bool ChompPlanner::solve(const planning_scene::PlanningSceneConstPtr& planning_scene, const moveit_msgs::GetMotionPlan::Request &req, const chomp::ChompParameters& params, moveit_msgs::GetMotionPlan::Response &res) const { ros::WallTime start_time = ros::WallTime::now(); ChompTrajectory trajectory(planning_scene->getRobotModel(), 3.0, .03, req.motion_plan_request.group_name); jointStateToArray(planning_scene->getRobotModel(), req.motion_plan_request.start_state.joint_state, req.motion_plan_request.group_name, trajectory.getTrajectoryPoint(0)); int goal_index = trajectory.getNumPoints()- 1; trajectory.getTrajectoryPoint(goal_index) = trajectory.getTrajectoryPoint(0); sensor_msgs::JointState js; for(unsigned int i = 0; i < req.motion_plan_request.goal_constraints[0].joint_constraints.size(); i++) { js.name.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name); js.position.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].position); ROS_INFO_STREAM("Setting joint " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name << " to position " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].position); } jointStateToArray(planning_scene->getRobotModel(), js, req.motion_plan_request.group_name, trajectory.getTrajectoryPoint(goal_index)); const planning_models::RobotModel::JointModelGroup* model_group = planning_scene->getRobotModel()->getJointModelGroup(req.motion_plan_request.group_name); // fix the goal to move the shortest angular distance for wrap-around joints: for (size_t i = 0; i < model_group->getJointModels().size(); i++) { const planning_models::RobotModel::JointModel* model = model_group->getJointModels()[i]; const planning_models::RobotModel::RevoluteJointModel* revolute_joint = dynamic_cast<const planning_models::RobotModel::RevoluteJointModel*>(model); if (revolute_joint != NULL) { if(revolute_joint->isContinuous()) { double start = (trajectory)(0, i); double end = (trajectory)(goal_index, i); ROS_INFO_STREAM("Start is " << start << " end " << end << " short " << shortestAngularDistance(start, end)); (trajectory)(goal_index, i) = start + shortestAngularDistance(start, end); } } } // fill in an initial quintic spline trajectory trajectory.fillInMinJerk(); // optimize! planning_models::RobotState *start_state(planning_scene->getCurrentState()); planning_models::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.motion_plan_request.start_state, start_state); ros::WallTime create_time = ros::WallTime::now(); ChompOptimizer optimizer(&trajectory, planning_scene, req.motion_plan_request.group_name, ¶ms, start_state); if(!optimizer.isInitialized()) { ROS_WARN_STREAM("Could not initialize optimizer"); res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; return false; } ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec()); ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec()); optimizer.optimize(); ROS_INFO("Optimization actually took %f sec to run", (ros::WallTime::now() - create_time).toSec()); create_time = ros::WallTime::now(); // assume that the trajectory is now optimized, fill in the output structure: ROS_INFO("Output trajectory has %d joints", trajectory.getNumJoints()); // fill in joint names: res.trajectory.joint_trajectory.joint_names.resize(trajectory.getNumJoints()); for (size_t i = 0; i < model_group->getJointModels().size(); i++) { res.trajectory.joint_trajectory.joint_names[i] = model_group->getJointModels()[i]->getName(); } res.trajectory.joint_trajectory.header = req.motion_plan_request.start_state.joint_state.header; // @TODO this is probably a hack // fill in the entire trajectory res.trajectory.joint_trajectory.points.resize(trajectory.getNumPoints()); for (int i=0; i < trajectory.getNumPoints(); i++) { res.trajectory.joint_trajectory.points[i].positions.resize(trajectory.getNumJoints()); for (size_t j=0; j < res.trajectory.joint_trajectory.points[i].positions.size(); j++) { res.trajectory.joint_trajectory.points[i].positions[j] = trajectory.getTrajectoryPoint(i)(j); if(i == trajectory.getNumPoints()-1) { ROS_INFO_STREAM("Joint " << j << " " << res.trajectory.joint_trajectory.points[i].positions[j]); } } // Setting invalid timestamps. // Further filtering is required to set valid timestamps accounting for velocity and acceleration constraints. res.trajectory.joint_trajectory.points[i].time_from_start = ros::Duration(0.0); } ROS_INFO("Bottom took %f sec to create", (ros::WallTime::now() - create_time).toSec()); ROS_INFO("Serviced planning request in %f wall-seconds, trajectory duration is %f", (ros::WallTime::now() - start_time).toSec(), res.trajectory.joint_trajectory.points[goal_index].time_from_start.toSec()); res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS; res.planning_time = ros::Duration((ros::WallTime::now() - start_time).toSec()); return true; }
constraint_samplers::ConstraintSamplerPtr constraint_samplers::ConstraintSamplerManager::selectDefaultSampler(const planning_scene::PlanningSceneConstPtr &scene, const std::string &group_name, const moveit_msgs::Constraints &constr) { const robot_model::JointModelGroup *jmg = scene->getRobotModel()->getJointModelGroup(group_name); if (!jmg) return constraint_samplers::ConstraintSamplerPtr(); std::stringstream ss; ss << constr; logDebug("Attempting to construct constrained state sampler for group '%s', using constraints:\n%s.\n", jmg->getName().c_str(), ss.str().c_str()); ConstraintSamplerPtr joint_sampler; // if there are joint constraints, we could possibly get a sampler from those if (!constr.joint_constraints.empty()) { logDebug("There are joint constraints specified. Attempting to construct a JointConstraintSampler for group '%s'", jmg->getName().c_str()); std::map<std::string, bool> joint_coverage; for(std::size_t i = 0; i < jmg->getVariableNames().size() ; ++i) joint_coverage[jmg->getVariableNames()[i]] = false; // construct the constraints std::vector<kinematic_constraints::JointConstraint> jc; for (std::size_t i = 0 ; i < constr.joint_constraints.size() ; ++i) { kinematic_constraints::JointConstraint j(scene->getRobotModel(), scene->getTransforms()); if (j.configure(constr.joint_constraints[i])) { if (joint_coverage.find(j.getJointVariableName()) != joint_coverage.end()) { joint_coverage[j.getJointVariableName()] = true; jc.push_back(j); } } } bool full_coverage = true; for (std::map<std::string, bool>::iterator it = joint_coverage.begin(); it != joint_coverage.end(); ++it) if (!it->second) { full_coverage = false; break; } // if we have constrained every joint, then we just use a sampler using these constraints if (full_coverage) { boost::shared_ptr<JointConstraintSampler> sampler(new JointConstraintSampler(scene, jmg->getName())); if (sampler->configure(jc)) { logDebug("Allocated a sampler satisfying joint constraints for group '%s'", jmg->getName().c_str()); return sampler; } } else // if a smaller set of joints has been specified, keep the constraint sampler around, but use it only if no IK sampler has been specified. if (!jc.empty()) { boost::shared_ptr<JointConstraintSampler> sampler(new JointConstraintSampler(scene, jmg->getName())); if (sampler->configure(jc)) { logDebug("Temporary sampler satisfying joint constraints for group '%s' allocated. Looking for different types of constraints before returning though.", jmg->getName().c_str()); joint_sampler = sampler; } } } std::vector<ConstraintSamplerPtr> samplers; if (joint_sampler) samplers.push_back(joint_sampler); // read the ik allocators, if any robot_model::SolverAllocatorFn ik_alloc = jmg->getSolverAllocators().first; std::map<const robot_model::JointModelGroup*, robot_model::SolverAllocatorFn> ik_subgroup_alloc = jmg->getSolverAllocators().second; // if we have a means of computing complete states for the group using IK, then we try to see if any IK constraints should be used if (ik_alloc) { logDebug("There is an IK allocator for '%s'. Checking for corresponding position and/or orientation constraints", jmg->getName().c_str()); // keep track of which links we constrained std::map<std::string, boost::shared_ptr<IKConstraintSampler> > usedL; // if we have position and/or orientation constraints on links that we can perform IK for, // we will use a sampleable goal region that employs IK to sample goals; // if there are multiple constraints for the same link, we keep the one with the smallest // volume for sampling for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) if (constr.position_constraints[p].link_name == constr.orientation_constraints[o].link_name) { boost::shared_ptr<kinematic_constraints::PositionConstraint> pc(new kinematic_constraints::PositionConstraint(scene->getRobotModel(), scene->getTransforms())); boost::shared_ptr<kinematic_constraints::OrientationConstraint> oc(new kinematic_constraints::OrientationConstraint(scene->getRobotModel(), scene->getTransforms())); if (pc->configure(constr.position_constraints[p]) && oc->configure(constr.orientation_constraints[o])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(pc, oc))) { bool use = true; if (usedL.find(constr.position_constraints[p].link_name) != usedL.end()) if (usedL[constr.position_constraints[p].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.position_constraints[p].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying position and orientation constraints on link '%s'", jmg->getName().c_str(), constr.position_constraints[p].link_name.c_str()); } } } } // keep track of links constrained with a full pose std::map<std::string, boost::shared_ptr<IKConstraintSampler> > usedL_fullPose = usedL; for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) { // if we are constraining this link with a full pose, we do not attempt to constrain it with a position constraint only if (usedL_fullPose.find(constr.position_constraints[p].link_name) != usedL_fullPose.end()) continue; boost::shared_ptr<kinematic_constraints::PositionConstraint> pc(new kinematic_constraints::PositionConstraint(scene->getRobotModel(), scene->getTransforms())); if (pc->configure(constr.position_constraints[p])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(pc))) { bool use = true; if (usedL.find(constr.position_constraints[p].link_name) != usedL.end()) if (usedL[constr.position_constraints[p].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.position_constraints[p].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying position constraints on link '%s'", jmg->getName().c_str(), constr.position_constraints[p].link_name.c_str()); } } } } for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) { // if we are constraining this link with a full pose, we do not attempt to constrain it with an orientation constraint only if (usedL_fullPose.find(constr.orientation_constraints[o].link_name) != usedL_fullPose.end()) continue; boost::shared_ptr<kinematic_constraints::OrientationConstraint> oc(new kinematic_constraints::OrientationConstraint(scene->getRobotModel(), scene->getTransforms())); if (oc->configure(constr.orientation_constraints[o])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(oc))) { bool use = true; if (usedL.find(constr.orientation_constraints[o].link_name) != usedL.end()) if (usedL[constr.orientation_constraints[o].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.orientation_constraints[o].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying orientation constraints on link '%s'", jmg->getName().c_str(), constr.orientation_constraints[o].link_name.c_str()); } } } } if (usedL.size() == 1) { if (samplers.empty()) return usedL.begin()->second; else { samplers.push_back(usedL.begin()->second); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } else if (usedL.size() > 1) { logDebug("Too many IK-based samplers for group '%s'. Keeping the one with minimal sampling volume", jmg->getName().c_str()); // find the sampler with the smallest sampling volume; delete the rest boost::shared_ptr<IKConstraintSampler> iks = usedL.begin()->second; double msv = iks->getSamplingVolume(); for (std::map<std::string, boost::shared_ptr<IKConstraintSampler> >::const_iterator it = ++usedL.begin() ; it != usedL.end() ; ++it) { double v = it->second->getSamplingVolume(); if (v < msv) { iks = it->second; msv = v; } } if (samplers.empty()) { return iks; } else { samplers.push_back(iks); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } } // if we got to this point, we have not decided on a sampler. // we now check to see if we can use samplers from subgroups if (!ik_subgroup_alloc.empty()) { logDebug("There are IK allocators for subgroups of group '%s'. Checking for corresponding position and/or orientation constraints", jmg->getName().c_str()); bool some_sampler_valid = false; std::set<std::size_t> usedP, usedO; for (std::map<const robot_model::JointModelGroup*, robot_model::SolverAllocatorFn>::const_iterator it = ik_subgroup_alloc.begin() ; it != ik_subgroup_alloc.end() ; ++it) { // construct a sub-set of constraints that operate on the sub-group for which we have an IK allocator moveit_msgs::Constraints sub_constr; for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) if (it->first->hasLinkModel(constr.position_constraints[p].link_name)) if (usedP.find(p) == usedP.end()) { sub_constr.position_constraints.push_back(constr.position_constraints[p]); usedP.insert(p); } for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) if (it->first->hasLinkModel(constr.orientation_constraints[o].link_name)) if (usedO.find(o) == usedO.end()) { sub_constr.orientation_constraints.push_back(constr.orientation_constraints[o]); usedO.insert(o); } // if some matching constraints were found, construct the allocator if (!sub_constr.orientation_constraints.empty() || !sub_constr.position_constraints.empty()) { logDebug("Attempting to construct a sampler for the '%s' subgroup of '%s'", it->first->getName().c_str(), jmg->getName().c_str()); ConstraintSamplerPtr cs = selectDefaultSampler(scene, it->first->getName(), sub_constr); if (cs) { logDebug("Constructed a sampler for the joints corresponding to group '%s', but part of group '%s'", it->first->getName().c_str(), jmg->getName().c_str()); some_sampler_valid = true; samplers.push_back(cs); } } } if (some_sampler_valid) { logDebug("Constructing sampler for group '%s' as a union of %u samplers", jmg->getName().c_str(), (unsigned int)samplers.size()); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } //if we've gotten here, just return joint sampler if (joint_sampler) { logDebug("Allocated a sampler satisfying joint constraints for group '%s'", jmg->getName().c_str()); return joint_sampler; } logDebug("No constraints sampler allocated for group '%s'", jmg->getName().c_str()); return ConstraintSamplerPtr(); }
bool ConvexConstraintSolver::solve(const planning_scene::PlanningSceneConstPtr& planning_scene, const moveit_msgs::GetMotionPlan::Request &req, moveit_msgs::GetMotionPlan::Response &res) const { // Need to add in joint limit constraints // Get the position constraints from the collision detector // The raw algorithm laid out in Chan et. al. is as follows: // 1. Compute unconstrained motion to go from proxy to goal. // 2. Get the current contact set by moving the proxy toward the goal by some epsilon and get all collision points. // 3. Compute constrained motion (convex solver). // 4. Compute collisions along the constrained motion path. // 5. Set proxy to stop at the first new contact along path. // In our framework this will look more like this: // Outside ths planner: // 1. Compute error between cartesian end effector and cartesian goal. // 2. Cap pose error (based on some heuristic?) because we are about to make a linear approximation. // 3. Use Jinverse to compute the joint deltas for the pose error (or perhaps we should frame this as a velocity problem). // 4. Add the joint deltas to the start state to get a goal state. // Inside the planner: // 1. Get the "current" contact set by moving the proxy toward the goal by some epsilon and get all collision points. // 2. Compute constrained motion (convex solver). // 3. Subdivide motion subject to some sort of minimum feature size. // 4. Move proxy in steps, checking for colliding state along the way. Optionally use interval bisection to refine. // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ std::string group_name = req.motion_plan_request.group_name; std::string ee_group_name; std::string ee_control_frame; if(group_name == "right_arm"){ ee_group_name = "r_end_effector"; ee_control_frame = "r_wrist_roll_link"; } if(group_name == "left_arm") { ee_group_name = "l_end_effector"; ee_control_frame = "l_wrist_roll_link"; } ROS_WARN("Solving for group [%s], end-effector [%s], control frame [%s] using ConvexConstraintSolver!", group_name.c_str(), ee_group_name.c_str(), ee_control_frame.c_str()); // We "getCurrentState" just to populate the structure with auxiliary info, then copy in the transform info from the planning request. planning_models::KinematicState start_state = planning_scene->getCurrentState(); planning_models::robotStateToKinematicState(*(planning_scene->getTransforms()), req.motion_plan_request.start_state, start_state); // constrained_goal_state is the optimization output before interval stepping, proxy_state will be used as we step around. planning_models::KinematicState proxy_state = start_state; planning_models::KinematicState constrained_goal_state = start_state; std::string planning_frame = ros::names::resolve("/", planning_scene->getPlanningFrame()); const planning_models::KinematicState::JointStateGroup * jsg = proxy_state.getJointStateGroup(group_name); const planning_models::KinematicModel::JointModelGroup * jmg = planning_scene->getKinematicModel()->getJointModelGroup(group_name); // std::string end_effector_group_name = jmg->getAttachedEndEffectorGroupName(); // const std::vector<std::string>& subgroups = jmg->getSubgroupNames(); // ROS_INFO("End-effector group name is [%s].", end_effector_group_name.c_str()); // for(size_t i = 0; i< subgroups.size(); i++) // ROS_INFO("Subgroup [%zd] is [%s].", i, subgroups[i].c_str()); const planning_models::KinematicModel::JointModelGroup * ee_jmg = planning_scene->getKinematicModel()->getJointModelGroup(ee_group_name); // const std::vector<const planning_models::KinematicModel::JointModel*>& joint_models = jmg->getJointModels(); // std::map<std::string, unsigned int> joint_index_map; // for(size_t i = 0; i < joint_models.size(); i++) // { // //ROS_INFO("Group [%s] has joint %d: [%s]", req.motion_plan_request.group_name.c_str(), i, joint_models[i]->getName().c_str()); // joint_index_map[joint_models[i]->getName()] = i; // } const std::map<std::string, unsigned int>& joint_index_map = jmg->getJointVariablesIndexMap(); std::vector<double> limits_min, limits_max, joint_vector; std::vector<std::string> joint_names; limits_min.resize(7); limits_max.resize(7); joint_vector.resize(7); joint_names.resize(7); { const moveit_msgs::Constraints &c = req.motion_plan_request.goal_constraints[1]; for (std::size_t i = 0 ; i < c.joint_constraints.size() ; ++i) { std::string joint_name = c.joint_constraints[i].joint_name; if(joint_index_map.find(joint_name) == joint_index_map.end()) { ROS_WARN("Didin't find [%s] in the joint map, ignoring...", joint_name.c_str()); continue; } unsigned int joint_index = joint_index_map.find(joint_name)->second; std::vector<moveit_msgs::JointLimits> limits = planning_scene->getKinematicModel()->getJointModel(joint_name)->getLimits(); moveit_msgs::JointLimits limit = limits[0]; if(limit.has_position_limits) { limits_min[joint_index] = limit.min_position; limits_max[joint_index] = limit.max_position; } else { limits_min[joint_index] = -1E3; limits_max[joint_index] = 1E3; } joint_vector[joint_index] = start_state.getJointState(joint_name)->getVariableValues()[0]; joint_names[joint_index] = joint_name; //ROS_INFO("Joint [%d] [%s] has min %.2f, value %.2f, max %.2f", joint_index, joint_name.c_str(), limits_min[joint_index], joint_vector[joint_index], limits_max[joint_index]); } } // ======== Extract all contact points and normals from previous collision state, get associated Jacobians ======== std::vector<Eigen::MatrixXd> contact_jacobians; std::vector<Eigen::Vector3d> contact_normals; for( collision_detection::CollisionResult::ContactMap::const_iterator it = last_collision_result.contacts.begin(); it != last_collision_result.contacts.end(); ++it) { std::string contact1 = it->first.first; std::string contact2 = it->first.second; const std::vector<collision_detection::Contact>& vec = it->second; for(size_t contact_index = 0; contact_index < vec.size(); contact_index++) { Eigen::Vector3d point = vec[contact_index].pos; Eigen::Vector3d normal = vec[contact_index].normal; double depth = vec[contact_index].depth; ROS_INFO("Contact between [%s] and [%s] point: %.2f %.2f %.2f normal: %.2f %.2f %.2f depth: %.3f", contact1.c_str(), contact2.c_str(), point(0), point(1), point(2), normal(0), normal(1), normal(2), depth); // Contact point needs to be expressed with respect to the link; normals should stay in the common frame std::string group_contact; if( jmg->hasLinkModel(contact1) || ee_jmg->hasLinkModel(contact1) ) group_contact = contact1; else if( jmg->hasLinkModel(contact2) || ee_jmg->hasLinkModel(contact2) ) group_contact = contact2; else { ROS_WARN("Contact isn't on group [%s], skipping...", req.motion_plan_request.group_name.c_str()); continue; } planning_models::KinematicState::LinkState *link_state = start_state.getLinkState(group_contact); Eigen::Affine3d link_T_world = link_state->getGlobalCollisionBodyTransform().inverse(); point = link_T_world*point; Eigen::MatrixXd jacobian; if(jsg->getJacobian(group_contact, point, jacobian)) { contact_jacobians.push_back(jacobian); contact_normals.push_back(normal); } } } // ======== Extract goal "constraints" ======== const moveit_msgs::Constraints &c = req.motion_plan_request.goal_constraints[0]; // Position and Orientation if(c.position_constraints.size() != 1 || c.orientation_constraints.size() != 1) { ROS_ERROR("Currently require exactly one position and orientation constraint. Aborting..."); return false; } moveit_msgs::PositionConstraint pc = c.position_constraints[0]; moveit_msgs::OrientationConstraint oc = c.orientation_constraints[0]; pc.header.frame_id = ros::names::resolve("/", pc.header.frame_id); oc.header.frame_id = ros::names::resolve("/", oc.header.frame_id); if(pc.link_name != oc.link_name) { ROS_ERROR("Currently can't support position and orientation goals that are not for the same link. Aborting..."); return false; } if(pc.constraint_region.primitive_poses.size() == 0) { ROS_ERROR("Need to specify a single primitive_pose for position constraint region. Aborting..."); return false; } if(pc.constraint_region.primitive_poses.size() != 1) { ROS_ERROR("Need exactly one 'pose' for the end-effector goal region. Aborting..."); } if(pc.header.frame_id != planning_frame) ROS_WARN("The position goal header [%s] and planning_frame [%s] don't match, things are probably all wrong!", pc.header.frame_id.c_str(), planning_frame.c_str() ); if(oc.header.frame_id != planning_frame) ROS_WARN("The orientation goal header [%s] and planning_frame [%s] don't match, things are probably all wrong!", oc.header.frame_id.c_str(), planning_frame.c_str() ); Eigen::Vector3d goal_point; Eigen::Quaterniond goal_quaternion_e; { // scoped so we don't pollute function scope with these message temps geometry_msgs::Point msg_goal_point = pc.constraint_region.primitive_poses[0].position; geometry_msgs::Quaternion msg_goal_orientation = oc.orientation; goal_point = Eigen::Vector3d(msg_goal_point.x, msg_goal_point.y, msg_goal_point.z); goal_quaternion_e = Eigen::Quaterniond(msg_goal_orientation.w, msg_goal_orientation.x, msg_goal_orientation.y, msg_goal_orientation.z); } //ROS_INFO("Computing position and orientation error..."); planning_models::KinematicState::LinkState *link_state = start_state.getLinkState(pc.link_name); Eigen::Affine3d planning_T_link = link_state->getGlobalLinkTransform(); Eigen::Vector3d ee_point_in_ee_frame = Eigen::Vector3d(pc.target_point_offset.x, pc.target_point_offset.y, pc.target_point_offset.z); Eigen::Vector3d ee_point_in_planning_frame = planning_T_link*ee_point_in_ee_frame; // TODO need to make sure these are expressed in the same frame. Eigen::Vector3d x_error = goal_point - ee_point_in_planning_frame; Eigen::Vector3d delta_x = x_error; double x_error_mag = x_error.norm(); double LINEAR_CLIP = 0.02; if(x_error_mag > LINEAR_CLIP) delta_x = x_error/x_error_mag*LINEAR_CLIP; // = = = = Rotations are gross = = = = Eigen::Quaterniond link_quaternion_e = Eigen::Quaterniond(planning_T_link.rotation()); tf::Quaternion link_quaternion_tf, goal_quaternion_tf; tf::RotationEigenToTF( link_quaternion_e, link_quaternion_tf ); tf::RotationEigenToTF( goal_quaternion_e, goal_quaternion_tf ); tf::Quaternion delta_quaternion = link_quaternion_tf.inverse()*goal_quaternion_tf; double rotation_angle = delta_quaternion.getAngle(); //tf::Vector3 rotation_axis = delta_quaternion.getAxis(); //ROS_INFO("Delta is [%.3f] radians about [%.3f, %.3f, %.3f]", rotation_angle, rotation_axis.x(), rotation_axis.y(), rotation_axis.z()); double ANGLE_CLIP = 0.2; double clipped_rotation_fraction = std::min<double>(1.0, ANGLE_CLIP/fabs(rotation_angle)); if(clipped_rotation_fraction < 0) ROS_ERROR("Clipped rotation fraction < 0, look into this!"); tf::Matrix3x3 clipped_delta_matrix; tf::Quaternion clipped_goal_quaternion = link_quaternion_tf.slerp(goal_quaternion_tf, clipped_rotation_fraction); clipped_delta_matrix.setRotation( link_quaternion_tf.inverse()*clipped_goal_quaternion ); tf::Vector3 delta_euler; clipped_delta_matrix.getRPY(delta_euler[0], delta_euler[1], delta_euler[2]); //ROS_INFO("Delta euler in link frame = [%.3f, %.3f, %.3f]", delta_euler[0], delta_euler[1], delta_euler[2]); tf::Matrix3x3 link_matrix(link_quaternion_tf); delta_euler = link_matrix * delta_euler; //ROS_INFO("Delta euler in planning_frame = [%.3f, %.3f, %.3f]", delta_euler[0], delta_euler[1], delta_euler[2]); // Get end-effector Jacobian // std::string ee_control_frame = "r_wrist_roll_link"; // if(false && jmg->isChain()) // ee_control_frame = planning_scene->getKinematicModel()->getJointModelGroup(jmg->getAttachedEndEffectorGroupName())->getEndEffectorParentGroup().second; // else // ROS_WARN("Using r_wrist_roll_link as HARD_CODED value."); if(ee_control_frame != pc.link_name) ROS_WARN("ee_control_frame [%s] and position_goal link [%s] aren't the same, this could be bad!", ee_control_frame.c_str(), pc.link_name.c_str()); // ROS_INFO("Getting end-effector Jacobian for local point %.3f, %.3f, %.3f on link [%s]", // ee_point_in_ee_frame(0), // ee_point_in_ee_frame(1), // ee_point_in_ee_frame(2), // ee_control_frame.c_str()); Eigen::MatrixXd ee_jacobian; if(!jsg->getJacobian(ee_control_frame , ee_point_in_ee_frame , ee_jacobian)) { ROS_ERROR("Unable to get end-effector Jacobian! Can't plan, exiting..."); return false; } //ROS_INFO_STREAM("End-effector jacobian in planning frame is: \n" << ee_jacobian); // ======== Pack into solver data structure, run solver. ======== //ROS_INFO("Packing data into the cvx solver..."); // Vars vars; // Params params; // Workspace work; // Settings settings; // CVX Settings cvx.set_defaults(); cvx.setup_indexing(); cvx.settings.verbose = 0; // - - - - - - - load all problem instance data - - - - - - - // unsigned int N = 7; // number of joints in the chain // end-effector Jacobian // TODO magic numbers (though I suppose the CVX solver is already hard-coded) for(unsigned int row = 0; row < 3; row++ ) { for(unsigned int col = 0; col < N; col++ ) { // CVX matrices are COLUMN-MAJOR!!! cvx.params.J_v[col*3 + row] = ee_jacobian(row, col); cvx.params.J_w[col*3 + row] = ee_jacobian(row+3, col); } } // Set weights for objective terms cvx.params.weight_x[0] = 1.0; // translational error cvx.params.weight_w[0] = 0.1; // angular error (error in radians is numerically much larger than error in meters) cvx.params.weight_q[0] = 0.001; // only want to barely encourage values to stay small... // set up constraints from contact set unsigned int MAX_CONSTRAINTS = 25; unsigned int constraint_count = std::min<size_t>(MAX_CONSTRAINTS, contact_normals.size()); for(unsigned int constraint = 0; constraint < MAX_CONSTRAINTS; constraint++) { if(constraint < constraint_count) { // CVX matrices are COLUMN-MAJOR!!! for (int j = 0; j < 3*7; j++) { cvx.params.J_c[constraint][j] = contact_jacobians[constraint](j%3, j/3); } for (int j = 0; j < 3; j++) { cvx.params.normal[constraint][j] = contact_normals[constraint][j]; } } else{ //printf("setting to zero\n"); for (int j = 0; j < 3*7; j++) { cvx.params.J_c[constraint][j] = 0; } for (int j = 0; j < 3; j++) { cvx.params.normal[constraint][j] = 0; } } } for(unsigned int index = 0; index < N; index++ ) { cvx.params.q[index] = joint_vector[index]; cvx.params.q_min[index] = limits_min[index]; cvx.params.q_max[index] = limits_max[index]; } // TODO should these be clipped down at all? :) for(unsigned int index = 0; index < 3; index++ ) { cvx.params.x_d[index] = delta_x(index); // TODO magic minus sign!! cvx.params.w_d[index] = delta_euler[index]; } // - - - - - - - Solve our problem at high speed! - - - - - - - // long num_iters = 0; num_iters = cvx.solve(); if(!cvx.work.converged) { printf("solving failed to converge in %ld iterations.\n", num_iters); return false; } // ======== Unpack solver result into constrained goal state. ======== ROS_INFO("Finished solving in %ld iterations, unpacking data...", num_iters); Eigen::VectorXd joint_deltas(N); std::map<std::string, double> goal_update; for(size_t joint_index = 0; joint_index < joint_names.size(); joint_index++) { std::string joint_name = joint_names[joint_index]; joint_deltas(joint_index) = cvx.vars.q_d[joint_index]; goal_update[joint_name] = cvx.vars.q_d[joint_index] + start_state.getJointState(joint_name)->getVariableValues()[0]; //ROS_INFO("Updated joint [%zd] [%s]: %.3f + %.3f", joint_index, joint_name.c_str(), start_state.getJointState(joint_name)->getVariableValues()[0], cvx.vars.q_d[joint_index]); } Eigen::VectorXd cartesian_deltas = ee_jacobian*joint_deltas; //ROS_INFO("Raw Error: translate [%.3f, %.3f, %.3f]", // x_error(0), x_error(1), x_error(2)); ROS_INFO("ClipError: translate [%.3f, %.3f, %.3f] euler [%.2f, %.2f, %.2f]", delta_x(0), delta_x(1), delta_x(2), delta_euler[0], delta_euler[1], delta_euler[2]); ROS_INFO("Output: translate [%.3f, %.3f, %.3f] euler [%.2f, %.2f, %.2f]", cartesian_deltas(0), cartesian_deltas(1), cartesian_deltas(2), cartesian_deltas(3), cartesian_deltas(4), cartesian_deltas(5)); //goal_update[vars.qdd_c[index] + ] constrained_goal_state.setStateValues(goal_update); // ======== Step toward constrained goal, checking for new collisions along the way ======== //double proxy_goal_tolerance = 0.1; double interpolation_progress = 0.0; double interpolation_step = 0.34; collision_detection::CollisionResult collision_result; while(interpolation_progress <= 1.0) { //ROS_INFO("Doing interpolation, with progress %.2f ", interpolation_progress); // TODO this interpolation scheme might not allow the arm to slide along contacts very well... planning_models::KinematicStatePtr point; point.reset(new planning_models::KinematicState(constrained_goal_state)); start_state.interpolate(constrained_goal_state, interpolation_progress, *point); // get contact set collision_detection::CollisionRequest collision_request; // TODO magic number collision_request.max_contacts = 50; collision_request.contacts = true; collision_request.distance = false; collision_request.verbose = false; collision_result.clear(); planning_scene->checkCollision(collision_request, collision_result, *point); if(collision_result.collision) { break; } else { proxy_state = *point; } // TODO Use proxy_goal_tolerance to exit if we are close enough! interpolation_progress += interpolation_step; } // Store the last collision result! last_collision_result = collision_result; // ======== Convert proxy state to a "trajectory" ======== //ROS_INFO("Converting proxy to a trajectory, and returning..."); moveit_msgs::RobotTrajectory rt; trajectory_msgs::JointTrajectory traj; trajectory_msgs::JointTrajectoryPoint pt; sensor_msgs::JointState js; planning_models::kinematicStateToJointState(proxy_state, js); //const planning_models::KinematicModel::JointModelGroup *jmg = planning_scene->getKinematicModel()->getJointModelGroup(req.motion_plan_request.group_name); // getJointNames for(size_t i = 0 ; i < js.name.size(); i++) { std::string name = js.name[i]; if( !jmg->hasJointModel(name) ) continue; traj.joint_names.push_back(js.name[i]); pt.positions.push_back(js.position[i]); if(js.velocity.size()) pt.velocities.push_back(js.velocity[i]); } pt.time_from_start = ros::Duration(req.motion_plan_request.allowed_planning_time*1.0); traj.points.push_back(pt); traj.header.stamp = ros::Time::now(); traj.header.frame_id = "odom_combined"; res.trajectory.joint_trajectory = traj; return true; }
virtual bool adaptAndPlan(const PlannerFn &planner, const planning_scene::PlanningSceneConstPtr& planning_scene, const planning_interface::MotionPlanRequest &req, planning_interface::MotionPlanResponse &res, std::vector<std::size_t> &added_path_index) const { ROS_DEBUG("Running '%s'", getDescription().c_str()); // get the specified start state robot_state::RobotState start_state = planning_scene->getCurrentState(); robot_state::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.start_state, start_state); const std::vector<robot_state::JointState*> &jstates = planning_scene->getRobotModel()->hasJointModelGroup(req.group_name) ? start_state.getJointStateGroup(req.group_name)->getJointStateVector() : start_state.getJointStateVector(); bool change_req = false; for (std::size_t i = 0 ; i < jstates.size() ; ++i) { // Check if we have a revolute, continuous joint. If we do, then we only need to make sure // it is within de model's declared bounds (usually -Pi, Pi), since the values wrap around. // It is possible that the encoder maintains values outside the range [-Pi, Pi], to inform // how many times the joint was wrapped. Because of this, we remember the offsets for continuous // joints, and we un-do them when the plan comes from the planner const robot_model::JointModel* jm = jstates[i]->getJointModel(); if (jm->getType() == robot_model::JointModel::REVOLUTE) { if (static_cast<const robot_model::RevoluteJointModel*>(jm)->isContinuous()) { double initial = jstates[i]->getVariableValues()[0]; jstates[i]->enforceBounds(); double after = jstates[i]->getVariableValues()[0]; if (fabs(initial - after) > std::numeric_limits<double>::epsilon()) change_req = true; } } else // Normalize yaw; no offset needs to be remembered if (jm->getType() == robot_model::JointModel::PLANAR) { double initial = jstates[i]->getVariableValues()[2]; if (static_cast<const robot_model::PlanarJointModel*>(jm)->normalizeRotation(jstates[i]->getVariableValues())) change_req = true; } else // Normalize quaternions if (jm->getType() == robot_model::JointModel::FLOATING) { if (static_cast<const robot_model::FloatingJointModel*>(jm)->normalizeRotation(jstates[i]->getVariableValues())) change_req = true; } } // pointer to a prefix state we could possibly add, if we detect we have to make changes robot_state::RobotStatePtr prefix_state; for (std::size_t i = 0 ; i < jstates.size() ; ++i) { if (!jstates[i]->satisfiesBounds()) { if (jstates[i]->satisfiesBounds(bounds_dist_)) { if (!prefix_state) prefix_state.reset(new robot_state::RobotState(start_state)); jstates[i]->enforceBounds(); change_req = true; ROS_INFO("Starting state is just outside bounds (joint '%s'). Assuming within bounds.", jstates[i]->getName().c_str()); } else { std::stringstream joint_values; std::stringstream joint_bounds_low; std::stringstream joint_bounds_hi; for (std::size_t k = 0 ; k < jstates[i]->getVariableValues().size() ; ++k) joint_values << jstates[i]->getVariableValues()[k] << " "; for (std::size_t k = 0 ; k < jstates[i]->getVariableBounds().size() ; ++k) { joint_bounds_low << jstates[i]->getVariableBounds()[k].first << " "; joint_bounds_hi << jstates[i]->getVariableBounds()[k].second << " "; } ROS_WARN_STREAM("Joint '" << jstates[i]->getName() << "' from the starting state is outside bounds by a significant margin: [ " << joint_values.str() << "] should be in the range [ " << joint_bounds_low.str() << "], [ " << joint_bounds_hi.str() << "] but the error above the ~" << BOUNDS_PARAM_NAME << " parameter (currently set to " << bounds_dist_ << ")"); } } } bool solved; // if we made any changes, use them if (change_req) { planning_interface::MotionPlanRequest req2 = req; robot_state::robotStateToRobotStateMsg(start_state, req2.start_state); solved = planner(planning_scene, req2, res); } else solved = planner(planning_scene, req, res); // re-add the prefix state, if it was constructed if (prefix_state && res.trajectory_) { if (!res.trajectory_->empty()) // heuristically decide a duration offset for the trajectory (induced by the additional point added as a prefix to the computed trajectory) res.trajectory_->setWayPointDurationFromPrevious(0, std::min(max_dt_offset_, res.trajectory_->getAverageSegmentDuration())); res.trajectory_->addPrefixWayPoint(prefix_state, 0.0); added_path_index.push_back(0); } return solved; }
virtual bool adaptAndPlan(const PlannerFn &planner, const planning_scene::PlanningSceneConstPtr& planning_scene, const planning_interface::MotionPlanRequest &req, planning_interface::MotionPlanResponse &res, std::vector<std::size_t> &added_path_index) const { ROS_DEBUG("Running '%s'", getDescription().c_str()); // get the specified start state robot_state::RobotState start_state = planning_scene->getCurrentState(); robot_state::robotStateMsgToRobotState(planning_scene->getTransforms(), req.start_state, start_state); // if the start state is otherwise valid but does not meet path constraints if (planning_scene->isStateValid(start_state, req.group_name) && !planning_scene->isStateValid(start_state, req.path_constraints, req.group_name)) { ROS_INFO("Path constraints not satisfied for start state..."); planning_scene->isStateValid(start_state, req.path_constraints, req.group_name, true); ROS_INFO("Planning to path constraints..."); planning_interface::MotionPlanRequest req2 = req; req2.goal_constraints.resize(1); req2.goal_constraints[0] = req.path_constraints; req2.path_constraints = moveit_msgs::Constraints(); planning_interface::MotionPlanResponse res2; // we call the planner for this additional request, but we do not want to include potential // index information from that call std::vector<std::size_t> added_path_index_temp; added_path_index_temp.swap(added_path_index); bool solved1 = planner(planning_scene, req2, res2); added_path_index_temp.swap(added_path_index); if (solved1) { planning_interface::MotionPlanRequest req3 = req; ROS_INFO("Planned to path constraints. Resuming original planning request."); // extract the last state of the computed motion plan and set it as the new start state robot_state::robotStateToRobotStateMsg(res2.trajectory_->getLastWayPoint(), req3.start_state); bool solved2 = planner(planning_scene, req3, res); res.planning_time_ += res2.planning_time_; if (solved2) { // since we add a prefix, we need to correct any existing index positions for (std::size_t i = 0 ; i < added_path_index.size() ; ++i) added_path_index[i] += res2.trajectory_->getWayPointCount(); // we mark the fact we insert a prefix path (we specify the index position we just added) for (std::size_t i = 0 ; i < res2.trajectory_->getWayPointCount() ; ++i) added_path_index.push_back(i); // we need to append the solution paths. res2.trajectory_->append(*res.trajectory_, 0.0); res2.trajectory_->swap(*res.trajectory_); return true; } else return false; } else { ROS_WARN("Unable to plan to path constraints. Running usual motion plan."); bool result = planner(planning_scene, req, res); res.planning_time_ += res2.planning_time_; return result; } } else { ROS_DEBUG("Path constraints are OK. Running usual motion plan."); return planner(planning_scene, req, res); } }
virtual bool adaptAndPlan(const PlannerFn &planner, const planning_scene::PlanningSceneConstPtr& planning_scene, const planning_interface::MotionPlanRequest &req, planning_interface::MotionPlanResponse &res, std::vector<std::size_t> &added_path_index) const { ROS_DEBUG("Running '%s'", getDescription().c_str()); // get the specified start state robot_state::RobotState start_state = planning_scene->getCurrentState(); robot_state::robotStateMsgToRobotState(planning_scene->getTransforms(), req.start_state, start_state); collision_detection::CollisionRequest creq; creq.group_name = req.group_name; collision_detection::CollisionResult cres; planning_scene->checkCollision(creq, cres, start_state); if (cres.collision) { // Rerun in verbose mode collision_detection::CollisionRequest vcreq = creq; collision_detection::CollisionResult vcres; vcreq.verbose = true; planning_scene->checkCollision(vcreq, vcres, start_state); if (creq.group_name.empty()) ROS_INFO("Start state appears to be in collision"); else ROS_INFO_STREAM("Start state appears to be in collision with respect to group " << creq.group_name); robot_state::RobotStatePtr prefix_state(new robot_state::RobotState(start_state)); random_numbers::RandomNumberGenerator &rng = prefix_state->getRandomNumberGenerator(); const std::vector<const robot_model::JointModel*> &jmodels = planning_scene->getRobotModel()->hasJointModelGroup(req.group_name) ? planning_scene->getRobotModel()->getJointModelGroup(req.group_name)->getJointModels() : planning_scene->getRobotModel()->getJointModels(); bool found = false; for (int c = 0 ; !found && c < sampling_attempts_ ; ++c) { for (std::size_t i = 0 ; !found && i < jmodels.size() ; ++i) { std::vector<double> sampled_variable_values(jmodels[i]->getVariableCount()); const double *original_values = prefix_state->getJointPositions(jmodels[i]); jmodels[i]->getVariableRandomPositionsNearBy(rng, &sampled_variable_values[0], original_values, jmodels[i]->getMaximumExtent() * jiggle_fraction_); start_state.setJointPositions(jmodels[i], sampled_variable_values); collision_detection::CollisionResult cres; planning_scene->checkCollision(creq, cres, start_state); if (!cres.collision) { found = true; ROS_INFO("Found a valid state near the start state at distance %lf after %d attempts", prefix_state->distance(start_state), c); } } } if (found) { planning_interface::MotionPlanRequest req2 = req; robot_state::robotStateToRobotStateMsg(start_state, req2.start_state); bool solved = planner(planning_scene, req2, res); if (solved && !res.trajectory_->empty()) { // heuristically decide a duration offset for the trajectory (induced by the additional point added as a prefix to the computed trajectory) res.trajectory_->setWayPointDurationFromPrevious(0, std::min(max_dt_offset_, res.trajectory_->getAverageSegmentDuration())); res.trajectory_->addPrefixWayPoint(prefix_state, 0.0); // we add a prefix point, so we need to bump any previously added index positions for (std::size_t i = 0 ; i < added_path_index.size() ; ++i) added_path_index[i]++; added_path_index.push_back(0); } return solved; } else { ROS_WARN("Unable to find a valid state nearby the start state (using jiggle fraction of %lf and %u sampling attempts). Passing the original planning request to the planner.", jiggle_fraction_, sampling_attempts_); return planner(planning_scene, req, res); } } else { if (creq.group_name.empty()) ROS_DEBUG("Start state is valid"); else ROS_DEBUG_STREAM("Start state is valid with respect to group " << creq.group_name); return planner(planning_scene, req, res); } }
bool SBPLInterface::solve(const planning_scene::PlanningSceneConstPtr& planning_scene, const moveit_msgs::GetMotionPlan::Request &req, moveit_msgs::GetMotionPlan::Response &res, const PlanningParameters& params) const { res.trajectory.joint_trajectory.points.clear(); (const_cast<SBPLInterface*>(this))->last_planning_statistics_ = PlanningStatistics(); planning_models::RobotState *start_state(planning_scene->getCurrentState()); planning_models::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.motion_plan_request.start_state, start_state); ros::WallTime wt = ros::WallTime::now(); boost::shared_ptr<EnvironmentChain3D> env_chain(new EnvironmentChain3D(planning_scene)); if(!env_chain->setupForMotionPlan(planning_scene, req, res, params)) { //std::cerr << "Env chain setup failing" << std::endl; return false; } //std::cerr << "Creation with params " << params.use_bfs_ << " took " << (ros::WallTime::now()-wt).toSec() << std::endl; boost::this_thread::interruption_point(); //DummyEnvironment* dummy_env = new DummyEnvironment(); boost::shared_ptr<ARAPlanner> planner(new ARAPlanner(env_chain.get(), true)); planner->set_initialsolution_eps(100.0); planner->set_search_mode(true); planner->force_planning_from_scratch(); planner->set_start(env_chain->getPlanningData().start_hash_entry_->stateID); planner->set_goal(env_chain->getPlanningData().goal_hash_entry_->stateID); //std::cerr << "Creation took " << (ros::WallTime::now()-wt) << std::endl; std::vector<int> solution_state_ids; int solution_cost; wt = ros::WallTime::now(); //CALLGRIND_START_INSTRUMENTATION; bool b_ret = planner->replan(10.0, &solution_state_ids, &solution_cost); //CALLGRIND_STOP_INSTRUMENTATION; double el = (ros::WallTime::now()-wt).toSec(); std::cerr << "B ret is " << b_ret << " planning time " << el << std::endl; std::cerr << "Expansions " << env_chain->getPlanningStatistics().total_expansions_ << " average time " << (env_chain->getPlanningStatistics().total_expansion_time_.toSec()/(env_chain->getPlanningStatistics().total_expansions_*1.0)) << " hz " << 1.0/(env_chain->getPlanningStatistics().total_expansion_time_.toSec()/(env_chain->getPlanningStatistics().total_expansions_*1.0)) << std::endl; std::cerr << "Total coll checks " << env_chain->getPlanningStatistics().coll_checks_ << " hz " << 1.0/(env_chain->getPlanningStatistics().total_coll_check_time_.toSec()/(env_chain->getPlanningStatistics().coll_checks_*1.0)) << std::endl; std::cerr << "Path length is " << solution_state_ids.size() << std::endl; if(!b_ret) { res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; return false; } if(solution_state_ids.size() == 0) { std::cerr << "Success but no path" << std::endl; res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_MOTION_PLAN; return false; } if(!env_chain->populateTrajectoryFromStateIDSequence(solution_state_ids, res.trajectory.joint_trajectory)) { std::cerr << "Success but path bad" << std::endl; res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_MOTION_PLAN; return false; } ros::WallTime pre_short = ros::WallTime::now(); //std::cerr << "Num traj points before " << res.trajectory.joint_trajectory.points.size() << std::endl; trajectory_msgs::JointTrajectory traj = res.trajectory.joint_trajectory; env_chain->attemptShortcut(traj, res.trajectory.joint_trajectory); //std::cerr << "Num traj points after " << res.trajectory.joint_trajectory.points.size() << std::endl; //std::cerr << "Time " << (ros::WallTime::now()-pre_short).toSec() << std::endl; //env_chain->getPlaneBFSMarker(mark, env_chain->getGoalPose().translation().z()); res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS; PlanningStatistics stats = env_chain->getPlanningStatistics(); stats.total_planning_time_ = ros::WallDuration(el); (const_cast<SBPLInterface*>(this))->last_planning_statistics_ = stats; return true; }