//' Construct a copula using uniform sampling from the unit simplex //' //' Given two families of parallel hyperplanes intersecting the canonical simplex, this function uniformly samples from the canonical simplex and construct an approximation of the bivariate probability distribution, called copula. //' //' @param h1 A \eqn{d}-dimensional vector that describes the direction of the first family of parallel hyperplanes. //' @param h2 A \eqn{d}-dimensional vector that describes the direction of the second family of parallel hyperplanes. //' @param numSlices The number of the slices for the copula. Default value is 100. //' @param N The number of points to sample. Default value is \eqn{4\cdot 10^6}. //' //' @references \cite{L. Cales, A. Chalkis, I.Z. Emiris, V. Fisikopoulos, //' \dQuote{Practical volume computation of structured convex bodies, and an application to modeling portfolio dependencies and financial crises,} \emph{Proc. of Symposium on Computational Geometry, Budapest, Hungary,} 2018.} //' //' @return A \eqn{numSlices\times numSlices} numerical matrix that corresponds to a copula. //' @examples //' # compute a copula for two random families of parallel hyperplanes //' h1 = runif(n = 10, min = 1, max = 1000) //' h1 = h1 / 1000 //' h2=runif(n = 10, min = 1, max = 1000) //' h2 = h2 / 1000 //' cop = copula1(h1=h1, h2=h2, numSlices = 10, N = 100000) //' @export // [[Rcpp::export]] Rcpp::NumericMatrix copula1 (Rcpp::NumericVector h1, Rcpp::NumericVector h2, Rcpp::Nullable<unsigned int> numSlices, Rcpp::Nullable<unsigned int> N){ typedef double NT; typedef Cartesian<NT> Kernel; typedef typename Kernel::Point Point; typedef boost::mt19937 RNGType; unsigned int num_slices = 100, numpoints = 4000000; if (numSlices.isNotNull()) { num_slices = Rcpp::as<unsigned int>(numSlices); } if (N.isNotNull()) { numpoints = Rcpp::as<unsigned int>(N); } Rcpp::NumericMatrix copula(num_slices, num_slices); std::vector<std::vector<NT> > StdCopula; unsigned int dim = h1.size(), i, j; std::vector<NT> hyp1 = Rcpp::as<std::vector<NT> >(h1); std::vector<NT> hyp2 = Rcpp::as<std::vector<NT> >(h2); StdCopula = twoParHypFam<Point, RNGType >(dim, numpoints, num_slices, hyp1, hyp2); for(i=0; i<num_slices; i++) { for(j=0; j<num_slices; j++){ copula(i,j) = StdCopula[i][j]; } } return copula; }
void initAlias(const distancetype* posWeights, const distancetype* negWeights, Rcpp::Nullable<Rcpp::NumericVector> seed) { negAlias.initialize(negWeights); posAlias.initialize(posWeights); if (seed.isNotNull()) { #ifdef _OPENMP storedThreads = omp_get_max_threads(); omp_set_num_threads(1); #endif vertexidxtype innerSeed = Rcpp::NumericVector(seed)[0]; innerSeed = negAlias.initRandom(innerSeed); posAlias.initRandom(innerSeed); } else { negAlias.initRandom(); posAlias.initRandom(); } }
// [[Rcpp::export]] Rcpp::List americanOptionEngine(std::string type, double underlying, double strike, double dividendYield, double riskFreeRate, double maturity, double volatility, int timeSteps, int gridPoints, std::string engine, Rcpp::Nullable<Rcpp::NumericVector> discreteDividends, Rcpp::Nullable<Rcpp::NumericVector> discreteDividendsTimeUntil) { #ifdef QL_HIGH_RESOLUTION_DATE // in minutes boost::posix_time::time_duration length = boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)); #else int length = int(maturity * 360 + 0.5); // FIXME: this could be better #endif QuantLib::Option::Type optionType = getOptionType(type); // new framework as per QuantLib 0.3.5, updated for 0.3.7 // updated again for 0.9.0, see eg test-suite/americanoption.cpp QuantLib::Date today = QuantLib::Date::todaysDate(); QuantLib::Settings::instance().evaluationDate() = today; QuantLib::DayCounter dc = QuantLib::Actual360(); boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote(underlying)); boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote(dividendYield)); boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today,qRate,dc); boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote(riskFreeRate)); boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today,rRate,dc); boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote(volatility)); boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc); bool withDividends = discreteDividends.isNotNull() && discreteDividendsTimeUntil.isNotNull(); #ifdef QL_HIGH_RESOLUTION_DATE QuantLib::Date exDate(today.dateTime() + length); #else QuantLib::Date exDate = today + length; #endif boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike)); boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::AmericanExercise(today, exDate)); boost::shared_ptr<QuantLib::BlackScholesMertonProcess> stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot), QuantLib::Handle<QuantLib::YieldTermStructure>(qTS), QuantLib::Handle<QuantLib::YieldTermStructure>(rTS), QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS))); if (withDividends) { Rcpp::NumericVector divvalues(discreteDividends), divtimes(discreteDividendsTimeUntil); int n = divvalues.size(); std::vector<QuantLib::Date> discDivDates(n); std::vector<double> discDividends(n); for (int i = 0; i < n; i++) { #ifdef QL_HIGH_RESOLUTION_DATE boost::posix_time::time_duration discreteDividendLength = boost::posix_time::minutes(boost::uint64_t(divtimes[i] * 360 * 24 * 60)); discDivDates[i] = QuantLib::Date(today.dateTime() + discreteDividendLength); #else discDivDates[i] = today + int(divtimes[i] * 360 + 0.5); #endif discDividends[i] = divvalues[i]; } QuantLib::DividendVanillaOption option(payoff, exercise, discDivDates, discDividends); if (engine=="BaroneAdesiWhaley") { Rcpp::warning("Discrete dividends, engine switched to CrankNicolson"); engine = "CrankNicolson"; } if (engine=="CrankNicolson") { // FDDividendAmericanEngine only works with CrankNicolson // suggestion by Bryan Lewis: use CrankNicolson for greeks boost::shared_ptr<QuantLib::PricingEngine> fdcnengine(new QuantLib::FDDividendAmericanEngine<QuantLib::CrankNicolson>(stochProcess, timeSteps, gridPoints)); option.setPricingEngine(fdcnengine); return Rcpp::List::create(Rcpp::Named("value") = option.NPV(), Rcpp::Named("delta") = option.delta(), Rcpp::Named("gamma") = option.gamma(), Rcpp::Named("vega") = R_NaReal, Rcpp::Named("theta") = R_NaReal, Rcpp::Named("rho") = R_NaReal, Rcpp::Named("divRho") = R_NaReal); } else { throw std::range_error("Unknown engine " + engine); } } else { QuantLib::VanillaOption option(payoff, exercise); if (engine=="BaroneAdesiWhaley") { // new from 0.3.7 BaroneAdesiWhaley boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::BaroneAdesiWhaleyApproximationEngine(stochProcess)); option.setPricingEngine(engine); return Rcpp::List::create(Rcpp::Named("value") = option.NPV(), Rcpp::Named("delta") = R_NaReal, Rcpp::Named("gamma") = R_NaReal, Rcpp::Named("vega") = R_NaReal, Rcpp::Named("theta") = R_NaReal, Rcpp::Named("rho") = R_NaReal, Rcpp::Named("divRho") = R_NaReal); } else if (engine=="CrankNicolson") { // suggestion by Bryan Lewis: use CrankNicolson for greeks boost::shared_ptr<QuantLib::PricingEngine> fdcnengine(new QuantLib::FDAmericanEngine<QuantLib::CrankNicolson>(stochProcess, timeSteps, gridPoints)); option.setPricingEngine(fdcnengine); return Rcpp::List::create(Rcpp::Named("value") = option.NPV(), Rcpp::Named("delta") = option.delta(), Rcpp::Named("gamma") = option.gamma(), Rcpp::Named("vega") = R_NaReal, Rcpp::Named("theta") = R_NaReal, Rcpp::Named("rho") = R_NaReal, Rcpp::Named("divRho") = R_NaReal); } else { throw std::range_error("Unknown engine " + engine); } } }
// [[Rcpp::export]] Rcpp::List europeanOptionEngine(std::string type, double underlying, double strike, double dividendYield, double riskFreeRate, double maturity, double volatility, Rcpp::Nullable<Rcpp::NumericVector> discreteDividends, Rcpp::Nullable<Rcpp::NumericVector> discreteDividendsTimeUntil) { #ifdef QL_HIGH_RESOLUTION_DATE // in minutes boost::posix_time::time_duration length = boost::posix_time::minutes(boost::uint64_t(maturity * 360 * 24 * 60)); #else int length = int(maturity*360 + 0.5); // FIXME: this could be better #endif QuantLib::Option::Type optionType = getOptionType(type); QuantLib::Date today = QuantLib::Date::todaysDate(); QuantLib::Settings::instance().evaluationDate() = today; // new framework as per QuantLib 0.3.5 QuantLib::DayCounter dc = QuantLib::Actual360(); boost::shared_ptr<QuantLib::SimpleQuote> spot(new QuantLib::SimpleQuote( underlying )); boost::shared_ptr<QuantLib::SimpleQuote> vol(new QuantLib::SimpleQuote( volatility )); boost::shared_ptr<QuantLib::BlackVolTermStructure> volTS = flatVol(today, vol, dc); boost::shared_ptr<QuantLib::SimpleQuote> qRate(new QuantLib::SimpleQuote( dividendYield )); boost::shared_ptr<QuantLib::YieldTermStructure> qTS = flatRate(today, qRate, dc); boost::shared_ptr<QuantLib::SimpleQuote> rRate(new QuantLib::SimpleQuote( riskFreeRate )); boost::shared_ptr<QuantLib::YieldTermStructure> rTS = flatRate(today, rRate, dc); bool withDividends = discreteDividends.isNotNull() && discreteDividendsTimeUntil.isNotNull(); #ifdef QL_HIGH_RESOLUTION_DATE QuantLib::Date exDate(today.dateTime() + length); #else QuantLib::Date exDate = today + length; #endif boost::shared_ptr<QuantLib::Exercise> exercise(new QuantLib::EuropeanExercise(exDate)); boost::shared_ptr<QuantLib::StrikedTypePayoff> payoff(new QuantLib::PlainVanillaPayoff(optionType, strike)); if (withDividends) { Rcpp::NumericVector divvalues(discreteDividends), divtimes(discreteDividendsTimeUntil); int n = divvalues.size(); std::vector<QuantLib::Date> discDivDates(n); std::vector<double> discDividends(n); for (int i = 0; i < n; i++) { #ifdef QL_HIGH_RESOLUTION_DATE boost::posix_time::time_duration discreteDividendLength = boost::posix_time::minutes(boost::uint64_t(divtimes[i] * 360 * 24 * 60)); discDivDates[i] = QuantLib::Date(today.dateTime() + discreteDividendLength); #else discDivDates[i] = today + int(divtimes[i] * 360 + 0.5); #endif discDividends[i] = divvalues[i]; } boost::shared_ptr<QuantLib::BlackScholesMertonProcess> stochProcess(new QuantLib::BlackScholesMertonProcess(QuantLib::Handle<QuantLib::Quote>(spot), QuantLib::Handle<QuantLib::YieldTermStructure>(qTS), QuantLib::Handle<QuantLib::YieldTermStructure>(rTS), QuantLib::Handle<QuantLib::BlackVolTermStructure>(volTS))); boost::shared_ptr<QuantLib::PricingEngine> engine(new QuantLib::AnalyticDividendEuropeanEngine(stochProcess)); QuantLib::DividendVanillaOption option(payoff, exercise, discDivDates, discDividends); option.setPricingEngine(engine); return Rcpp::List::create(Rcpp::Named("value") = option.NPV(), Rcpp::Named("delta") = option.delta(), Rcpp::Named("gamma") = option.gamma(), Rcpp::Named("vega") = option.vega(), Rcpp::Named("theta") = option.theta(), Rcpp::Named("rho") = option.rho(), Rcpp::Named("divRho") = R_NaReal); } else { boost::shared_ptr<QuantLib::VanillaOption> option = makeOption(payoff, exercise, spot, qTS, rTS, volTS); return Rcpp::List::create(Rcpp::Named("value") = option->NPV(), Rcpp::Named("delta") = option->delta(), Rcpp::Named("gamma") = option->gamma(), Rcpp::Named("vega") = option->vega(), Rcpp::Named("theta") = option->theta(), Rcpp::Named("rho") = option->rho(), Rcpp::Named("divRho") = option->dividendRho()); } }
//' Sample points from a convex Polytope (H-polytope, V-polytope or a zonotope) or use direct methods for uniform sampling from the unit or the canonical or an arbitrary \eqn{d}-dimensional simplex and the boundary or the interior of a \eqn{d}-dimensional hypersphere //' //' Sample N points with uniform or multidimensional spherical gaussian -centered in an internal point- target distribution. //' The \eqn{d}-dimensional unit simplex is the set of points \eqn{\vec{x}\in \R^d}, s.t.: \eqn{\sum_i x_i\leq 1}, \eqn{x_i\geq 0}. The \eqn{d}-dimensional canonical simplex is the set of points \eqn{\vec{x}\in \R^d}, s.t.: \eqn{\sum_i x_i = 1}, \eqn{x_i\geq 0}. //' //' @param P A convex polytope. It is an object from class (a) Hpolytope or (b) Vpolytope or (c) Zonotope. //' @param N The number of points that the function is going to sample from the convex polytope. The default value is \eqn{100}. //' @param distribution Optional. A string that declares the target distribution: a) \code{'uniform'} for the uniform distribution or b) \code{'gaussian'} for the multidimensional spherical distribution. The default target distribution is uniform. //' @param WalkType Optional. A string that declares the random walk method: a) \code{'CDHR'} for Coordinate Directions Hit-and-Run, b) \code{'RDHR'} for Random Directions Hit-and-Run or c) \code{'BW'} for Ball Walk. The default walk is \code{'CDHR'}. //' @param walk_step Optional. The number of the steps for the random walk. The default value is \eqn{\lfloor 10 + d/10\rfloor}, where \eqn{d} implies the dimension of the polytope. //' @param exact A boolean parameter. It should be used for the uniform sampling from the boundary or the interior of a hypersphere centered at the origin or from the unit or the canonical or an arbitrary simplex. The arbitrary simplex has to be given as a V-polytope. For the rest well known convex bodies the dimension has to be declared and the type of body as well as the radius of the hypersphere. //' @param body A string that declares the type of the body for the exact sampling: a) \code{'unit simplex'} for the unit simplex, b) \code{'canonical simplex'} for the canonical simplex, c) \code{'hypersphere'} for the boundary of a hypersphere centered at the origin, d) \code{'ball'} for the interior of a hypersphere centered at the origin. //' @param Parameters A list for the parameters of the methods: //' \itemize{ //' \item{\code{variance} }{ The variance of the multidimensional spherical gaussian. The default value is 1.} //' \item{\code{dimension} }{ An integer that declares the dimension when exact sampling is enabled for a simplex or a hypersphere.} //' \item{\code{radius} }{ The radius of the \eqn{d}-dimensional hypersphere. The default value is \eqn{1}.} //' \item{\code{BW_rad} }{ The radius for the ball walk.} //' } //' @param InnerPoint A \eqn{d}-dimensional numerical vector that defines a point in the interior of polytope P. //' //' @references \cite{R.Y. Rubinstein and B. Melamed, //' \dQuote{Modern simulation and modeling} \emph{ Wiley Series in Probability and Statistics,} 1998.} //' @references \cite{A Smith, Noah and W Tromble, Roy, //' \dQuote{Sampling Uniformly from the Unit Simplex,} \emph{ Center for Language and Speech Processing Johns Hopkins University,} 2004.} //' @references \cite{Art B. Owen, //' \dQuote{Monte Carlo theory, methods and examples,} \emph{ Copyright Art Owen,} 2009-2013.} //' //' @return A \eqn{d\times N} matrix that contains, column-wise, the sampled points from the convex polytope P. //' @examples //' # uniform distribution from the 3d unit cube in V-representation using ball walk //' P = GenCube(3, 'V') //' points = sample_points(P, WalkType = "BW", walk_step = 5) //' //' # gaussian distribution from the 2d unit simplex in H-representation with variance = 2 //' A = matrix(c(-1,0,0,-1,1,1), ncol=2, nrow=3, byrow=TRUE) //' b = c(0,0,1) //' P = Hpolytope$new(A,b) //' points = sample_points(P, distribution = "gaussian", Parameters = list("variance" = 2)) //' //' # uniform points from the boundary of a 10-dimensional hypersphere //' points = sample_points(exact = TRUE, body = "hypersphere", Parameters = list("dimension" = 10)) //' //' # 10000 uniform points from a 2-d arbitrary simplex //' V = matrix(c(2,3,-1,7,0,0),ncol = 2, nrow = 3, byrow = TRUE) //' P = Vpolytope$new(V) //' points = sample_points(P, N = 10000, exact = TRUE) //' @export // [[Rcpp::export]] Rcpp::NumericMatrix sample_points(Rcpp::Nullable<Rcpp::Reference> P = R_NilValue, Rcpp::Nullable<unsigned int> N = R_NilValue, Rcpp::Nullable<std::string> distribution = R_NilValue, Rcpp::Nullable<std::string> WalkType = R_NilValue, Rcpp::Nullable<unsigned int> walk_step = R_NilValue, Rcpp::Nullable<bool> exact = R_NilValue, Rcpp::Nullable<std::string> body = R_NilValue, Rcpp::Nullable<Rcpp::List> Parameters = R_NilValue, Rcpp::Nullable<Rcpp::NumericVector> InnerPoint = R_NilValue){ typedef double NT; typedef Cartesian<NT> Kernel; typedef typename Kernel::Point Point; typedef boost::mt19937 RNGType; typedef HPolytope <Point> Hpolytope; typedef VPolytope <Point, RNGType> Vpolytope; typedef Zonotope <Point> zonotope; typedef IntersectionOfVpoly<Vpolytope> InterVP; typedef Eigen::Matrix<NT,Eigen::Dynamic,1> VT; typedef Eigen::Matrix<NT,Eigen::Dynamic,Eigen::Dynamic> MT; Hpolytope HP; Vpolytope VP; zonotope ZP; InterVP VPcVP; int type, dim, numpoints; NT radius = 1.0, delta = -1.0; bool set_mean_point = false, cdhr = true, rdhr = false, ball_walk = false, gaussian = false; std::list<Point> randPoints; std::pair<Point, NT> InnerBall; if (!N.isNotNull()) { numpoints = 100; } else { numpoints = Rcpp::as<unsigned int>(N); } if (exact.isNotNull()) { if (P.isNotNull()) { type = Rcpp::as<Rcpp::Reference>(P).field("type"); dim = Rcpp::as<Rcpp::Reference>(P).field("dimension"); if (Rcpp::as<bool>(exact) && type==2) { if (Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")).rows() == Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")).cols()+1) { Vpolytope VP; VP.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")), VT::Ones(Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")).rows())); Sam_arb_simplex(VP, numpoints, randPoints); } else { throw Rcpp::exception("Not a simplex!"); } } else if (Rcpp::as<bool>(exact) && type!=2) { throw Rcpp::exception("Not a simplex in V-representation!"); } } else { if (!body.isNotNull()) { throw Rcpp::exception("Wrong input!"); } else if (!Rcpp::as<Rcpp::List>(Parameters).containsElementNamed("dimension")) { throw Rcpp::exception("Wrong input!"); } dim = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(Parameters)["dimension"]); if (Rcpp::as<Rcpp::List>(Parameters).containsElementNamed("radius")) { radius = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(Parameters)["radius"]); } if (Rcpp::as<std::string>(body).compare(std::string("hypersphere"))==0) { for (unsigned int k = 0; k < numpoints; ++k) { randPoints.push_back(get_point_on_Dsphere<RNGType , Point >(dim, radius)); } } else if (Rcpp::as<std::string>(body).compare(std::string("ball"))==0) { for (unsigned int k = 0; k < numpoints; ++k) { randPoints.push_back(get_point_in_Dsphere<RNGType , Point >(dim, radius)); } } else if (Rcpp::as<std::string>(body).compare(std::string("unit simplex"))==0) { Sam_Unit<NT, RNGType >(dim, numpoints, randPoints); } else if (Rcpp::as<std::string>(body).compare(std::string("canonical simplex"))==0) { Sam_Canon_Unit<NT, RNGType >(dim, numpoints, randPoints); } else { throw Rcpp::exception("Wrong input!"); } } } else if (P.isNotNull()) { type = Rcpp::as<Rcpp::Reference>(P).field("type"); dim = Rcpp::as<Rcpp::Reference>(P).field("dimension"); unsigned int walkL = 10+dim/10; Point MeanPoint; if (InnerPoint.isNotNull()) { if (Rcpp::as<Rcpp::NumericVector>(InnerPoint).size()!=dim) { Rcpp::warning("Internal Point has to lie in the same dimension as the polytope P"); } else { set_mean_point = true; MeanPoint = Point( dim , Rcpp::as<std::vector<NT> >(InnerPoint).begin(), Rcpp::as<std::vector<NT> >(InnerPoint).end() ); } } if(walk_step.isNotNull()) walkL = Rcpp::as<unsigned int>(walk_step); NT a = 0.5; if (Rcpp::as<Rcpp::List>(Parameters).containsElementNamed("variance")) a = 1.0 / (2.0 * Rcpp::as<NT>(Rcpp::as<Rcpp::List>(Parameters)["variance"])); if(!WalkType.isNotNull() || Rcpp::as<std::string>(WalkType).compare(std::string("CDHR"))==0){ cdhr = true; rdhr = false; ball_walk = false; } else if (Rcpp::as<std::string>(WalkType).compare(std::string("RDHR"))==0) { cdhr = false; rdhr = true; ball_walk = false; } else if (Rcpp::as<std::string>(WalkType).compare(std::string("BW"))==0) { if (Rcpp::as<Rcpp::List>(Parameters).containsElementNamed("BW_rad")) { delta = Rcpp::as<NT>(Rcpp::as<Rcpp::List>(Parameters)["BW_rad"]); } cdhr = false; rdhr = false; ball_walk = true; } else { throw Rcpp::exception("Unknown walk type!"); } if (distribution.isNotNull()) { if (Rcpp::as<std::string>(distribution).compare(std::string("gaussian"))==0) { gaussian = true; } else if(Rcpp::as<std::string>(distribution).compare(std::string("uniform"))!=0) { throw Rcpp::exception("Wrong distribution!"); } } bool rand_only=false, NN=false, birk=false, verbose=false; unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); // the random engine with this seed RNGType rng(seed); boost::random::uniform_real_distribution<>(urdist); boost::random::uniform_real_distribution<> urdist1(-1,1); switch(type) { case 1: { // Hpolytope HP.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("A")), Rcpp::as<VT>(Rcpp::as<Rcpp::Reference>(P).field("b"))); if (!set_mean_point || ball_walk) { InnerBall = HP.ComputeInnerBall(); if (!set_mean_point) MeanPoint = InnerBall.first; } break; } case 2: { // Vpolytope VP.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")), VT::Ones(Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V")).rows())); if (!set_mean_point || ball_walk) { InnerBall = VP.ComputeInnerBall(); if (!set_mean_point) MeanPoint = InnerBall.first; } break; } case 3: { // Zonotope ZP.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("G")), VT::Ones(Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("G")).rows())); if (!set_mean_point || ball_walk) { InnerBall = ZP.ComputeInnerBall(); if (!set_mean_point) MeanPoint = InnerBall.first; } break; } case 4: { // Intersection of two V-polytopes Vpolytope VP1; Vpolytope VP2; VP1.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V1")), VT::Ones(Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V1")).rows())); VP2.init(dim, Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V2")), VT::Ones(Rcpp::as<MT>(Rcpp::as<Rcpp::Reference>(P).field("V2")).rows())); VPcVP.init(VP1, VP2); if (!set_mean_point || ball_walk) { InnerBall = VP.ComputeInnerBall(); if (!set_mean_point) MeanPoint = InnerBall.first; } break; } } if (ball_walk) { if (gaussian) { delta = 4.0 * InnerBall.second / std::sqrt(std::max(NT(1.0), a) * NT(dim)); } else { delta = 4.0 * InnerBall.second / std::sqrt(NT(dim)); } } vars<NT, RNGType> var1(1,dim,walkL,1,0.0,0.0,0,0.0,0,InnerBall.second,rng,urdist,urdist1, delta,verbose,rand_only,false,NN,birk,ball_walk,cdhr,rdhr); vars_g<NT, RNGType> var2(dim, walkL, 0, 0, 1, 0, InnerBall.second, rng, 0, 0, 0, delta, false, verbose, rand_only, false, NN, birk, ball_walk, cdhr, rdhr); switch (type) { case 1: { sampling_only<Point>(randPoints, HP, walkL, numpoints, gaussian, a, MeanPoint, var1, var2); break; } case 2: { sampling_only<Point>(randPoints, VP, walkL, numpoints, gaussian, a, MeanPoint, var1, var2); break; } case 3: { sampling_only<Point>(randPoints, ZP, walkL, numpoints, gaussian, a, MeanPoint, var1, var2); break; } case 4: { sampling_only<Point>(randPoints, VPcVP, walkL, numpoints, gaussian, a, MeanPoint, var1, var2); break; } } } else { throw Rcpp::exception("Wrong input!"); } Rcpp::NumericMatrix PointSet(dim,numpoints); typename std::list<Point>::iterator rpit=randPoints.begin(); typename std::vector<NT>::iterator qit; unsigned int j = 0, i; for ( ; rpit!=randPoints.end(); rpit++, j++) { qit = (*rpit).iter_begin(); i=0; for ( ; qit!=(*rpit).iter_end(); qit++, i++){ PointSet(i,j)=*qit; } } return PointSet; }