void
pcl::registration::CorrespondenceRejectorMedianDistance::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences, 
    pcl::Correspondences& remaining_correspondences)
{
  std::vector <double> dists;
  dists.resize (original_correspondences.size ());

  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    if (data_container_)
      dists[i] = data_container_->getCorrespondenceScore (original_correspondences[i]);
    else
      dists[i] = original_correspondences[i].distance;
  }

  std::vector <double> nth (dists);
  nth_element (nth.begin (), nth.begin () + (nth.size () / 2), nth.end ());
  median_distance_ = nth [nth.size () / 2];

  unsigned int number_valid_correspondences = 0;
  remaining_correspondences.resize (original_correspondences.size ());

  for (size_t i = 0; i < original_correspondences.size (); ++i)
    if (dists[i] <= median_distance_ * factor_)
      remaining_correspondences[number_valid_correspondences++] = original_correspondences[i];
  remaining_correspondences.resize (number_valid_correspondences);
}
void
pcl::registration::CorrespondenceRejectorDistance::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences,
    pcl::Correspondences& remaining_correspondences)
{
  unsigned int number_valid_correspondences = 0;
  remaining_correspondences.resize (original_correspondences.size ());
  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    if (data_container_)
    {
      if (data_container_->getCorrespondenceScore (original_correspondences[i]) < max_distance_)
      {
        remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
        ++number_valid_correspondences;
      }
    }
    else
    {
      if (original_correspondences[i].distance < max_distance_)
      {
        remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
        ++number_valid_correspondences;
      }
    }
  }
  remaining_correspondences.resize (number_valid_correspondences);
}
template <typename PointSource, typename PointTarget> inline void
TransformationEstimationJointOptimize<PointSource, PointTarget>::estimateRigidTransformation (
		const pcl::PointCloud<PointSource> &cloud_src,
		const pcl::PointCloud<PointTarget> &cloud_tgt,
		const pcl::Correspondences &correspondences,
		const pcl::Correspondences &correspondences_dfp,
		float alpha_arg,
		Eigen::Matrix4f &transformation_matrix)
{
	const int nr_correspondences = (int)correspondences.size();
	std::vector<int> indices_src(nr_correspondences);
	std::vector<int> indices_tgt(nr_correspondences);
	for (int i = 0; i < nr_correspondences; ++i)
	{
		indices_src[i] = correspondences[i].index_query;
		indices_tgt[i] = correspondences[i].index_match;
	}

	const int nr_correspondences_dfp = (int)correspondences_dfp.size();
	std::vector<int> indices_src_dfp(nr_correspondences_dfp);
	std::vector<int> indices_tgt_dfp(nr_correspondences_dfp);
	for (int i = 0; i < nr_correspondences_dfp; ++i)
	{
		indices_src_dfp[i] = correspondences_dfp[i].index_query;
		indices_tgt_dfp[i] = correspondences_dfp[i].index_match;
	}
	estimateRigidTransformation(cloud_src, indices_src, indices_src_dfp, cloud_tgt, indices_tgt, indices_tgt_dfp,
			alpha_arg, transformation_matrix);
}
예제 #4
0
inline void
pcl::registration::getMatchIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices)
{
  indices.resize (correspondences.size ());
  for (size_t i = 0; i < correspondences.size (); ++i)
    indices[i] = correspondences[i].index_match;
}
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationPointToPlaneLLSWeighted<PointSource, PointTarget, Scalar>::
estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,
                             const pcl::PointCloud<PointTarget> &cloud_tgt,
                             const pcl::Correspondences &correspondences,
                             Matrix4 &transformation_matrix) const
{
  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
  std::vector<Scalar> weights (correspondences.size ());
  for (size_t i = 0; i < correspondences.size (); ++i)
    weights[i] = correspondences[i].weight;
  typename std::vector<Scalar>::const_iterator weights_it = weights.begin ();
  estimateRigidTransformation (source_it, target_it, weights_it, transformation_matrix);
}
예제 #6
0
inline void
pcl::registration::getCorDistMeanStd (const pcl::Correspondences &correspondences, double &mean, double &stddev)
{
  if (correspondences.empty ())
    return;

  double sum = 0, sq_sum = 0;

  for (size_t i = 0; i < correspondences.size (); ++i)
  {
    sum += correspondences[i].distance;
    sq_sum += correspondences[i].distance * correspondences[i].distance;
  }
  mean = sum / static_cast<double> (correspondences.size ());
  double variance = (sq_sum - sum * sum / static_cast<double> (correspondences.size ())) / static_cast<double> (correspondences.size () - 1);
  stddev = sqrt (variance);
}
예제 #7
0
Eigen::Matrix4f SHOTObjectGenerator::computeTransformationSAC(const pcl::PointCloud<PointXYZSHOT>::ConstPtr &cloud_src, const pcl::PointCloud<PointXYZSHOT>::ConstPtr &cloud_trg,
		const pcl::CorrespondencesConstPtr& correspondences, pcl::Correspondences& inliers)
{
	CLOG(LTRACE) << "Computing SAC" << std::endl ;

	pcl::registration::CorrespondenceRejectorSampleConsensus<PointXYZSHOT> sac ;
	sac.setInputSource(cloud_src) ;
	sac.setInputTarget(cloud_trg) ;
	sac.setInlierThreshold(0.001f) ;
	sac.setMaximumIterations(2000) ;
	sac.setInputCorrespondences(correspondences) ;
	sac.getCorrespondences(inliers) ;

	CLOG(LINFO) << "SAC inliers " << inliers.size();

	if ( ((float)inliers.size()/(float)correspondences->size()) >85)
		return Eigen::Matrix4f::Identity();
	return sac.getBestTransformation() ;
}
예제 #8
0
void
pcl::getRejectedQueryIndices (const pcl::Correspondences &correspondences_before,
                              const pcl::Correspondences &correspondences_after,
                              std::vector<int>& indices,
                              bool presorting_required)
{
  indices.clear();

  const int nr_correspondences_before = static_cast<int> (correspondences_before.size ());
  const int nr_correspondences_after = static_cast<int> (correspondences_after.size ());

  if (nr_correspondences_before == 0)
    return;
  else if (nr_correspondences_after == 0)
  {
    indices.resize(nr_correspondences_before);
    for (int i = 0; i < nr_correspondences_before; ++i)
      indices[i] = correspondences_before[i].index_query;
    return;
  }

  std::vector<int> indices_before (nr_correspondences_before);
  for (int i = 0; i < nr_correspondences_before; ++i)
    indices_before[i] = correspondences_before[i].index_query;

  std::vector<int> indices_after (nr_correspondences_after);
  for (int i = 0; i < nr_correspondences_after; ++i)
    indices_after[i] = correspondences_after[i].index_query;

  if (presorting_required)
  {
    std::sort (indices_before.begin (), indices_before.end ());
    std::sort (indices_after.begin (), indices_after.end ());
  }

  set_difference (
      indices_before.begin (), indices_before.end (),
      indices_after.begin (),  indices_after.end (),
      inserter (indices, indices.begin ()));
}
void
pcl::registration::CorrespondenceRejectionOrganizedBoundary::getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
                                                                                          pcl::Correspondences& remaining_correspondences)
{
  pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud = boost::static_pointer_cast<pcl::registration::DataContainer<pcl::PointXYZ, pcl::PointNormal> >(data_container_)->getInputTarget ();

  if (!cloud->isOrganized ())
  {
    PCL_ERROR ("[pcl::registration::CorrespondenceRejectionOrganizedBoundary::getRemainingCorrespondences] The target cloud is not organized.\n");
    remaining_correspondences.clear ();
    return;
  }

  remaining_correspondences.reserve (original_correspondences.size ());
  for (size_t c_i = 0; c_i < original_correspondences.size (); ++c_i)
  {
    /// Count how many NaNs bound the target point
    int x = original_correspondences[c_i].index_match % cloud->width;
    int y = original_correspondences[c_i].index_match / cloud->width;

    int nan_count_tgt = 0;
    for (int x_d = -window_size_/2; x_d <= window_size_/2; ++x_d)
      for (int y_d = -window_size_/2; y_d <= window_size_/2; ++y_d)
        if (x + x_d >= 0 && x + x_d < cloud->width &&
            y + y_d >= 0 && y + y_d < cloud->height)
        {
          if (!pcl_isfinite ((*cloud)(x + x_d, y + y_d).z) ||
              fabs ((*cloud)(x, y).z - (*cloud)(x + x_d, y + y_d).z) > depth_step_threshold_)
            nan_count_tgt ++;
        }

    if (nan_count_tgt >= boundary_nans_threshold_)
      continue;


    /// The correspondence passes both tests, add it to the filtered set of correspondences
    remaining_correspondences.push_back (original_correspondences[c_i]);
  }
}
예제 #10
0
파일: ia_fpcs.hpp 프로젝트: butten/pcl
template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar> int
pcl::registration::FPCSInitialAlignment <PointSource, PointTarget, NormalT, Scalar>::bruteForceCorrespondences (
  int idx1,
  int idx2,
  pcl::Correspondences &pairs)
{
  const float max_norm_diff = 0.5f * max_norm_diff_ * M_PI / 180.f;

  // calculate reference segment distance and normal angle
  float ref_dist = pcl::euclideanDistance (target_->points[idx1], target_->points[idx2]);
  float ref_norm_angle = (use_normals_ ? (target_normals_->points[idx1].getNormalVector3fMap () -
                                          target_normals_->points[idx2].getNormalVector3fMap ()).norm () : 0.f);

  // loop over all pairs of points in source point cloud
  std::vector <int>::iterator it_out = source_indices_->begin (), it_out_e = source_indices_->end () - 1;
  std::vector <int>::iterator it_in, it_in_e = source_indices_->end ();
  for ( ; it_out != it_out_e; it_out++)
  {
    it_in = it_out + 1;
    const PointSource *pt1 = &(*input_)[*it_out];
    for ( ; it_in != it_in_e; it_in++)
    {
      const PointSource *pt2 = &(*input_)[*it_in];

      // check point distance compared to reference dist (from base)
      float dist = pcl::euclideanDistance (*pt1, *pt2);
      if (std::abs(dist - ref_dist) < max_pair_diff_)
      {
        // add here normal evaluation if normals are given
        if (use_normals_)
        {
          const NormalT *pt1_n = &(source_normals_->points[*it_out]);
          const NormalT *pt2_n = &(source_normals_->points[*it_in]);

          float norm_angle_1 = (pt1_n->getNormalVector3fMap () - pt2_n->getNormalVector3fMap ()).norm ();
          float norm_angle_2 = (pt1_n->getNormalVector3fMap () + pt2_n->getNormalVector3fMap ()).norm ();

          float norm_diff = std::min <float> (std::abs (norm_angle_1 - ref_norm_angle), std::abs (norm_angle_2 - ref_norm_angle));
          if (norm_diff > max_norm_diff)
            continue;
        }

        pairs.push_back (pcl::Correspondence (*it_in, *it_out, dist));
        pairs.push_back (pcl::Correspondence (*it_out, *it_in, dist));
      }
    }
  }

  // return success if at least one correspondence was found
  return (pairs.size () == 0 ? -1 : 0);
}
void
pcl::registration::CorrespondenceRejectorSurfaceNormal::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences,
    pcl::Correspondences& remaining_correspondences)
{
  if (!data_container_)
  {
    PCL_ERROR ("[pcl::registratin::%s::getRemainingCorrespondences] DataContainer object is not initialized!\n", getClassName ().c_str ());
    return;
  }

  unsigned int number_valid_correspondences = 0;
  remaining_correspondences.resize (original_correspondences.size ());

  // Test each correspondence
  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    if (boost::static_pointer_cast<DataContainer<pcl::PointXYZ, pcl::PointNormal> >
        (data_container_)->getCorrespondenceScoreFromNormals (original_correspondences[i]) > threshold_)
      remaining_correspondences[number_valid_correspondences++] = original_correspondences[i];
  }
  remaining_correspondences.resize (number_valid_correspondences);
}
template <typename PointSource, typename PointTarget> inline void
TransformationEstimationJointOptimize<PointSource, PointTarget>::setCorrespondecesDFP ( pcl::Correspondences correspondences_dfp ) {
	const int nr_correspondences_dfp = (int)correspondences_dfp.size();
	indices_src_dfp_.resize(nr_correspondences_dfp);
	indices_tgt_dfp_.resize(nr_correspondences_dfp);
	for (int i = 0; i < nr_correspondences_dfp; ++i)
	{
		indices_src_dfp_[i] = correspondences_dfp[i].index_query;
		indices_tgt_dfp_[i] = correspondences_dfp[i].index_match;
	}
	// Update flags
	indices_src_dfp_set_ = true;
	indices_tgt_dfp_set_ = true;
}
void
pcl::registration::CorrespondenceRejectorVarTrimmed::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences, 
    pcl::Correspondences& remaining_correspondences)
{
  std::vector <double> dists;
  dists.resize (original_correspondences.size ());

  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    if (data_container_)
    {
      dists[i] = data_container_->getCorrespondenceScore (original_correspondences[i]);
    }
    else
    {
      dists[i] = original_correspondences[i].distance;
    }
  }
  factor_ = optimizeInlierRatio (dists);
  nth_element (dists.begin (), dists.begin () + int (double (dists.size ()) * factor_), dists.end ());
  trimmed_distance_ = dists [int (double (dists.size ()) * factor_)];

  unsigned int number_valid_correspondences = 0;
  remaining_correspondences.resize (original_correspondences.size ());

  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    if ( dists[i] < trimmed_distance_)
    {
      remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
      ++number_valid_correspondences;
    }
  }
  remaining_correspondences.resize (number_valid_correspondences);
}
template <typename PointSource, typename PointTarget, typename MatScalar> inline void
pcl::registration::TransformationEstimationLM<PointSource, PointTarget, MatScalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const pcl::Correspondences &correspondences,
    Matrix4 &transformation_matrix) const
{
  const int nr_correspondences = static_cast<const int> (correspondences.size ());
  std::vector<int> indices_src (nr_correspondences);
  std::vector<int> indices_tgt (nr_correspondences);
  for (int i = 0; i < nr_correspondences; ++i)
  {
    indices_src[i] = correspondences[i].index_query;
    indices_tgt[i] = correspondences[i].index_match;
  }

  estimateRigidTransformation (cloud_src, indices_src, cloud_tgt, indices_tgt, transformation_matrix);
}
template <typename PointSource, typename PointTarget> inline void
pcl::registration::TransformationEstimationPointToPlaneLLS<PointSource, PointTarget>::
estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,
                             const pcl::PointCloud<PointTarget> &cloud_tgt,
                             const pcl::Correspondences &correspondences,
                             Eigen::Matrix4f &transformation_matrix)
{
  size_t nr_points = correspondences.size ();

  // Approximate as a linear least squares problem
  Eigen::MatrixXf A (nr_points, 6);
  Eigen::MatrixXf b (nr_points, 1);
  for (size_t i = 0; i < nr_points; ++i)
  {
    const int & src_idx = correspondences[i].index_query;
    const int & tgt_idx = correspondences[i].index_match;
    const float & sx = cloud_src.points[src_idx].x;
    const float & sy = cloud_src.points[src_idx].y;
    const float & sz = cloud_src.points[src_idx].z;
    const float & dx = cloud_tgt.points[tgt_idx].x;
    const float & dy = cloud_tgt.points[tgt_idx].y;
    const float & dz = cloud_tgt.points[tgt_idx].z;
    const float & nx = cloud_tgt.points[tgt_idx].normal[0];
    const float & ny = cloud_tgt.points[tgt_idx].normal[1];
    const float & nz = cloud_tgt.points[tgt_idx].normal[2];
    A (i, 0) = nz*sy - ny*sz;
    A (i, 1) = nx*sz - nz*sx; 
    A (i, 2) = ny*sx - nx*sy;
    A (i, 3) = nx;
    A (i, 4) = ny;
    A (i, 5) = nz;
    b (i, 0) = nx*dx + ny*dy + nz*dz - nx*sx - ny*sy - nz*sz;
  }

  // Solve A*x = b
  Eigen::VectorXf x = A.colPivHouseholderQr ().solve (b);
  
  // Construct the transformation matrix from x
  constructTransformationMatrix (x (0), x (1), x (2), x (3), x (4), x (5), transformation_matrix);
}
void
pcl::registration::CorrespondenceRejectorSurfaceNormal::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences,
    pcl::Correspondences& remaining_correspondences)
{
  if (!data_container_)
  {
    PCL_ERROR ("[pcl::registratin::%s::getRemainingCorrespondences] DataContainer object is not initialized!\n", getClassName ().c_str ());
    return;
  }

  unsigned int number_valid_correspondences = 0;
  remaining_correspondences.resize (original_correspondences.size ());

  // Test each correspondence
  for (const auto &original_correspondence : original_correspondences)
  {
    if (data_container_->getCorrespondenceScoreFromNormals (original_correspondence) > threshold_)
      remaining_correspondences[number_valid_correspondences++] = original_correspondence;
  }
  remaining_correspondences.resize (number_valid_correspondences);
}
template <typename PointT> void 
pcl::registration::CorrespondenceRejectorSampleConsensus<PointT>::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences, 
    pcl::Correspondences& remaining_correspondences)
{
  if (!input_)
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] No input cloud dataset was given!\n", getClassName ().c_str ());
    return;
  }

  if (!target_)
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] No input target dataset was given!\n", getClassName ().c_str ());
    return;
  }

  if (save_inliers_)
     inlier_indices_.clear ();

  int nr_correspondences = static_cast<int> (original_correspondences.size ());
  std::vector<int> source_indices (nr_correspondences);
  std::vector<int> target_indices (nr_correspondences);

  // Copy the query-match indices
  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    source_indices[i] = original_correspondences[i].index_query;
    target_indices[i] = original_correspondences[i].index_match;
  }

   // from pcl/registration/icp.hpp:
   std::vector<int> source_indices_good;
   std::vector<int> target_indices_good;
   {
     // From the set of correspondences found, attempt to remove outliers
     // Create the registration model
     typedef typename pcl::SampleConsensusModelRegistration<PointT>::Ptr SampleConsensusModelRegistrationPtr;
     SampleConsensusModelRegistrationPtr model;
     model.reset (new pcl::SampleConsensusModelRegistration<PointT> (input_, source_indices));
     // Pass the target_indices
     model->setInputTarget (target_, target_indices);
     // Create a RANSAC model
     pcl::RandomSampleConsensus<PointT> sac (model, inlier_threshold_);
     sac.setMaxIterations (max_iterations_);

     // Compute the set of inliers
     if (!sac.computeModel ())
     {
       remaining_correspondences = original_correspondences;
       best_transformation_.setIdentity ();
       return;
     }
     else
     {
       if (refine_ && !sac.refineModel ())
       {
         PCL_ERROR ("[pcl::registration::CorrespondenceRejectorSampleConsensus::getRemainingCorrespondences] Could not refine the model! Returning an empty solution.\n");
         return;
       }
       
       std::vector<int> inliers;
       sac.getInliers (inliers);

       if (inliers.size () < 3)
       {
         remaining_correspondences = original_correspondences;
         best_transformation_.setIdentity ();
         return;
       }
       boost::unordered_map<int, int> index_to_correspondence;
       for (int i = 0; i < nr_correspondences; ++i)
         index_to_correspondence[original_correspondences[i].index_query] = i;

       remaining_correspondences.resize (inliers.size ());
       for (size_t i = 0; i < inliers.size (); ++i)
         remaining_correspondences[i] = original_correspondences[index_to_correspondence[inliers[i]]];

       if (save_inliers_)
       {
         inlier_indices_.reserve (inliers.size ());
         for (const int &inlier : inliers)
           inlier_indices_.push_back (index_to_correspondence[inlier]);
       }

       // get best transformation
       Eigen::VectorXf model_coefficients;
       sac.getModelCoefficients (model_coefficients);
       best_transformation_.row (0) = model_coefficients.segment<4>(0);
       best_transformation_.row (1) = model_coefficients.segment<4>(4);
       best_transformation_.row (2) = model_coefficients.segment<4>(8);
       best_transformation_.row (3) = model_coefficients.segment<4>(12);
     }
   }
}
예제 #18
0
template <typename PointT> bool
pcl::visualization::ImageViewer::showCorrespondences (
  const pcl::PointCloud<PointT> &source_img,
  const pcl::PointCloud<PointT> &target_img,
  const pcl::Correspondences &correspondences,
  int nth,
  const std::string &layer_id)
{
  if (correspondences.empty ())
  {
    PCL_DEBUG ("[pcl::visualization::ImageViewer::addCorrespondences] An empty set of correspondences given! Nothing to display.\n");
    return (false);
  }

  // Check to see if this ID entry already exists (has it been already added to the visualizer?)
  LayerMap::iterator am_it = std::find_if (layer_map_.begin (), layer_map_.end (), LayerComparator (layer_id));
  if (am_it == layer_map_.end ())
  {
    PCL_DEBUG ("[pcl::visualization::ImageViewer::addCorrespondences] No layer with ID='%s' found. Creating new one...\n", layer_id.c_str ());
    am_it = createLayer (layer_id, source_img.width + target_img.width, std::max (source_img.height, target_img.height), 1.0, false);
  }
 
  int src_size = source_img.width * source_img.height * 3;
  int tgt_size = target_img.width * target_img.height * 3;

  // Set window size
  setSize (source_img.width + target_img.width , std::max (source_img.height, target_img.height));

  // Set data size
  if (data_size_ < (src_size + tgt_size))
  {
    data_size_ = src_size + tgt_size;
    data_.reset (new unsigned char[data_size_]);
  }

  // Copy data in VTK format
  int j = 0;
  for (size_t i = 0; i < std::max (source_img.height, target_img.height); ++i)
  {
    // Still need to copy the source?
    if (i < source_img.height)
    {
      for (size_t k = 0; k < source_img.width; ++k)
      {
        data_[j++] = source_img[i * source_img.width + k].r;
        data_[j++] = source_img[i * source_img.width + k].g;
        data_[j++] = source_img[i * source_img.width + k].b;
      }
    }
    else
    {
      memcpy (&data_[j], 0, source_img.width * 3);
      j += source_img.width * 3;
    }

    // Still need to copy the target?
    if (i < source_img.height)
    {
      for (size_t k = 0; k < target_img.width; ++k)
      {
        data_[j++] = target_img[i * source_img.width + k].r;
        data_[j++] = target_img[i * source_img.width + k].g;
        data_[j++] = target_img[i * source_img.width + k].b;
      }
    }
    else
    {
      memcpy (&data_[j], 0, target_img.width * 3);
      j += target_img.width * 3;
    }
  }

  void* data = const_cast<void*> (reinterpret_cast<const void*> (data_.get ()));
  
  vtkSmartPointer<vtkImageData> image = vtkSmartPointer<vtkImageData>::New ();
  image->SetDimensions (source_img.width + target_img.width, std::max (source_img.height, target_img.height), 1);
  image->SetScalarTypeToUnsignedChar ();
  image->SetNumberOfScalarComponents (3);
  image->AllocateScalars ();
  image->GetPointData ()->GetScalars ()->SetVoidArray (data, data_size_, 1);
  vtkSmartPointer<PCLContextImageItem> image_item = vtkSmartPointer<PCLContextImageItem>::New ();
#if ((VTK_MAJOR_VERSION == 5) && (VTK_MINOR_VERSION < 10))
  // Now create filter and set previously created transformation
  algo_->SetInput (image);
  algo_->Update ();
  image_item->set (0, 0, algo_->GetOutput ());
#else
  image_item->set (0, 0, image);
  interactor_style_->adjustCamera (image, ren_);
#endif
  am_it->actor->GetScene ()->AddItem (image_item);
  image_viewer_->SetSize (image->GetDimensions ()[0], image->GetDimensions ()[1]);

  // Draw lines between the best corresponding points
  for (size_t i = 0; i < correspondences.size (); i += nth)
  {
    double r, g, b;
    getRandomColors (r, g, b);
    unsigned char u_r = static_cast<unsigned char> (255.0 * r);
    unsigned char u_g = static_cast<unsigned char> (255.0 * g);
    unsigned char u_b = static_cast<unsigned char> (255.0 * b);
    vtkSmartPointer<context_items::Circle> query_circle = vtkSmartPointer<context_items::Circle>::New ();
    query_circle->setColors (u_r, u_g, u_b);
    vtkSmartPointer<context_items::Circle> match_circle = vtkSmartPointer<context_items::Circle>::New ();
    match_circle->setColors (u_r, u_g, u_b);
    vtkSmartPointer<context_items::Line> line = vtkSmartPointer<context_items::Line>::New ();
    line->setColors (u_r, u_g, u_b);

    float query_x = correspondences[i].index_query % source_img.width;
    float match_x = correspondences[i].index_match % target_img.width + source_img.width;
#if ((VTK_MAJOR_VERSION == 5) && (VTK_MINOR_VERSION >= 10))
    float query_y = correspondences[i].index_query / source_img.width;
    float match_y = correspondences[i].index_match / target_img.width;
#else
    float query_y = getSize ()[1] - correspondences[i].index_query / source_img.width;
    float match_y = getSize ()[1] - correspondences[i].index_match / target_img.width;
#endif

    query_circle->set (query_x, query_y, 3.0);
    match_circle->set (match_x, match_y, 3.0);
    line->set (query_x, query_y, match_x, match_y);

    am_it->actor->GetScene ()->AddItem (query_circle);
    am_it->actor->GetScene ()->AddItem (match_circle);
    am_it->actor->GetScene ()->AddItem (line);
  }
  
  return (true);
}
template <typename PointT> void 
pcl::registration::CorrespondenceRejectorProcrustes<PointT>::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences, 
    pcl::Correspondences& remaining_correspondences)
{
  int nr_correspondences = (int)original_correspondences.size ();
  std::vector<int> source_indices (nr_correspondences);
  std::vector<int> target_indices (nr_correspondences);

  // Copy the query-match indices
  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    source_indices[i] = original_correspondences[i].index_query;
    target_indices[i] = original_correspondences[i].index_match;
  }

   // from pcl/registration/icp.hpp:
   std::vector<int> source_indices_good;
   std::vector<int> target_indices_good;
   {
     // From the set of correspondences found, attempt to remove outliers
     // Create the registration model
     typedef typename pcl::SampleConsensusModelNonRigid<PointT>::Ptr SampleConsensusModelNonRigidPtr;
     SampleConsensusModelNonRigidPtr model;
     model.reset (new pcl::SampleConsensusModelNonRigid<PointT> (input_, source_indices));
     // Pass the target_indices
     model->setInputTarget (target_, target_indices);
     // Create a RANSAC model
     pcl::RandomSampleConsensus<PointT> sac (model, inlier_threshold_);
     sac.setMaxIterations (max_iterations_);

     // Compute the set of inliers
     if (!sac.computeModel ())
     {
       remaining_correspondences = original_correspondences;
       best_transformation_.setIdentity ();
       return;
     }
     else
     {
       std::vector<int> inliers;
       sac.getInliers (inliers);

       if (inliers.size () < 3)
       {
         remaining_correspondences = original_correspondences;
         best_transformation_.setIdentity ();
         return;
       }
       boost::unordered_map<int, int> index_to_correspondence;
       for (int i = 0; i < nr_correspondences; ++i)
         index_to_correspondence[original_correspondences[i].index_query] = i;

       remaining_correspondences.resize (inliers.size ());
       for (size_t i = 0; i < inliers.size (); ++i)
         remaining_correspondences[i] = original_correspondences[index_to_correspondence[inliers[i]]];

       // get best transformation
       Eigen::VectorXf model_coefficients;
       sac.getModelCoefficients (model_coefficients);
       best_transformation_.row (0) = model_coefficients.segment<4>(0);
       best_transformation_.row (1) = model_coefficients.segment<4>(4);
       best_transformation_.row (2) = model_coefficients.segment<4>(8);
       best_transformation_.row (3) = model_coefficients.segment<4>(12);
     }
   }
}
template <typename PointSource, typename PointTarget, typename Scalar> void
VoxelBasedCorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences (pcl::Correspondences &correspondences,
                                                                                                                                double /*max_distance*/) {
  if (!initCompute ())
    return;

  //find correspondences between input and target_ by looking into the distance transform thing...
  pcl::Correspondence corr;
  unsigned int nr_valid_correspondences = 0;

  //std::vector<int> indices = (*indices_);
  //std::random_shuffle(indices.begin(), indices.end());
  //indices.resize(std::min(static_cast<int>(indices.size()),100));
  correspondences.resize (indices_->size ());

  int idx_match;
  float distance;
  float color_distance = -1.f;

  for(size_t i=0; i < correspondences.size(); i++) {
    color_distance = -1.f;
    vgdt_target_->getCorrespondence(input_->points[(*indices_)[i]], &idx_match, &distance, sigma_, &color_distance);

    if(idx_match < 0)
      continue;

    if(distance > max_distance_)
      continue;

    if(sigma_ != -1.f && color_distance != -1.f) {
      if(color_distance < max_color_distance_)
      {
        //PCL_WARN("Rejected because color %f\n", color_distance, max_color_distance_);
        continue;
      }
    }

    /*corr.index_query = static_cast<int>(indices[i]);
    corr.index_match = idx_match;
    corr.distance = distance;//min_dist;*/
    correspondences[nr_valid_correspondences].index_query = static_cast<int>((*indices_)[i]);
    correspondences[nr_valid_correspondences].index_match = idx_match;
    correspondences[nr_valid_correspondences].distance = distance;
    nr_valid_correspondences++;
  }

  /*boost::shared_ptr<pcl::GeometricConsistencyGrouping<PointSource, PointTarget> >
          gcg_alg (new pcl::GeometricConsistencyGrouping<PointSource, PointTarget>);


  typename pcl::PointCloud<PointSource>::Ptr model_cloud(new pcl::PointCloud<PointSource>);
  vgdt_target_->getVoxelizedCloud(model_cloud);
  gcg_alg->setGCThreshold (10);
  gcg_alg->setGCSize (0.01);
  //gcg_alg->setSceneCloud (model_cloud);
  //gcg_alg->setInputCloud (input_);
  gcg_alg->setSceneCloud (input_);
  gcg_alg->setInputCloud (model_cloud);

  pcl::CorrespondencesPtr corr_ptr;
  corr_ptr.reset(new pcl::Correspondences(correspondences));
  gcg_alg->setModelSceneCorrespondences (corr_ptr);

  std::vector < pcl::Correspondences > corresp_clusters;
  gcg_alg->cluster (corresp_clusters);

  std::cout << "correspondence clusters:" << corresp_clusters.size() << std::endl;*/
  //std::cout << "Number of valid correspondences:" << indices_->size () << " " << nr_valid_correspondences << std::endl;

  //PCL_WARN("Number of valid correspondences... %d %d\n", indices_->size (), nr_valid_correspondences);
  correspondences.resize (nr_valid_correspondences);
  deinitCompute ();
}
예제 #21
0
파일: ia_fpcs.hpp 프로젝트: butten/pcl
template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar> int
pcl::registration::FPCSInitialAlignment <PointSource, PointTarget, NormalT, Scalar>::determineBaseMatches (
  const std::vector <int> &base_indices,
  std::vector <std::vector <int> > &matches,
  const pcl::Correspondences &pairs_a,
  const pcl::Correspondences &pairs_b,
  const float (&ratio)[2])
{
  // calculate edge lengths of base
  float dist_base[4];
  dist_base[0] = pcl::euclideanDistance (target_->points[base_indices[0]], target_->points[base_indices[2]]);
  dist_base[1] = pcl::euclideanDistance (target_->points[base_indices[0]], target_->points[base_indices[3]]);
  dist_base[2] = pcl::euclideanDistance (target_->points[base_indices[1]], target_->points[base_indices[2]]);
  dist_base[3] = pcl::euclideanDistance (target_->points[base_indices[1]], target_->points[base_indices[3]]);

  // loop over first point pair correspondences and store intermediate points 'e' in new point cloud
  PointCloudSourcePtr cloud_e (new PointCloudSource);
  cloud_e->resize (pairs_a.size () * 2);
  PointCloudSourceIterator it_pt = cloud_e->begin ();
  for (pcl::Correspondences::const_iterator it_pair = pairs_a.begin (), it_pair_e = pairs_a.end () ; it_pair != it_pair_e; it_pair++)
  {
    const PointSource *pt1 = &(input_->points[it_pair->index_match]);
    const PointSource *pt2 = &(input_->points[it_pair->index_query]);

    // calculate intermediate points using both ratios from base (r1,r2)
    for (int i = 0; i < 2; i++, it_pt++)
    {
      it_pt->x = pt1->x + ratio[i] * (pt2->x - pt1->x);
      it_pt->y = pt1->y + ratio[i] * (pt2->y - pt1->y);
      it_pt->z = pt1->z + ratio[i] * (pt2->z - pt1->z);
    }
  }

  // initialize new kd tree of intermediate points from first point pair correspondences
  KdTreeReciprocalPtr tree_e (new KdTreeReciprocal);
  tree_e->setInputCloud (cloud_e);

  std::vector <int> ids;
  std::vector <float> dists_sqr;

  // loop over second point pair correspondences
  for (pcl::Correspondences::const_iterator it_pair = pairs_b.begin (), it_pair_e = pairs_b.end () ; it_pair != it_pair_e; it_pair++)
  {
    const PointTarget *pt1 = &(input_->points[it_pair->index_match]);
    const PointTarget *pt2 = &(input_->points[it_pair->index_query]);

    // calculate intermediate points using both ratios from base (r1,r2)
    for (int i = 0; i < 2; i++)
    {
      PointTarget pt_e;
      pt_e.x = pt1->x + ratio[i] * (pt2->x - pt1->x);
      pt_e.y = pt1->y + ratio[i] * (pt2->y - pt1->y);
      pt_e.z = pt1->z + ratio[i] * (pt2->z - pt1->z);

      // search for corresponding intermediate points
      tree_e->radiusSearch (pt_e, coincidation_limit_, ids, dists_sqr);
      for (std::vector <int>::iterator it = ids.begin (), it_e = ids.end (); it != it_e; it++)
      {
        std::vector <int> match_indices (4);

        match_indices[0] = pairs_a[static_cast <int> (std::floor ((float)(*it/2.f)))].index_match;
        match_indices[1] = pairs_a[static_cast <int> (std::floor ((float)(*it/2.f)))].index_query;
        match_indices[2] = it_pair->index_match;
        match_indices[3] = it_pair->index_query;

        // EDITED: added coarse check of match based on edge length (due to rigid-body )
        if (checkBaseMatch (match_indices, dist_base) < 0)
          continue;

        matches.push_back (match_indices);
      }
    }
  }

  // return unsuccessfull if no match was found
  return (matches.size () > 0 ? 0 : -1);
}
template <typename PointT> void 
pcl::registration::CorrespondenceRejectorSampleConsensus2D<PointT>::getRemainingCorrespondences (
    const pcl::Correspondences& original_correspondences, 
    pcl::Correspondences& remaining_correspondences)
{
  if (!input_)
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] No input cloud dataset was given!\n", getClassName ().c_str ());
    return;
  }

  if (!target_)
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] No input target dataset was given!\n", getClassName ().c_str ());
    return;
  }

  if (projection_matrix_ == Eigen::Matrix3f::Identity ())
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] Intrinsic camera parameters not given!\n", getClassName ().c_str ());
    return;
  }

  int nr_correspondences = static_cast<int> (original_correspondences.size ());
  std::vector<int> source_indices (nr_correspondences);
  std::vector<int> target_indices (nr_correspondences);

  // Copy the query-match indices
  for (size_t i = 0; i < original_correspondences.size (); ++i)
  {
    source_indices[i] = original_correspondences[i].index_query;
    target_indices[i] = original_correspondences[i].index_match;
  }

  // from pcl/registration/icp.hpp:
  std::vector<int> source_indices_good;
  std::vector<int> target_indices_good;

  // From the set of correspondences found, attempt to remove outliers
  typename pcl::SampleConsensusModelRegistration2D<PointT>::Ptr model (new pcl::SampleConsensusModelRegistration2D<PointT> (input_, source_indices));
  // Pass the target_indices
  model->setInputTarget (target_, target_indices);
  model->setProjectionMatrix (projection_matrix_);

  // Create a RANSAC model
  pcl::RandomSampleConsensus<PointT> sac (model, inlier_threshold_);
  sac.setMaxIterations (max_iterations_);

  // Compute the set of inliers
  if (!sac.computeModel ())
  {
    PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] Error computing model! Returning the original correspondences...\n", getClassName ().c_str ());
    remaining_correspondences = original_correspondences;
    best_transformation_.setIdentity ();
    return;
  }
  else
  {
    if (refine_ && !sac.refineModel (2.0))
      PCL_WARN ("[pcl::registration::%s::getRemainingCorrespondences] Error refining model!\n", getClassName ().c_str ());
      
    std::vector<int> inliers;
    sac.getInliers (inliers);

    if (inliers.size () < 3)
    {
      PCL_ERROR ("[pcl::registration::%s::getRemainingCorrespondences] Less than 3 correspondences found!\n", getClassName ().c_str ());
      remaining_correspondences = original_correspondences;
      best_transformation_.setIdentity ();
      return;
    }

    boost::unordered_map<int, int> index_to_correspondence;
    for (int i = 0; i < nr_correspondences; ++i)
      index_to_correspondence[original_correspondences[i].index_query] = i;

    remaining_correspondences.resize (inliers.size ());
    for (size_t i = 0; i < inliers.size (); ++i)
      remaining_correspondences[i] = original_correspondences[index_to_correspondence[inliers[i]]];

    // get best transformation
    Eigen::VectorXf model_coefficients;
    sac.getModelCoefficients (model_coefficients);
    best_transformation_.row (0) = model_coefficients.segment<4>(0);
    best_transformation_.row (1) = model_coefficients.segment<4>(4);
    best_transformation_.row (2) = model_coefficients.segment<4>(8);
    best_transformation_.row (3) = model_coefficients.segment<4>(12);
  }
}