scene_vis, pcl::visualization::PCLVisualizer & vis, bool heat_map,
    bool show_votes, const std::string & filename)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr scene (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::copyPointCloud (*scene_vis, *scene);

  fdrf.setInputCloud (scene);

  if (heat_map)
  {
    pcl::PointCloud<pcl::PointXYZI>::Ptr intensity_cloud (new pcl::PointCloud<pcl::PointXYZI>);
    fdrf.setFaceHeatMapCloud (intensity_cloud);
  }

  fdrf.detectFaces ();

  typedef typename pcl::traits::fieldList<PointInT>::type FieldListM;

  double rgb_m;
  bool exists_m;
  pcl::for_each_type < FieldListM > (pcl::CopyIfFieldExists<PointInT, double> (scene_vis->points[0], "rgb", exists_m, rgb_m));

  std::cout << "Color exists:" << static_cast<int> (exists_m) << std::endl;
  if (exists_m)
  {
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr to_visualize (new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::copyPointCloud (*scene_vis, *to_visualize);

    pcl::visualization::PointCloudColorHandlerRGBField < pcl::PointXYZRGB > handler_keypoints (to_visualize);
    vis.addPointCloud < pcl::PointXYZRGB > (to_visualize, handler_keypoints, "scene_cloud");
  } else
  {
    vis.addPointCloud (scene_vis, "scene_cloud");
  }

  if (heat_map)
  {
    pcl::PointCloud<pcl::PointXYZI>::Ptr intensity_cloud (new pcl::PointCloud<pcl::PointXYZI>);
    fdrf.getFaceHeatMap (intensity_cloud);

    pcl::visualization::PointCloudColorHandlerGenericField < pcl::PointXYZI > handler_keypoints (intensity_cloud, "intensity");
    vis.addPointCloud < pcl::PointXYZI > (intensity_cloud, handler_keypoints, "heat_map");
  }

  if (show_votes)
  {
    //display votes_
    /*pcl::PointCloud<pcl::PointXYZ>::Ptr votes_cloud(new pcl::PointCloud<pcl::PointXYZ>());
     fdrf.getVotes(votes_cloud);
     pcl::visualization::PointCloudColorHandlerCustom < pcl::PointXYZ > handler_votes(votes_cloud, 255, 0, 0);
     vis.addPointCloud < pcl::PointXYZ > (votes_cloud, handler_votes, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 14, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.75, "votes_cloud");*/

    pcl::PointCloud<pcl::PointXYZI>::Ptr votes_cloud (new pcl::PointCloud<pcl::PointXYZI> ());
    fdrf.getVotes2 (votes_cloud);
    pcl::visualization::PointCloudColorHandlerGenericField < pcl::PointXYZI > handler_votes (votes_cloud, "intensity");
    vis.addPointCloud < pcl::PointXYZI > (votes_cloud, handler_votes, "votes_cloud");
    vis.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 14, "votes_cloud");
  }

  vis.addCoordinateSystem (0.1, "global");

  std::vector<Eigen::VectorXd> heads;
  fdrf.getDetectedFaces (heads);
  face_detection_apps_utils::displayHeads (heads, vis);

  if (SHOW_GT)
  {
    //check if there is ground truth data
    std::string pose_file (filename);
    boost::replace_all (pose_file, ".pcd", "_pose.txt");

    Eigen::Matrix4d pose_mat;
    pose_mat.setIdentity (4, 4);
    bool result = face_detection_apps_utils::readMatrixFromFile (pose_file, pose_mat);

    if (result)
    {
      Eigen::Vector3d ea = pose_mat.block<3, 3> (0, 0).eulerAngles (0, 1, 2);
      Eigen::Vector3d trans_vector = Eigen::Vector3d (pose_mat (0, 3), pose_mat (1, 3), pose_mat (2, 3));
      std::cout << ea << std::endl;
      std::cout << trans_vector << std::endl;

      pcl::PointXYZ center_point;
      center_point.x = trans_vector[0];
      center_point.y = trans_vector[1];
      center_point.z = trans_vector[2];
      vis.addSphere (center_point, 0.05, 255, 0, 0, "sphere");

      pcl::ModelCoefficients cylinder_coeff;
      cylinder_coeff.values.resize (7); // We need 7 values
      cylinder_coeff.values[0] = center_point.x;
      cylinder_coeff.values[1] = center_point.y;
      cylinder_coeff.values[2] = center_point.z;

      cylinder_coeff.values[3] = ea[0];
      cylinder_coeff.values[4] = ea[1];
      cylinder_coeff.values[5] = ea[2];

      Eigen::Vector3d vec = Eigen::Vector3d::UnitZ () * -1.;
      Eigen::Matrix3d matrixxx;

      matrixxx = Eigen::AngleAxisd (ea[0], Eigen::Vector3d::UnitX ()) * Eigen::AngleAxisd (ea[1], Eigen::Vector3d::UnitY ())
          * Eigen::AngleAxisd (ea[2], Eigen::Vector3d::UnitZ ());

      //matrixxx = pose_mat.block<3,3>(0,0);
      vec = matrixxx * vec;

      cylinder_coeff.values[3] = vec[0];
      cylinder_coeff.values[4] = vec[1];
      cylinder_coeff.values[5] = vec[2];

      cylinder_coeff.values[6] = 0.01;
      vis.addCylinder (cylinder_coeff, "cylinder");
    }
  }

  vis.setRepresentationToSurfaceForAllActors ();

  if (VIDEO)
  {
    vis.spinOnce (50, true);
  } else
  {
    vis.spin ();
  }

  vis.removeAllPointClouds ();
  vis.removeAllShapes ();
}