/** * Code example for ICP taking a sequence of point clouds relatively close * and build a map with them. * It assumes that: 3D point clouds are used, they were recorded in sequence * and they are express in sensor frame. */ int main(int argc, char *argv[]) { validateArgs(argc, argv); typedef PointMatcher<float> PM; typedef PointMatcherIO<float> PMIO; typedef PM::TransformationParameters TP; typedef PM::DataPoints DP; string outputFileName(argv[0]); // Rigid transformation PM::Transformation* rigidTrans; rigidTrans = PM::get().REG(Transformation).create("RigidTransformation"); // Create filters manually to clean the global map PM::DataPointsFilter* densityFilter( PM::get().DataPointsFilterRegistrar.create( "SurfaceNormalDataPointsFilter", map_list_of ("knn", "10") ("epsilon", "5") ("keepNormals", "0") ("keepDensities", "1") ) ); PM::DataPointsFilter* maxDensitySubsample( PM::get().DataPointsFilterRegistrar.create( "MaxDensityDataPointsFilter", map_list_of ("maxDensity", toParam(30)) ) ); // Main algorithm definition PM::ICP icp; // load YAML config ifstream ifs(argv[1]); validateFile(argv[1]); icp.loadFromYaml(ifs); PMIO::FileInfoVector list(argv[2]); PM::DataPoints mapPointCloud, newCloud; TP T_to_map_from_new = TP::Identity(4,4); // assumes 3D for(unsigned i=0; i < list.size(); i++) { cout << "---------------------\nLoading: " << list[i].readingFileName << endl; // It is assume that the point cloud is express in sensor frame newCloud = DP::load(list[i].readingFileName); if(mapPointCloud.getNbPoints() == 0) { mapPointCloud = newCloud; continue; } // call ICP try { // We use the last transformation as a prior // this assumes that the point clouds were recorded in // sequence. const TP prior = T_to_map_from_new; T_to_map_from_new = icp(newCloud, mapPointCloud, prior); } catch (PM::ConvergenceError& error) { cout << "ERROR PM::ICP failed to converge: " << endl; cout << " " << error.what() << endl; continue; } // This is not necessary in this example, but could be // useful if the same matrix is composed in the loop. T_to_map_from_new = rigidTrans->correctParameters(T_to_map_from_new); // Move the new point cloud in the map reference newCloud = rigidTrans->compute(newCloud, T_to_map_from_new); // Merge point clouds to map mapPointCloud.concatenate(newCloud); // Clean the map mapPointCloud = densityFilter->filter(mapPointCloud); mapPointCloud = maxDensitySubsample->filter(mapPointCloud); // Save the map at each iteration stringstream outputFileNameIter; outputFileNameIter << outputFileName << "_" << i << ".vtk"; cout << "outputFileName: " << outputFileNameIter.str() << endl; mapPointCloud.save(outputFileNameIter.str()); } return 0; }
/** * Code example for ICP taking 2 points clouds (2D or 3D) relatively close * and computing the transformation between them. * * This code is more complete than icp_simple. It can load parameter files and * has more options. */ int main(int argc, const char *argv[]) { bool isTransfoSaved = false; string configFile; string outputBaseFile("test"); string format("vtk") string initTranslation("0,0,0"); string initRotation("1,0,0;0,1,0;0,0,1"); const int ret = validateArgs(argc, argv, isTransfoSaved, configFile, outputBaseFile, format, initTranslation, initRotation); if (ret != 0) { return ret; } const char *refFile(argv[argc-2]); const char *dataFile(argv[argc-1]); // Load point clouds const DP ref(DP::load(refFile)); const DP data(DP::load(dataFile)); // Create the default ICP algorithm PM::ICP icp; if (configFile.empty()) { // See the implementation of setDefault() to create a custom ICP algorithm icp.setDefault(); } else { // load YAML config ifstream ifs(configFile.c_str()); if (!ifs.good()) { cerr << "Cannot open config file " << configFile << ", usage:"; usage(argv); exit(1); } icp.loadFromYaml(ifs); } int cloudDimension = ref.getEuclideanDim(); if (!(cloudDimension == 2 || cloudDimension == 3)) { cerr << "Invalid input point clouds dimension = " << cloudDimension << endl; exit(1); } PM::TransformationParameters translation = parseTranslation(initTranslation, cloudDimension); PM::TransformationParameters rotation = parseRotation(initRotation, cloudDimension); PM::TransformationParameters initTransfo = translation*rotation; PM::Transformation* rigidTrans; rigidTrans = PM::get().REG(Transformation).create("RigidTransformation"); if (!rigidTrans->checkParameters(initTransfo)) { cerr << endl << "Initial transformation is not rigid, identiy will be used" << endl; initTransfo = PM::TransformationParameters::Identity( cloudDimension+1,cloudDimension+1); } const DP initializedData = rigidTrans->compute(data, initTransfo); // Compute the transformation to express data in ref PM::TransformationParameters T = icp(initializedData, ref); // cout << outputBaseFile << " match ratio: " << icp.errorMinimizer->getWeightedPointUsedRatio() << endl; // Transform data to express it in ref DP data_out(initializedData); icp.transformations.apply(data_out, T); // Safe files to see the results ref.save(outputBaseFile + "_ref." + format); data.save(outputBaseFile + "_data_in" + format); data_out.save(outputBaseFile + "_data_out" + format); if(isTransfoSaved) { ofstream transfoFile; string initFileName = outputBaseFile + "_init_transfo.txt"; string icpFileName = outputBaseFile + "_icp_transfo.txt"; string completeFileName = outputBaseFile + "_complete_transfo.txt"; transfoFile.open(initFileName.c_str()); if(transfoFile.is_open()) { transfoFile << initTransfo << endl; transfoFile.close(); } else { cout << "Unable to write the initial transformation file\n" << endl; } transfoFile.open(icpFileName.c_str()); if(transfoFile.is_open()) { transfoFile << T << endl; transfoFile.close(); } else { cout << "Unable to write the ICP transformation file\n" << endl; } transfoFile.open(completeFileName.c_str()); if(transfoFile.is_open()) { transfoFile << T*initTransfo << endl; transfoFile.close(); } else { cout << "Unable to write the complete transformation file\n" << endl; } } else { cout << "ICP transformation:" << endl << T << endl; } return 0; }
void Assembler::publishCloud() { if(cloud.features.cols() != 0) { //mutexCloud.lock(); PM::TransformationParameters TOdomToScanner = PointMatcher_ros::transformListenerToEigenMatrix<float>( tfListener, sensor_frame, odom_frame, scanTime ); // Bring the scan back to local frame (i.e., centered to the scanner) cloud = transformation->compute(cloud, TOdomToScanner); if(firstPointCloud) { firstPointCloud = false; ROS_INFO_STREAM("skipping first point cloud"); } else { if(cloudPub.getNumSubscribers()) { cloudPub.publish( PointMatcher_ros::pointMatcherCloudToRosMsg<float>( cloud, sensor_frame, scanTime)); } } cloud = DP(); //mutexCloud.unlock(); } }
bool CloudMatcher::match(pointmatcher_ros::MatchClouds::Request& req, pointmatcher_ros::MatchClouds::Response& res) { // get and check reference const DP referenceCloud(PointMatcher_ros::rosMsgToPointMatcherCloud<float>(req.reference)); const unsigned referenceGoodCount(referenceCloud.features.cols()); const unsigned referencePointCount(req.reference.width * req.reference.height); const double referenceGoodRatio(double(referenceGoodCount) / double(referencePointCount)); if (referenceGoodCount == 0) { ROS_ERROR("I found no good points in the reference cloud"); return false; } if (referenceGoodRatio < 0.5) { ROS_WARN_STREAM("Partial reference cloud! Missing " << 100 - referenceGoodRatio*100.0 << "% of the cloud (received " << referenceGoodCount << ")"); } // get and check reading const DP readingCloud(PointMatcher_ros::rosMsgToPointMatcherCloud<float>(req.readings)); const unsigned readingGoodCount(referenceCloud.features.cols()); const unsigned readingPointCount(req.readings.width * req.readings.height); const double readingGoodRatio(double(readingGoodCount) / double(readingPointCount)); if (readingGoodCount == 0) { ROS_ERROR("I found no good points in the reading cloud"); return false; } if (readingGoodRatio < 0.5) { ROS_WARN_STREAM("Partial reference cloud! Missing " << 100 - readingGoodRatio*100.0 << "% of the cloud (received " << readingGoodCount << ")"); } // check dimensions if (referenceCloud.features.rows() != readingCloud.features.rows()) { ROS_ERROR_STREAM("Dimensionality missmatch: reference cloud is " << referenceCloud.features.rows() - 1 << " while reading cloud is " << readingCloud.features.rows() - 1); return false; } // call ICP PM::TransformationParameters transform; try { transform = icp(readingCloud, referenceCloud); tf::transformTFToMsg(PointMatcher_ros::eigenMatrixToTransform<float>(transform), res.transform); ROS_INFO_STREAM("match ratio: " << icp.errorMinimizer->getWeightedPointUsedRatio() << endl); } catch (PM::ConvergenceError error) { ROS_ERROR_STREAM("ICP failed to converge: " << error.what()); return false; } if(traceMatching) { std::stringstream ss; ss << "reading_" << matchedCloudsCount << ".vtk"; readingCloud.save(ss.str()); ss.str(std::string()); ss << "reference_" << matchedCloudsCount << ".vtk"; referenceCloud.save(ss.str()); PM::Transformation* rigidTrans; rigidTrans = PM::get().REG(Transformation).create("RigidTransformation"); PM::DataPoints matchedCloud = rigidTrans->compute(readingCloud, transform); ss.str(std::string()); ss << "matched_" << matchedCloudsCount << ".vtk"; matchedCloud.save(ss.str()); } matchedCloudsCount++; return true; }
/** * Code example for ICP taking 2 points clouds (2D or 3D) relatively close * and computing the transformation between them. * * This code is more complete than icp_simple. It can load parameter files and * has more options. */ int main(int argc, const char *argv[]) { bool isTransfoSaved = false; string configFile; string outputBaseFile("test"); string initTranslation("0,0,0"); string initRotation("1,0,0;0,1,0;0,0,1"); const int ret = validateArgs(argc, argv, isTransfoSaved, configFile, outputBaseFile, initTranslation, initRotation); if (ret != 0) { return ret; } const char *refFile(argv[argc-2]); const char *dataFile(argv[argc-1]); // Load point clouds const DP ref(DP::load(refFile)); const DP data(DP::load(dataFile)); // Create the default ICP algorithm PM::ICP icp; if (configFile.empty()) { // See the implementation of setDefault() to create a custom ICP algorithm icp.setDefault(); } else { // load YAML config ifstream ifs(configFile.c_str()); if (!ifs.good()) { cerr << "Cannot open config file " << configFile << ", usage:"; usage(argv); exit(1); } icp.loadFromYaml(ifs); } int cloudDimension = ref.getEuclideanDim(); if (!(cloudDimension == 2 || cloudDimension == 3)) { cerr << "Invalid input point clouds dimension" << endl; exit(1); } PM::TransformationParameters translation = parseTranslation(initTranslation, cloudDimension); PM::TransformationParameters rotation = parseRotation(initRotation, cloudDimension); PM::TransformationParameters initTransfo = translation*rotation; PM::Transformation* rigidTrans; rigidTrans = PM::get().REG(Transformation).create("RigidTransformation"); if (!rigidTrans->checkParameters(initTransfo)) { cerr << endl << "Initial transformation is not rigid, identiy will be used" << endl; initTransfo = PM::TransformationParameters::Identity( cloudDimension+1,cloudDimension+1); } const DP initializedData = rigidTrans->compute(data, initTransfo); // Compute the transformation to express data in ref PM::TransformationParameters T = icp(initializedData, ref); float matchRatio = icp.errorMinimizer->getWeightedPointUsedRatio(); cout << "match ratio: " << matchRatio << endl; // Transform data to express it in ref DP data_out(initializedData); icp.transformations.apply(data_out, T); cout << endl << "------------------" << endl; // START demo 1 // Test for retrieving Haussdorff distance (with outliers). We generate new matching module // specifically for this purpose. // // INPUTS: // ref: point cloud used as reference // data_out: aligned point cloud (using the transformation outputted by icp) // icp: icp object used to aligned the point clouds // Structure to hold future match results PM::Matches matches; Parametrizable::Parameters params; params["knn"] = toParam(1); // for Hausdorff distance, we only need the first closest point params["epsilon"] = toParam(0); PM::Matcher* matcherHausdorff = PM::get().MatcherRegistrar.create("KDTreeMatcher", params); // max. distance from reading to reference matcherHausdorff->init(ref); matches = matcherHausdorff->findClosests(data_out); float maxDist1 = matches.getDistsQuantile(1.0); float maxDistRobust1 = matches.getDistsQuantile(0.85); // max. distance from reference to reading matcherHausdorff->init(data_out); matches = matcherHausdorff->findClosests(ref); float maxDist2 = matches.getDistsQuantile(1.0); float maxDistRobust2 = matches.getDistsQuantile(0.85); float haussdorffDist = std::max(maxDist1, maxDist2); float haussdorffQuantileDist = std::max(maxDistRobust1, maxDistRobust2); cout << "Haussdorff distance: " << std::sqrt(haussdorffDist) << " m" << endl; cout << "Haussdorff quantile distance: " << std::sqrt(haussdorffQuantileDist) << " m" << endl; // START demo 2 // Test for retrieving paired point mean distance without outliers. We reuse the same module used for // the icp object. // // INPUTS: // ref: point cloud used as reference // data_out: aligned point cloud (using the transformation outputted by icp) // icp: icp object used to aligned the point clouds // initiate the matching with unfiltered point cloud icp.matcher->init(ref); // extract closest points matches = icp.matcher->findClosests(data_out); // weight paired points const PM::OutlierWeights outlierWeights = icp.outlierFilters.compute(data_out, ref, matches); // generate tuples of matched points and remove pairs with zero weight const PM::ErrorMinimizer::ErrorElements matchedPoints( data_out, ref, outlierWeights, matches); // extract relevant information for convenience const int dim = matchedPoints.reading.getEuclideanDim(); const int nbMatchedPoints = matchedPoints.reading.getNbPoints(); const PM::Matrix matchedRead = matchedPoints.reading.features.topRows(dim); const PM::Matrix matchedRef = matchedPoints.reference.features.topRows(dim); // compute mean distance const PM::Matrix dist = (matchedRead - matchedRef).colwise().norm(); // replace that by squaredNorm() to save computation time const float meanDist = dist.sum()/nbMatchedPoints; cout << "Robust mean distance: " << meanDist << " m" << endl; // END demo cout << "------------------" << endl << endl; // Safe files to see the results ref.save(outputBaseFile + "_ref.vtk"); data.save(outputBaseFile + "_data_in.vtk"); data_out.save(outputBaseFile + "_data_out.vtk"); if(isTransfoSaved) { ofstream transfoFile; string initFileName = outputBaseFile + "_init_transfo.txt"; string icpFileName = outputBaseFile + "_icp_transfo.txt"; string completeFileName = outputBaseFile + "_complete_transfo.txt"; transfoFile.open(initFileName.c_str()); if(transfoFile.is_open()) { transfoFile << initTransfo << endl; transfoFile.close(); } else { cout << "Unable to write the initial transformation file\n" << endl; } transfoFile.open(icpFileName.c_str()); if(transfoFile.is_open()) { transfoFile << T << endl; transfoFile.close(); } else { cout << "Unable to write the ICP transformation file\n" << endl; } transfoFile.open(completeFileName.c_str()); if(transfoFile.is_open()) { transfoFile << T*initTransfo << endl; transfoFile.close(); } else { cout << "Unable to write the complete transformation file\n" << endl; } } else { cout << "ICP transformation:" << endl << T << endl; } return 0; }