예제 #1
0
  void
  execute (int argc, char** argv, std::string plyfile)
  {
    PtrStepSz<const unsigned short> depth;
    PtrStepSz<const KinfuTracker::PixelRGB> rgb24;
    int time_ms = 0;
    bool has_image = false;

    // Create simulation environment:
    int width = 640;
    int height = 480;
    for (int i=0; i<2048; i++)
    {
      float v = i/2048.0;
      v = powf(v, 3)* 6;
      t_gamma[i] = v*6*256;
    }  

    glutInit (&argc, argv);
    glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGB);// was GLUT_RGBA
    glutInitWindowPosition (10, 10);
    glutInitWindowSize (10, 10);
    //glutInitWindowSize (window_width_, window_height_);
    glutCreateWindow ("OpenGL range likelihood");

    GLenum err = glewInit ();
    if (GLEW_OK != err)
    {
      std::cerr << "Error: " << glewGetErrorString (err) << std::endl;
      exit (-1);
    }

    std::cout << "Status: Using GLEW " << glewGetString (GLEW_VERSION) << std::endl;

    if (glewIsSupported ("GL_VERSION_2_0"))
      std::cout << "OpenGL 2.0 supported" << std::endl;
    else
    {
      std::cerr << "Error: OpenGL 2.0 not supported" << std::endl;
      exit(1);
    }
    std::cout << "GL_MAX_VIEWPORTS: " << GL_MAX_VIEWPORTS << std::endl;
  
    camera_ = Camera::Ptr (new Camera ());
    scene_ = Scene::Ptr (new Scene ());
    range_likelihood_ = RangeLikelihood::Ptr (new RangeLikelihood (1, 1, height, width, scene_));

    // Actually corresponds to default parameters:
    range_likelihood_->setCameraIntrinsicsParameters (640,480, 576.09757860,
	      576.09757860, 321.06398107, 242.97676897);
    range_likelihood_->setComputeOnCPU (false);
    range_likelihood_->setSumOnCPU (true);
    range_likelihood_->setUseColor (true);  

    camera_->set(0.471703, 1.59862, 3.10937, 0, 0.418879, -12.2129);
    camera_->set_pitch(0.418879); // not sure why this is here:

    cout << "About to read: "<< plyfile << endl;   
    load_PolygonMesh_model (plyfile);  
    
    // Generate a series of poses:
    std::vector<Eigen::Isometry3d, Eigen::aligned_allocator<Eigen::Isometry3d> > poses;
    Eigen::Vector3d focus_center(0,0,1.3);
    //  double halo_r = 4.0;
    double halo_r = 1.5;  
    double halo_dz = 1.5; // was 2;
    // 20 is too quick when adding noise:
    // 50 is ok though
    int n_poses=50;
    int n_pose_stop = 10;
    // above means make a circle of 50 poses, stop after the 10th i.e. 1/5 of a halo ring:
    generate_halo(poses,focus_center,halo_r,halo_dz,n_poses);    
    
    unsigned short * disparity_buf_ = new unsigned short[width*height ];
    const KinfuTracker::PixelRGB* color_buf_;
    const uint8_t* color_buf_uint;
    
    // loop though and create the mesh:
    for (int i = 0; !exit_; ++i)
    { 
      vector<double> tic_toc;
      tic_toc.push_back(getTime());
      double tic_main = getTime();

      Eigen::Vector3d t(poses[i].translation());
      Eigen::Quaterniond r(poses[i].rotation());
      std::stringstream ss;
      ss << t[0]<<", "<<t[1]<<", "<<t[2]<<" | " 
          <<r.w()<<", "<<r.x()<<", "<<r.y()<<", "<<r.z() ;       
      std::cout << i << ": " << ss.str() << " pose_simulatedposition\n";      
      
      capture (poses[i],disparity_buf_, color_buf_uint);//,ss.str());
      color_buf_ = (const KinfuTracker::PixelRGB*) color_buf_uint;
      PtrStepSz<const unsigned short> depth_sim = PtrStepSz<const unsigned short>(height, width, disparity_buf_, 2*width);
      //cout << depth_sim.rows << " by " << depth_sim.cols << " | s: " << depth_sim.step << "\n";
      // RGB-KinFu currently disabled for now - problems with color in KinFu apparently
      // but this constructor might not  be right either: not sure about step size
      integrate_colors_=false;
      PtrStepSz<const KinfuTracker::PixelRGB> rgb24_sim = PtrStepSz<const KinfuTracker::PixelRGB>(height, width, color_buf_, width);
      tic_toc.push_back (getTime ());
      
      if (1==0){ // live capture - probably doesnt work anymore, left in here for comparison:
	bool has_frame = evaluation_ptr_ ? evaluation_ptr_->grab(i, depth) : capture_.grab (depth, rgb24);      
	if (!has_frame)
	{
	  cout << "Can't grab" << endl;
	  break;
	}

	depth_device_.upload (depth.data, depth.step, depth.rows, depth.cols);
	if (integrate_colors_)
	    image_view_.colors_device_.upload (rgb24.data, rgb24.step, rgb24.rows, rgb24.cols);
	
	{
	  SampledScopeTime fps(time_ms, i);
	
	  //run kinfu algorithm
	  if (integrate_colors_)
	    has_image = kinfu_ (depth_device_, image_view_.colors_device_);
	  else
	    has_image = kinfu_ (depth_device_);                  
	}
      }else{ //simulate:

	cout << " color: " << integrate_colors_ << "\n"; // integrate_colors_ seems to be zero
	depth_device_.upload (depth_sim.data, depth_sim.step, depth_sim.rows, depth_sim.cols);
	if (integrate_colors_){
	    image_view_.colors_device_.upload (rgb24_sim.data, rgb24_sim.step, rgb24_sim.rows, rgb24_sim.cols);
	}
	
	tic_toc.push_back (getTime ());
	
	{
	  SampledScopeTime fps(time_ms, i);
	  //run kinfu algorithm
	  if (integrate_colors_)
	    has_image = kinfu_ (depth_device_, image_view_.colors_device_);
	  else
	    has_image = kinfu_ (depth_device_);                  
	}
	
      }
      
      tic_toc.push_back (getTime ());
      
      Eigen::Affine3f k_aff = kinfu_.getCameraPose();
      Eigen::Matrix3f k_m;
      k_m =k_aff.rotation();
      Eigen::Quaternionf k_r;
      k_r = Eigen::Quaternionf(k_m);
      std::stringstream ss_k;      
      ss_k << k_aff(0,3) <<", "<< k_aff(1,3)<<", "<< k_aff(2,3)<<" | " 
          <<k_r.w()<<", "<<k_r.x()<<", "<<k_r.y()<<", "<<k_r.z() ;       
      std::cout << i << ": " << ss_k.str() << " pose_kinect\n";          
      
      // Everything below this is Visualization or I/O:
      if (i >n_pose_stop){
	int pause;
	cout << "Enter a key to write Mesh file\n";
	cin >> pause;

	scene_cloud_view_.showMesh(kinfu_, integrate_colors_);
	writeMesh(KinFuApp::MESH_VTK);       
	// writeMesh(KinFuApp::MESH_PLY);
      
	if (scan_)
	{
	  scan_ = false;
	  scene_cloud_view_.show (kinfu_, integrate_colors_);
			
	  if (scan_volume_)
	  {
	    // download tsdf volume
	    {
	      ScopeTimeT time ("tsdf volume download");
	      cout << "Downloading TSDF volume from device ... " << flush;
	      // kinfu_.volume().downloadTsdfAndWeighs (tsdf_volume_.volumeWriteable (), tsdf_volume_.weightsWriteable ());
              kinfu_.volume ().downloadTsdfAndWeighsLocal ();
	      // tsdf_volume_.setHeader (Eigen::Vector3i (pcl::device::VOLUME_X, pcl::device::VOLUME_Y, pcl::device::VOLUME_Z), kinfu_.volume().getSize ());
              kinfu_.volume ().setHeader (Eigen::Vector3i (pcl::device::VOLUME_X, pcl::device::VOLUME_Y, pcl::device::VOLUME_Z), kinfu_.volume().getSize ());
	      // cout << "done [" << tsdf_volume_.size () << " voxels]" << endl << endl;
              cout << "done [" << kinfu_.volume ().size () << " voxels]" << endl << endl;
	    }
	    {
	      ScopeTimeT time ("converting");
	      cout << "Converting volume to TSDF cloud ... " << flush;
	      // tsdf_volume_.convertToTsdfCloud (tsdf_cloud_ptr_);
              kinfu_.volume ().convertToTsdfCloud (tsdf_cloud_ptr_);
	      cout << "done [" << tsdf_cloud_ptr_->size () << " points]" << endl << endl;
	    }
	  }
	  else
	    cout << "[!] tsdf volume download is disabled" << endl << endl;
	}

	if (scan_mesh_)
	{
	    scan_mesh_ = false;
	    scene_cloud_view_.showMesh(kinfu_, integrate_colors_);
	}
	
	if (has_image)
	{
	  Eigen::Affine3f viewer_pose = getViewerPose(scene_cloud_view_.cloud_viewer_);
//	  image_view_.showScene (kinfu_, rgb24, registration_, independent_camera_ ? &viewer_pose : 0);
	  image_view_.showScene (kinfu_, rgb24_sim, registration_, independent_camera_ ? &viewer_pose : 0);
	}

	if (current_frame_cloud_view_)
	  current_frame_cloud_view_->show (kinfu_);
	
	image_view_.showDepth (depth_sim);
	//image_view_.showDepth (depth);
	// image_view_.showGeneratedDepth(kinfu_, kinfu_.getCameraPose());
    
	if (!independent_camera_)
	  setViewerPose (scene_cloud_view_.cloud_viewer_, kinfu_.getCameraPose());
	
	scene_cloud_view_.cloud_viewer_.spinOnce (3);    
	
	// As of April 2012, entering a key will end this program...
	cout << "Paused after view\n";
	cin >> pause;      
      }
      double elapsed = (getTime() -tic_main);
      cout << elapsed << " sec elapsed [" << (1/elapsed) << "]\n";          
      tic_toc.push_back (getTime ());
      display_tic_toc (tic_toc, "kinfu_app_sim");
    }
예제 #2
0
int
main (int argc, char** argv)
{
  int width = 640;
  int height = 480;

  window_width_ = width * 2;
  window_height_ = height * 2;

  int cols = 30;
  int rows = 30;
  int col_width = 20;
  int row_height = 15;
  
  print_info ("Range likelihood performance tests using pcl::simulation. For more information, use: %s -h\n", argv[0]);

  if (argc < 2)
  {
    printHelp (argc, argv);
    return (-1);
  }  
  
  for (int i = 0; i < 2048; ++i)
  {
    float v = static_cast<float> (i / 2048.0);
    v = powf(v, 3)* 6;
    t_gamma[i] = static_cast<uint16_t> (v*6*256);
  }  

  glutInit (&argc, argv);
  glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGB);
  glutInitWindowPosition (10, 10);
  glutInitWindowSize (window_width_, window_height_);
  glutCreateWindow ("OpenGL range likelihood");

  GLenum err = glewInit ();
  if (GLEW_OK != err)
  {
    std::cerr << "Error: " << glewGetErrorString (err) << std::endl;
    exit (-1);
  }

  std::cout << "Status: Using GLEW " << glewGetString (GLEW_VERSION) << std::endl;

  if (glewIsSupported ("GL_VERSION_2_0"))
    std::cout << "OpenGL 2.0 supported" << std::endl;
  else
  {
    std::cerr << "Error: OpenGL 2.0 not supported" << std::endl;
    exit (1);
  }

  std::cout << "GL_MAX_VIEWPORTS: " << GL_MAX_VIEWPORTS << std::endl;

  camera_ = Camera::Ptr (new Camera ());
  scene_ = Scene::Ptr (new Scene ());

  range_likelihood_visualization_ = RangeLikelihood::Ptr (new RangeLikelihood (1, 1, height, width, scene_));
  range_likelihood_ = RangeLikelihood::Ptr (new RangeLikelihood (rows, cols, row_height, col_width, scene_));

  // Actually corresponds to default parameters:
  range_likelihood_visualization_->setCameraIntrinsicsParameters (
      640, 480, 576.09757860f, 576.09757860f, 321.06398107f, 242.97676897f);
  range_likelihood_visualization_->setComputeOnCPU (false);
  range_likelihood_visualization_->setSumOnCPU (false);
  range_likelihood_visualization_->setUseColor (true);

  range_likelihood_->setCameraIntrinsicsParameters (
      640, 480, 576.09757860f, 576.09757860f, 321.06398107f, 242.97676897f);
  range_likelihood_->setComputeOnCPU (false);
  range_likelihood_->setSumOnCPU (false);
  range_likelihood_->setUseColor (false);

  textured_quad_ = TexturedQuad::Ptr (new TexturedQuad (range_likelihood_->getWidth (),
                                                        range_likelihood_->getHeight ()));

  initialize (argc, argv);

  glutDisplayFunc (display);
  glutIdleFunc (display);
  glutKeyboardFunc (on_keyboard);
  glutMainLoop ();
}
예제 #3
0
int
main (int argc, char** argv)
{
  srand (time (0));

  print_info ("The viewer window provides interactive commands; for help, press 'h' or 'H' from within the window.\n");

  if (argc < 2)
  {
    printHelp (argc, argv);
    return (-1);
  }

  // Command line parsing
  double bcolor[3] = {0, 0, 0};
  pcl::console::parse_3x_arguments (argc, argv, "-bc", bcolor[0], bcolor[1], bcolor[2]);

  std::vector<double> fcolor_r, fcolor_b, fcolor_g;
  bool fcolorparam = pcl::console::parse_multiple_3x_arguments (argc, argv, "-fc", fcolor_r, fcolor_g, fcolor_b);

  std::vector<int> psize;
  pcl::console::parse_multiple_arguments (argc, argv, "-ps", psize);

  std::vector<double> opaque;
  pcl::console::parse_multiple_arguments (argc, argv, "-opaque", opaque);

  int mview = 0;
  pcl::console::parse_argument (argc, argv, "-multiview", mview);

  int normals = 0;
  pcl::console::parse_argument (argc, argv, "-normals", normals);
  double normals_scale = NORMALS_SCALE;
  pcl::console::parse_argument (argc, argv, "-normals_scale", normals_scale);

  int pc = 0;
  pcl::console::parse_argument (argc, argv, "-pc", pc);
  double pc_scale = PC_SCALE;
  pcl::console::parse_argument (argc, argv, "-pc_scale", pc_scale);

  // Parse the command line arguments for .pcd files
  std::vector<int> p_file_indices   = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
  std::vector<int> vtk_file_indices = pcl::console::parse_file_extension_argument (argc, argv, ".vtk");

  if (p_file_indices.size () == 0 && vtk_file_indices.size () == 0)
  {
    print_error ("No .PCD or .VTK file given. Nothing to visualize.\n");
    return (-1);
  }

  // Multiview enabled?
  int y_s = 0, x_s = 0;
  double x_step = 0, y_step = 0;
  if (mview)
  {
    print_highlight ("Multi-viewport rendering enabled.\n");

    if (p_file_indices.size () != 0)
    {
      y_s = static_cast<int>(floor (sqrt (static_cast<float>(p_file_indices.size ()))));
      x_s = y_s + static_cast<int>(ceil ((p_file_indices.size () / static_cast<double>(y_s)) - y_s));
      print_highlight ("Preparing to load "); print_value ("%d", p_file_indices.size ());
    }
    else if (vtk_file_indices.size () != 0)
    {
      y_s = static_cast<int>(floor (sqrt (static_cast<float>(vtk_file_indices.size ()))));
      x_s = y_s + static_cast<int>(ceil ((vtk_file_indices.size () / static_cast<double>(y_s)) - y_s));
      print_highlight ("Preparing to load "); print_value ("%d", vtk_file_indices.size ());
    }

    x_step = static_cast<double>(1.0 / static_cast<double>(x_s));
    y_step = static_cast<double>(1.0 / static_cast<double>(y_s));
    print_info (" files ("); print_value ("%d", x_s);    print_info ("x"); print_value ("%d", y_s);
    print_info (" / ");      print_value ("%f", x_step); print_info ("x"); print_value ("%f", y_step);
    print_info (")\n");
  }

  // Fix invalid multiple arguments
  if (psize.size () != p_file_indices.size () && psize.size () > 0)
    for (size_t i = psize.size (); i < p_file_indices.size (); ++i)
      psize.push_back (1);
  if (opaque.size () != p_file_indices.size () && opaque.size () > 0)
    for (size_t i = opaque.size (); i < p_file_indices.size (); ++i)
      opaque.push_back (1.0);

  // Create the PCLVisualizer object
  boost::shared_ptr<pcl::visualization::PCLHistogramVisualizer> ph;

  // Using min_p, max_p to set the global Y min/max range for the histogram
  float min_p = FLT_MAX; float max_p = -FLT_MAX;

  int k = 0, l = 0, viewport = 0;
  // Load the data files
  pcl::PCDReader pcd;
  pcl::console::TicToc tt;
  ColorHandlerPtr color_handler;
  GeometryHandlerPtr geometry_handler;

  // Go through VTK files
  for (size_t i = 0; i < vtk_file_indices.size (); ++i)
  {
    // Load file
    tt.tic ();
    print_highlight (stderr, "Loading "); print_value (stderr, "%s ", argv[vtk_file_indices.at (i)]);
    vtkPolyDataReader* reader = vtkPolyDataReader::New ();
    reader->SetFileName (argv[vtk_file_indices.at (i)]);
    reader->Update ();
    vtkSmartPointer<vtkPolyData> polydata = reader->GetOutput ();
    if (!polydata)
      return (-1);
    print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", polydata->GetNumberOfPoints ()); print_info (" points]\n");

    // Create the PCLVisualizer object here on the first encountered XYZ file
    if (!p)
      p.reset (new pcl::visualization::PCLVisualizer (argc, argv, "PCD viewer"));

    // Multiview enabled?
    if (mview)
    {
      p->createViewPort (k * x_step, l * y_step, (k + 1) * x_step, (l + 1) * y_step, viewport);
      k++;
      if (k >= x_s)
      {
        k = 0;
        l++;
      }
    }

    // Add as actor
    std::stringstream cloud_name ("vtk-");
    cloud_name << argv[vtk_file_indices.at (i)] << "-" << i;
    p->addModelFromPolyData (polydata, cloud_name.str (), viewport);

    // Change the shape rendered color
    if (fcolorparam && fcolor_r.size () > i && fcolor_g.size () > i && fcolor_b.size () > i)
      p->setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, fcolor_r[i], fcolor_g[i], fcolor_b[i], cloud_name.str ());

    // Change the shape rendered point size
    if (psize.size () > 0)
      p->setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, psize.at (i), cloud_name.str ());

    // Change the shape rendered opacity
    if (opaque.size () > 0)
      p->setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY, opaque.at (i), cloud_name.str ());
  }

  sensor_msgs::PointCloud2::Ptr cloud;
  // Go through PCD files
  for (size_t i = 0; i < p_file_indices.size (); ++i)
  {
    cloud.reset (new sensor_msgs::PointCloud2);
    Eigen::Vector4f origin;
    Eigen::Quaternionf orientation;
    int version;

    print_highlight (stderr, "Loading "); print_value (stderr, "%s ", argv[p_file_indices.at (i)]);

    tt.tic ();
    if (pcd.read (argv[p_file_indices.at (i)], *cloud, origin, orientation, version) < 0)
      return (-1);

    std::stringstream cloud_name;

    // ---[ Special check for 1-point multi-dimension histograms
    if (cloud->fields.size () == 1 && isMultiDimensionalFeatureField (cloud->fields[0]))
    {
      cloud_name << argv[p_file_indices.at (i)];

      if (!ph)
        ph.reset (new pcl::visualization::PCLHistogramVisualizer);
      print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud->fields[0].count); print_info (" points]\n");

      pcl::getMinMax (*cloud, 0, cloud->fields[0].name, min_p, max_p);
      ph->addFeatureHistogram (*cloud, cloud->fields[0].name, cloud_name.str ());
      continue;
    }

    cloud_name << argv[p_file_indices.at (i)] << "-" << i;

    // Create the PCLVisualizer object here on the first encountered XYZ file
    if (!p)
    {
      p.reset (new pcl::visualization::PCLVisualizer (argc, argv, "PCD viewer"));
      p->registerPointPickingCallback (&pp_callback, (void*)&cloud);
      Eigen::Matrix3f rotation;
      rotation = orientation;
      p->setCameraPosition (origin [0]                  , origin [1]                  , origin [2],
                        origin [0] + rotation (0, 2), origin [1] + rotation (1, 2), origin [2] + rotation (2, 2),
                                     rotation (0, 1),              rotation (1, 1),              rotation (2, 1));
    }

    // Multiview enabled?
    if (mview)
    {
      p->createViewPort (k * x_step, l * y_step, (k + 1) * x_step, (l + 1) * y_step, viewport);
      k++;
      if (k >= x_s)
      {
        k = 0;
        l++;
      }
    }

    if (cloud->width * cloud->height == 0)
    {
      print_error ("[error: no points found!]\n");
      return (-1);
    }
    print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", (int)cloud->width * cloud->height); print_info (" points]\n");
    print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (*cloud).c_str ());

    // If no color was given, get random colors
    if (fcolorparam)
    {
      if (fcolor_r.size () > i && fcolor_g.size () > i && fcolor_b.size () > i)
        color_handler.reset (new pcl::visualization::PointCloudColorHandlerCustom<sensor_msgs::PointCloud2> (cloud, fcolor_r[i], fcolor_g[i], fcolor_b[i]));
      else
        color_handler.reset (new pcl::visualization::PointCloudColorHandlerRandom<sensor_msgs::PointCloud2> (cloud));
    }
    else
      color_handler.reset (new pcl::visualization::PointCloudColorHandlerRandom<sensor_msgs::PointCloud2> (cloud));

    // Add the dataset with a XYZ and a random handler
    geometry_handler.reset (new pcl::visualization::PointCloudGeometryHandlerXYZ<sensor_msgs::PointCloud2> (cloud));
    // Add the cloud to the renderer
    //p->addPointCloud<pcl::PointXYZ> (cloud_xyz, geometry_handler, color_handler, cloud_name.str (), viewport);
    p->addPointCloud (cloud, geometry_handler, color_handler, origin, orientation, cloud_name.str (), viewport);

    // If normal lines are enabled
    if (normals != 0)
    {
      int normal_idx = pcl::getFieldIndex (*cloud, "normal_x");
      if (normal_idx == -1)
      {
        print_error ("Normal information requested but not available.\n");
        continue;
        //return (-1);
      }
      //
      // Convert from blob to pcl::PointCloud
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz (new pcl::PointCloud<pcl::PointXYZ>);
      pcl::fromROSMsg (*cloud, *cloud_xyz);
      cloud_xyz->sensor_origin_ = origin;
      cloud_xyz->sensor_orientation_ = orientation;

      pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
      pcl::fromROSMsg (*cloud, *cloud_normals);
      std::stringstream cloud_name_normals;
      cloud_name_normals << argv[p_file_indices.at (i)] << "-" << i << "-normals";
      p->addPointCloudNormals<pcl::PointXYZ, pcl::Normal> (cloud_xyz, cloud_normals, normals, normals_scale, cloud_name_normals.str (), viewport);
    }

    // If principal curvature lines are enabled
    if (pc != 0)
    {
      if (normals == 0)
        normals = pc;

      int normal_idx = pcl::getFieldIndex (*cloud, "normal_x");
      if (normal_idx == -1)
      {
        print_error ("Normal information requested but not available.\n");
        continue;
        //return (-1);
      }
      int pc_idx = pcl::getFieldIndex (*cloud, "principal_curvature_x");
      if (pc_idx == -1)
      {
        print_error ("Principal Curvature information requested but not available.\n");
        continue;
        //return (-1);
      }
      //
      // Convert from blob to pcl::PointCloud
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz (new pcl::PointCloud<pcl::PointXYZ>);
      pcl::fromROSMsg (*cloud, *cloud_xyz);
      cloud_xyz->sensor_origin_ = origin;
      cloud_xyz->sensor_orientation_ = orientation;
      pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
      pcl::fromROSMsg (*cloud, *cloud_normals);
      pcl::PointCloud<pcl::PrincipalCurvatures>::Ptr cloud_pc (new pcl::PointCloud<pcl::PrincipalCurvatures>);
      pcl::fromROSMsg (*cloud, *cloud_pc);
      std::stringstream cloud_name_normals_pc;
      cloud_name_normals_pc << argv[p_file_indices.at (i)] << "-" << i << "-normals";
      int factor = (std::min)(normals, pc);
      p->addPointCloudNormals<pcl::PointXYZ, pcl::Normal> (cloud_xyz, cloud_normals, factor, normals_scale, cloud_name_normals_pc.str (), viewport);
      p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, cloud_name_normals_pc.str ());
      p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 3, cloud_name_normals_pc.str ());
      cloud_name_normals_pc << "-pc";
      p->addPointCloudPrincipalCurvatures (cloud_xyz, cloud_normals, cloud_pc, factor, pc_scale, cloud_name_normals_pc.str (), viewport);
      p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 3, cloud_name_normals_pc.str ());
    }

    // Add every dimension as a possible color
    if (!fcolorparam)
    {
      for (size_t f = 0; f < cloud->fields.size (); ++f)
      {
        if (cloud->fields[f].name == "rgb" || cloud->fields[f].name == "rgba")
          color_handler.reset (new pcl::visualization::PointCloudColorHandlerRGBField<sensor_msgs::PointCloud2> (cloud));
        else
        {
          if (!isValidFieldName (cloud->fields[f].name))
            continue;
          color_handler.reset (new pcl::visualization::PointCloudColorHandlerGenericField<sensor_msgs::PointCloud2> (cloud, cloud->fields[f].name));
        }
        // Add the cloud to the renderer
        //p->addPointCloud<pcl::PointXYZ> (cloud_xyz, color_handler, cloud_name.str (), viewport);
        p->addPointCloud (cloud, color_handler, origin, orientation, cloud_name.str (), viewport);
      }
    }
    // Additionally, add normals as a handler
    geometry_handler.reset (new pcl::visualization::PointCloudGeometryHandlerSurfaceNormal<sensor_msgs::PointCloud2> (cloud));
    if (geometry_handler->isCapable ())
      //p->addPointCloud<pcl::PointXYZ> (cloud_xyz, geometry_handler, cloud_name.str (), viewport);
      p->addPointCloud (cloud, geometry_handler, origin, orientation, cloud_name.str (), viewport);

    // Set immediate mode rendering ON
    p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_IMMEDIATE_RENDERING, 1.0, cloud_name.str ());

    // Change the cloud rendered point size
    if (psize.size () > 0)
      p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, psize.at (i), cloud_name.str ());

    // Change the cloud rendered opacity
    if (opaque.size () > 0)
      p->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY, opaque.at (i), cloud_name.str ());

    // Reset camera viewpoint to center of cloud if camera parameters were not passed manually and this is the first loaded cloud
    //if (i == 0 && !p->cameraParamsSet ())
     // p->resetCameraViewpoint (cloud_name.str ());
  }
  
  
  ////////////////////////////////////////////////////////////////
  // Key binding for saving simulated point cloud:
  if (p)
    p->registerKeyboardCallback(simulate_callback, (void*)&p);
  
  
  
  
  int width = 640;
  int height = 480;
  window_width_ = width * 2;
  window_height_ = height * 2;

  print_info ("Manually generate a simulated RGB-D point cloud using pcl::simulation. For more information, use: %s -h\n", argv[0]);

  for (int i=0; i<2048; i++)
  {
    float v = i/2048.0;
    v = powf(v, 3)* 6;
    t_gamma[i] = v*6*256;
  }    

  GLenum err = glewInit ();
  if (GLEW_OK != err)
  {
    std::cerr << "Error: " << glewGetErrorString (err) << std::endl;
    exit (-1);
  }

  std::cout << "Status: Using GLEW " << glewGetString (GLEW_VERSION) << std::endl;

  if (glewIsSupported ("GL_VERSION_2_0"))
    std::cout << "OpenGL 2.0 supported" << std::endl;
  else
  {
    std::cerr << "Error: OpenGL 2.0 not supported" << std::endl;
    exit(1);
  }


  camera_ = Camera::Ptr (new Camera ());
  scene_ = Scene::Ptr (new Scene ());

  range_likelihood_ = RangeLikelihood::Ptr (new RangeLikelihood(1, 1, height, width, scene_));

  // range_likelihood_ = RangeLikelihood::Ptr(new RangeLikelihood(10, 10, 96, 96, scene_));
  // range_likelihood_ = RangeLikelihood::Ptr(new RangeLikelihood(1, 1, 480, 640, scene_));

  // Actually corresponds to default parameters:
  range_likelihood_->setCameraIntrinsicsParameters (640,480, 576.09757860,
            576.09757860, 321.06398107, 242.97676897);
  range_likelihood_->setComputeOnCPU (false);
  range_likelihood_->setSumOnCPU (true);
  range_likelihood_->setUseColor (true);
  initialize (argc, argv); 

  if (p)
    p->setBackgroundColor (bcolor[0], bcolor[1], bcolor[2]);
  // Read axes settings
  double axes  = 0.0;
  pcl::console::parse_argument (argc, argv, "-ax", axes);
  if (axes != 0.0 && p)
  {
    double ax_x = 0.0, ax_y = 0.0, ax_z = 0.0;
    pcl::console::parse_3x_arguments (argc, argv, "-ax_pos", ax_x, ax_y, ax_z, false);
    // Draw XYZ axes if command-line enabled
    p->addCoordinateSystem (axes, ax_x, ax_y, ax_z);
  }

  // Clean up the memory used by the binary blob
  // Note: avoid resetting the cloud, otherwise the PointPicking callback will fail
  //cloud.reset ();

  if (ph)
  {
    print_highlight ("Setting the global Y range for all histograms to: "); print_value ("%f -> %f\n", min_p, max_p);
    ph->setGlobalYRange (min_p, max_p);
    ph->updateWindowPositions ();
    if (p)
      p->spin ();
    else
      ph->spin ();
  }
  else if (p)
    p->spin ();
}
예제 #4
0
int
main (int argc, char** argv)
{
  int width = 640;
  int height = 480;

  window_width_ = width * 2;
  window_height_ = height * 2;

  print_info ("Manually generate a simulated RGB-D point cloud using pcl::simulation. For more information, use: %s -h\n", argv[0]);

  if (argc < 2)
  {
    printHelp (argc, argv);
    return (-1);
  }  
  
  int i;
  for (i=0; i<2048; i++)
  {
    float v = i/2048.0;
    v = powf(v, 3)* 6;
    t_gamma[i] = v*6*256;
  }  

  glutInit (&argc, argv);
  glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGB);// was GLUT_RGBA
  glutInitWindowPosition (10, 10);
  glutInitWindowSize (window_width_, window_height_);
  glutCreateWindow ("OpenGL range likelihood");

  GLenum err = glewInit ();
  if (GLEW_OK != err)
  {
    std::cerr << "Error: " << glewGetErrorString (err) << std::endl;
    exit (-1);
  }

  std::cout << "Status: Using GLEW " << glewGetString (GLEW_VERSION) << std::endl;

  if (glewIsSupported ("GL_VERSION_2_0"))
    std::cout << "OpenGL 2.0 supported" << std::endl;
  else
  {
    std::cerr << "Error: OpenGL 2.0 not supported" << std::endl;
    exit(1);
  }
  std::cout << "GL_MAX_VIEWPORTS: " << GL_MAX_VIEWPORTS << std::endl;

  camera_ = Camera::Ptr (new Camera ());
  scene_ = Scene::Ptr (new Scene ());

  //range_likelihood_ = RangeLikelihoodGLSL::Ptr(new RangeLikelihoodGLSL(1, 1, height, width, scene_, 0));

  range_likelihood_ = RangeLikelihood::Ptr (new RangeLikelihood (2, 2, height/2, width/2, scene_));
  // range_likelihood_ = RangeLikelihood::Ptr(new RangeLikelihood(10, 10, 96, 96, scene_));
  // range_likelihood_ = RangeLikelihood::Ptr(new RangeLikelihood(1, 1, 480, 640, scene_));

  // Actually corresponds to default parameters:
  range_likelihood_->setCameraIntrinsicsParameters (640,480, 576.09757860,
            576.09757860, 321.06398107, 242.97676897);
  range_likelihood_->setComputeOnCPU (false);
  range_likelihood_->setSumOnCPU (true);
  range_likelihood_->setUseColor (true);
  
  initialize (argc, argv);

  glutReshapeFunc (on_reshape);
  glutDisplayFunc (display);
  glutIdleFunc (display);
  glutKeyboardFunc (on_keyboard);
  glutMouseFunc (on_mouse);
  glutMotionFunc (on_motion);
  glutPassiveMotionFunc (on_passive_motion);
  glutEntryFunc (on_entry);
  glutMainLoop ();

  return 0;
}