void MappingExtrapolate::v_CorrectPressureBCs( const Array<OneD, NekDouble> &pressure) { if(m_HBCdata.num_elements()>0) { int cnt, n; int physTot = m_fields[0]->GetTotPoints(); int nvel = m_fields.num_elements()-1; Array<OneD, NekDouble> Vals; // Remove previous correction for(cnt = n = 0; n < m_PBndConds.num_elements(); ++n) { if(m_PBndConds[n]->GetUserDefined() == "H") { int nq = m_PBndExp[n]->GetNcoeffs(); Vmath::Vsub(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1, &(m_bcCorrection[cnt]), 1, &(m_PBndExp[n]->UpdateCoeffs()[0]), 1); cnt += nq; } } // Calculate new correction Array<OneD, NekDouble> Jac(physTot, 0.0); m_mapping->GetJacobian(Jac); Array<OneD, Array<OneD, NekDouble> > correction(nvel); Array<OneD, Array<OneD, NekDouble> > gradP(nvel); Array<OneD, Array<OneD, NekDouble> > wk(nvel); Array<OneD, Array<OneD, NekDouble> > wk2(nvel); for (int i=0; i<nvel; i++) { wk[i] = Array<OneD, NekDouble> (physTot, 0.0); gradP[i] = Array<OneD, NekDouble> (physTot, 0.0); correction[i] = Array<OneD, NekDouble> (physTot, 0.0); } // Calculate G(p) for(int i = 0; i < nvel; ++i) { m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], pressure, gradP[i]); if(m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(gradP[i], wk[i]); } else { Vmath::Vcopy(physTot, gradP[i], 1, wk[i], 1); } } m_mapping->RaiseIndex(wk, correction); // G(p) // alpha*J*(G(p)) if (!m_mapping->HasConstantJacobian()) { for(int i = 0; i < nvel; ++i) { Vmath::Vmul(physTot, correction[i], 1, Jac, 1, correction[i], 1); } } for(int i = 0; i < nvel; ++i) { Vmath::Smul(physTot, m_pressureRelaxation, correction[i], 1, correction[i], 1); } if(m_pressure->GetWaveSpace()) { for(int i = 0; i < nvel; ++i) { m_pressure->HomogeneousFwdTrans(correction[i], correction[i]); } } // p_i - alpha*J*div(G(p)) for (int i = 0; i < nvel; ++i) { Vmath::Vsub(physTot, gradP[i], 1, correction[i], 1, correction[i], 1); } // Get value at boundary and calculate Inner product StdRegions::StdExpansionSharedPtr Pbc; StdRegions::StdExpansionSharedPtr elmt; Array<OneD, Array<OneD, const NekDouble> > correctionElmt(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > BndValues(m_bnd_dim); for(int i = 0; i < m_bnd_dim; i++) { BndValues[i] = Array<OneD, NekDouble> (m_pressureBCsMaxPts,0.0); } for(int j = 0 ; j < m_HBCdata.num_elements() ; j++) { /// Casting the boundary expansion to the specific case Pbc = boost::dynamic_pointer_cast<StdRegions::StdExpansion> (m_PBndExp[m_HBCdata[j].m_bndryID] ->GetExp(m_HBCdata[j].m_bndElmtID)); /// Picking up the element where the HOPBc is located elmt = m_pressure->GetExp(m_HBCdata[j].m_globalElmtID); /// Assigning for(int i = 0; i < m_bnd_dim; i++) { correctionElmt[i] = correction[i] + m_HBCdata[j].m_physOffset; } Vals = m_bcCorrection + m_HBCdata[j].m_coeffOffset; // Getting values on the edge and filling the correction switch(m_pressure->GetExpType()) { case MultiRegions::e2D: case MultiRegions::e3DH1D: { elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[0], BndValues[0]); elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[1], BndValues[1]); // InnerProduct Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], Vals); } break; case MultiRegions::e3D: { elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[0], BndValues[0]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[1], BndValues[1]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, correctionElmt[2], BndValues[2]); Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], BndValues[2], Vals); } break; default: ASSERTL0(0,"Dimension not supported"); break; } } // Apply new correction for(cnt = n = 0; n < m_PBndConds.num_elements(); ++n) { if(m_PBndConds[n]->GetUserDefined() == "H") { int nq = m_PBndExp[n]->GetNcoeffs(); Vmath::Vadd(nq, &(m_PBndExp[n]->GetCoeffs()[0]), 1, &(m_bcCorrection[cnt]), 1, &(m_PBndExp[n]->UpdateCoeffs()[0]), 1); cnt += nq; } } } }
void FilterAeroForces::v_Update( const Array<OneD, const MultiRegions::ExpListSharedPtr> &pFields, const NekDouble &time) { // Only output every m_outputFrequency. if ((m_index++) % m_outputFrequency) { return; } int n, cnt, elmtid, nq, offset, nt, boundary; nt = pFields[0]->GetNpoints(); int dim = pFields.num_elements()-1; StdRegions::StdExpansionSharedPtr elmt; Array<OneD, int> BoundarytoElmtID; Array<OneD, int> BoundarytoTraceID; Array<OneD, MultiRegions::ExpListSharedPtr> BndExp; Array<OneD, const NekDouble> P(nt); Array<OneD, const NekDouble> U(nt); Array<OneD, const NekDouble> V(nt); Array<OneD, const NekDouble> W(nt); Array<OneD, Array<OneD, NekDouble> > gradU(dim); Array<OneD, Array<OneD, NekDouble> > gradV(dim); Array<OneD, Array<OneD, NekDouble> > gradW(dim); Array<OneD, Array<OneD, NekDouble> > fgradU(dim); Array<OneD, Array<OneD, NekDouble> > fgradV(dim); Array<OneD, Array<OneD, NekDouble> > fgradW(dim); Array<OneD, NekDouble> values; LibUtilities::CommSharedPtr vComm = pFields[0]->GetComm(); NekDouble Fx,Fy,Fz,Fxp,Fxv,Fyp,Fyv,Fzp,Fzv; Fxp = 0.0; // x-component of the force due to pressure difference Fxv = 0.0; // x-component of the force due to viscous stress Fx = 0.0; // x-component of the force (total) Fx = Fxp + Fxv (Drag) Fyp = 0.0; // y-component of the force due to pressure difference Fyv = 0.0; // y-component of the force due to viscous stress Fy = 0.0; // y-component of the force (total) Fy = Fyp + Fyv (Lift) Fzp = 0.0; // z-component of the force due to pressure difference Fzv = 0.0; // z-component of the force due to viscous stress Fz = 0.0; // z-component of the force (total) Fz = Fzp + Fzv (Side) NekDouble rho = (m_session->DefinesParameter("rho")) ? (m_session->GetParameter("rho")) : 1; NekDouble mu = rho*m_session->GetParameter("Kinvis"); for(int i = 0; i < pFields.num_elements(); ++i) { pFields[i]->SetWaveSpace(false); pFields[i]->BwdTrans(pFields[i]->GetCoeffs(), pFields[i]->UpdatePhys()); pFields[i]->SetPhysState(true); } // Homogeneous 1D case Compute forces on all WALL boundaries // This only has to be done on the zero (mean) Fourier mode. if(m_isHomogeneous1D) { if(vComm->GetColumnComm()->GetRank() == 0) { pFields[0]->GetPlane(0)->GetBoundaryToElmtMap( BoundarytoElmtID,BoundarytoTraceID); BndExp = pFields[0]->GetPlane(0)->GetBndCondExpansions(); StdRegions::StdExpansion1DSharedPtr bc; // loop over the types of boundary conditions for(cnt = n = 0; n < BndExp.num_elements(); ++n) { if(m_boundaryRegionIsInList[n] == 1) { for(int i = 0; i < BndExp[n]->GetExpSize(); ++i, cnt++) { // find element of this expansion. elmtid = BoundarytoElmtID[cnt]; elmt = pFields[0]->GetPlane(0)->GetExp(elmtid); nq = elmt->GetTotPoints(); offset = pFields[0]->GetPlane(0)->GetPhys_Offset(elmtid); // Initialise local arrays for the velocity // gradients size of total number of quadrature // points for each element (hence local). for(int j = 0; j < dim; ++j) { gradU[j] = Array<OneD, NekDouble>(nq,0.0); gradV[j] = Array<OneD, NekDouble>(nq,0.0); gradW[j] = Array<OneD, NekDouble>(nq,0.0); } // identify boundary of element boundary = BoundarytoTraceID[cnt]; // Extract fields U = pFields[0]->GetPlane(0)->GetPhys() + offset; V = pFields[1]->GetPlane(0)->GetPhys() + offset; P = pFields[3]->GetPlane(0)->GetPhys() + offset; // compute the gradients elmt->PhysDeriv(U,gradU[0],gradU[1]); elmt->PhysDeriv(V,gradV[0],gradV[1]); // Get face 1D expansion from element expansion bc = boost::dynamic_pointer_cast<LocalRegions ::Expansion1D> (BndExp[n]->GetExp(i)); // number of points on the boundary int nbc = bc->GetTotPoints(); // several vectors for computing the forces Array<OneD, NekDouble> Pb(nbc,0.0); for(int j = 0; j < dim; ++j) { fgradU[j] = Array<OneD, NekDouble>(nbc,0.0); fgradV[j] = Array<OneD, NekDouble>(nbc,0.0); } Array<OneD, NekDouble> drag_t(nbc,0.0); Array<OneD, NekDouble> lift_t(nbc,0.0); Array<OneD, NekDouble> drag_p(nbc,0.0); Array<OneD, NekDouble> lift_p(nbc,0.0); Array<OneD, NekDouble> temp(nbc,0.0); Array<OneD, NekDouble> temp2(nbc,0.0); // identify boundary of element . boundary = BoundarytoTraceID[cnt]; // extraction of the pressure and wss on the // boundary of the element elmt->GetEdgePhysVals(boundary,bc,P,Pb); for(int j = 0; j < dim; ++j) { elmt->GetEdgePhysVals(boundary,bc,gradU[j], fgradU[j]); elmt->GetEdgePhysVals(boundary,bc,gradV[j], fgradV[j]); } //normals of the element const Array<OneD, Array<OneD, NekDouble> > &normals = elmt->GetEdgeNormal(boundary); // // Compute viscous tractive forces on wall from // // t_i = - T_ij * n_j (minus sign for force // exerted BY fluid ON wall), // // where // // T_ij = viscous stress tensor (here in Cartesian // coords) // dU_i dU_j // = RHO * KINVIS * ( ---- + ---- ) . // dx_j dx_i //a) DRAG TERMS //-rho*kinvis*(2*du/dx*nx+(du/dy+dv/dx)*ny Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,drag_t,1); Vmath::Vmul(nbc,drag_t,1,normals[1],1,drag_t,1); Vmath::Smul(nbc,2.0,fgradU[0],1,fgradU[0],1); Vmath::Vmul(nbc,fgradU[0],1,normals[0],1,temp2,1); Vmath::Smul(nbc,0.5,fgradU[0],1,fgradU[0],1); Vmath::Vadd(nbc,temp2,1,drag_t,1,drag_t,1); Vmath::Smul(nbc,-mu,drag_t,1,drag_t,1); //zero temporary storage vector Vmath::Zero(nbc,temp,0); Vmath::Zero(nbc,temp2,0); //b) LIFT TERMS //-rho*kinvis*(2*dv/dy*nx+(du/dy+dv/dx)*nx Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,lift_t,1); Vmath::Vmul(nbc,lift_t,1,normals[0],1,lift_t,1); Vmath::Smul(nbc,2.0,fgradV[1],1,fgradV[1],1); Vmath::Vmul(nbc,fgradV[1],1,normals[1],1,temp2,1); Vmath::Smul(nbc,-0.5,fgradV[1],1,fgradV[1],1); Vmath::Vadd(nbc,temp2,1,lift_t,1,lift_t,1); Vmath::Smul(nbc,-mu,lift_t,1,lift_t,1); // Compute normal tractive forces on all WALL // boundaries Vmath::Vvtvp(nbc,Pb,1,normals[0],1, drag_p,1,drag_p, 1); Vmath::Vvtvp(nbc,Pb,1,normals[1],1, lift_p,1,lift_p,1); //integration over the boundary Fxv += bc->Integral(drag_t); Fyv += bc->Integral(lift_t); Fxp += bc->Integral(drag_p); Fyp += bc->Integral(lift_p); } } else { cnt += BndExp[n]->GetExpSize(); } } } for(int i = 0; i < pFields.num_elements(); ++i) { pFields[i]->SetWaveSpace(true); pFields[i]->BwdTrans(pFields[i]->GetCoeffs(), pFields[i]->UpdatePhys()); pFields[i]->SetPhysState(false); } } //3D WALL case else if(dim==3 && !m_isHomogeneous1D) { pFields[0]->GetBoundaryToElmtMap(BoundarytoElmtID, BoundarytoTraceID); BndExp = pFields[0]->GetBndCondExpansions(); LocalRegions::Expansion2DSharedPtr bc; // loop over the types of boundary conditions for(cnt = n = 0; n < BndExp.num_elements(); ++n) { if(m_boundaryRegionIsInList[n] == 1) { for(int i = 0; i < BndExp[n]->GetExpSize(); ++i, cnt++) { // find element of this expansion. elmtid = BoundarytoElmtID[cnt]; elmt = pFields[0]->GetExp(elmtid); nq = elmt->GetTotPoints(); offset = pFields[0]->GetPhys_Offset(elmtid); // Initialise local arrays for the velocity // gradients size of total number of quadrature // points for each element (hence local). for(int j = 0; j < dim; ++j) { gradU[j] = Array<OneD, NekDouble>(nq,0.0); gradV[j] = Array<OneD, NekDouble>(nq,0.0); gradW[j] = Array<OneD, NekDouble>(nq,0.0); } //identify boundary of element boundary = BoundarytoTraceID[cnt]; //Extract fields U = pFields[0]->GetPhys() + offset; V = pFields[1]->GetPhys() + offset; W = pFields[2]->GetPhys() + offset; P = pFields[3]->GetPhys() + offset; //compute the gradients elmt->PhysDeriv(U,gradU[0],gradU[1],gradU[2]); elmt->PhysDeriv(V,gradV[0],gradV[1],gradV[2]); elmt->PhysDeriv(W,gradW[0],gradW[1],gradW[2]); // Get face 2D expansion from element expansion bc = boost::dynamic_pointer_cast<LocalRegions ::Expansion2D> (BndExp[n]->GetExp(i)); //number of points on the boundary int nbc = bc->GetTotPoints(); //several vectors for computing the forces Array<OneD, NekDouble> Pb(nbc,0.0); for(int j = 0; j < dim; ++j) { fgradU[j] = Array<OneD, NekDouble>(nbc,0.0); fgradV[j] = Array<OneD, NekDouble>(nbc,0.0); fgradW[j] = Array<OneD, NekDouble>(nbc,0.0); } Array<OneD, NekDouble> drag_t(nbc,0.0); Array<OneD, NekDouble> lift_t(nbc,0.0); Array<OneD, NekDouble> side_t(nbc,0.0); Array<OneD, NekDouble> drag_p(nbc,0.0); Array<OneD, NekDouble> lift_p(nbc,0.0); Array<OneD, NekDouble> side_p(nbc,0.0); Array<OneD, NekDouble> temp(nbc,0.0); Array<OneD, NekDouble> temp2(nbc,0.0); // identify boundary of element . boundary = BoundarytoTraceID[cnt]; // extraction of the pressure and wss on the // boundary of the element elmt->GetFacePhysVals(boundary,bc,P,Pb); for(int j = 0; j < dim; ++j) { elmt->GetFacePhysVals(boundary,bc,gradU[j], fgradU[j]); elmt->GetFacePhysVals(boundary,bc,gradV[j], fgradV[j]); elmt->GetFacePhysVals(boundary,bc,gradW[j], fgradW[j]); } // normals of the element const Array<OneD, Array<OneD, NekDouble> > &normals = elmt->GetFaceNormal(boundary); // // Compute viscous tractive forces on wall from // // t_i = - T_ij * n_j (minus sign for force // exerted BY fluid ON wall), // // where // // T_ij = viscous stress tensor (here in Cartesian // coords) // dU_i dU_j // = RHO * KINVIS * ( ---- + ---- ) . // dx_j dx_i //a) DRAG TERMS //-rho*kinvis* // (2*du/dx*nx+(du/dy+dv/dx)*ny+(du/dz+dw/dx)*nz) Vmath::Vadd(nbc,fgradU[2],1,fgradW[0],1,temp,1); Vmath::Neg(nbc,temp,1); Vmath::Vmul(nbc,temp,1,normals[2],1,temp,1); Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,drag_t,1); Vmath::Neg(nbc,drag_t,1); Vmath::Vmul(nbc,drag_t,1,normals[1],1,drag_t,1); Vmath::Smul(nbc,-2.0,fgradU[0],1,fgradU[0],1); Vmath::Vmul(nbc,fgradU[0],1,normals[0],1,temp2,1); Vmath::Smul(nbc,-0.5,fgradU[0],1,fgradU[0],1); Vmath::Vadd(nbc,temp,1,temp2,1,temp,1); Vmath::Vadd(nbc,temp,1,drag_t,1,drag_t,1); Vmath::Smul(nbc,mu,drag_t,1,drag_t,1); //zero temporary storage vector Vmath::Zero(nbc,temp,0); Vmath::Zero(nbc,temp2,0); //b) LIFT TERMS //-rho*kinvis* // (2*dv/dy*nx+(du/dy+dv/dx)*nx+(dv/dz+dw/dy)*nz) Vmath::Vadd(nbc,fgradV[2],1,fgradW[1],1,temp,1); Vmath::Neg(nbc,temp,1); Vmath::Vmul(nbc,temp,1,normals[2],1,temp,1); Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,lift_t,1); Vmath::Neg(nbc,lift_t,1); Vmath::Vmul(nbc,lift_t,1,normals[0],1,lift_t,1); Vmath::Smul(nbc,-2.0,fgradV[1],1,fgradV[1],1); Vmath::Vmul(nbc,fgradV[1],1,normals[1],1,temp2,1); Vmath::Smul(nbc,-0.5,fgradV[1],1,fgradV[1],1); Vmath::Vadd(nbc,temp,1,temp2,1,temp,1); Vmath::Vadd(nbc,temp,1,lift_t,1,lift_t,1); Vmath::Smul(nbc,mu,lift_t,1,lift_t,1); //zero temporary storage vector Vmath::Zero(nbc,temp,0); Vmath::Zero(nbc,temp2,0); //b) SIDE TERMS //-rho*kinvis* // (2*dv/dy*nx+(du/dy+dv/dx)*nx+(dv/dz+dw/dy)*nz) Vmath::Vadd(nbc,fgradV[2],1,fgradW[1],1,temp,1); Vmath::Neg(nbc,temp,1); Vmath::Vmul(nbc,temp,1,normals[1],1,temp,1); Vmath::Vadd(nbc,fgradU[2],1,fgradW[0],1,side_t,1); Vmath::Neg(nbc,side_t,1); Vmath::Vmul(nbc,side_t,1,normals[0],1,side_t,1); Vmath::Smul(nbc,-2.0,fgradW[2],1,fgradW[2],1); Vmath::Vmul(nbc,fgradW[2],1,normals[2],1,temp2,1); Vmath::Smul(nbc,-0.5,fgradW[2],1,fgradW[2],1); Vmath::Vadd(nbc,temp,1,temp2,1,temp,1); Vmath::Vadd(nbc,temp,1,side_t,1,side_t,1); Vmath::Smul(nbc,mu,side_t,1,side_t,1); // Compute normal tractive forces on all WALL // boundaries Vmath::Vvtvp(nbc,Pb,1,normals[0],1, drag_p,1,drag_p,1); Vmath::Vvtvp(nbc,Pb,1,normals[1],1, lift_p,1,lift_p,1); Vmath::Vvtvp(nbc,Pb,1,normals[2],1, side_p,1,side_p,1); //integration over the boundary Fxv += bc->Expansion::Integral(drag_t); Fyv += bc->Expansion::Integral(lift_t); Fzv += bc->Expansion::Integral(side_t); Fxp += bc->Expansion::Integral(drag_p); Fyp += bc->Expansion::Integral(lift_p); Fzp += bc->Expansion::Integral(side_p); } } else { cnt += BndExp[n]->GetExpSize(); } } } //2D WALL Condition else { pFields[0]->GetBoundaryToElmtMap(BoundarytoElmtID, BoundarytoTraceID); BndExp = pFields[0]->GetBndCondExpansions(); StdRegions::StdExpansion1DSharedPtr bc; // loop over the types of boundary conditions for(cnt = n = 0; n < BndExp.num_elements(); ++n) { if(m_boundaryRegionIsInList[n] == 1) { for(int i = 0; i < BndExp[n]->GetExpSize(); ++i, cnt++) { elmtid = BoundarytoElmtID[cnt]; elmt = pFields[0]->GetExp(elmtid); nq = elmt->GetTotPoints(); offset = pFields[0]->GetPhys_Offset(elmtid); for(int j = 0; j < dim; ++j) { gradU[j] = Array<OneD, NekDouble>(nq,0.0); gradV[j] = Array<OneD, NekDouble>(nq,0.0); } boundary = BoundarytoTraceID[cnt]; U = pFields[0]->GetPhys() + offset; V = pFields[1]->GetPhys() + offset; P = pFields[2]->GetPhys() + offset; elmt->PhysDeriv(U,gradU[0],gradU[1]); elmt->PhysDeriv(V,gradV[0],gradV[1]); bc = boost::dynamic_pointer_cast<LocalRegions ::Expansion1D> (BndExp[n]->GetExp(i)); int nbc = bc->GetTotPoints(); Array<OneD, NekDouble> Pb(nbc,0.0); Array<OneD, NekDouble> drag_t(nbc,0.0); Array<OneD, NekDouble> lift_t(nbc,0.0); Array<OneD, NekDouble> drag_p(nbc,0.0); Array<OneD, NekDouble> lift_p(nbc,0.0); Array<OneD, NekDouble> temp(nbc,0.0); boundary = BoundarytoTraceID[cnt]; elmt->GetEdgePhysVals(boundary,bc,P,Pb); for(int j = 0; j < dim; ++j) { fgradU[j] = Array<OneD, NekDouble>(nbc,0.0); fgradV[j] = Array<OneD, NekDouble>(nbc,0.0); } for(int j = 0; j < dim; ++j) { elmt->GetEdgePhysVals(boundary,bc,gradU[j], fgradU[j]); elmt->GetEdgePhysVals(boundary,bc,gradV[j], fgradV[j]); } const Array<OneD, Array<OneD, NekDouble> > &normals = elmt->GetEdgeNormal(boundary); Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,drag_t,1); Vmath::Neg(nbc,drag_t,1); Vmath::Vmul(nbc,drag_t,1,normals[1],1,drag_t,1); Vmath::Smul(nbc,-2.0,fgradU[0],1,fgradU[0],1); Vmath::Vmul(nbc,fgradU[0],1,normals[0],1,temp,1); Vmath::Vadd(nbc,temp,1,drag_t,1,drag_t,1); Vmath::Smul(nbc,mu,drag_t,1,drag_t,1); Vmath::Vadd(nbc,fgradU[1],1,fgradV[0],1,lift_t,1); Vmath::Neg(nbc,lift_t,1); Vmath::Vmul(nbc,lift_t,1,normals[0],1,lift_t,1); Vmath::Smul(nbc,-2.0,fgradV[1],1,fgradV[1],1); Vmath::Vmul(nbc,fgradV[1],1,normals[1],1,temp,1); Vmath::Vadd(nbc,temp,1,lift_t,1,lift_t,1); Vmath::Smul(nbc,mu,lift_t,1,lift_t,1); Vmath::Vvtvp(nbc,Pb,1,normals[0],1, drag_p,1,drag_p,1); Vmath::Vvtvp(nbc,Pb,1,normals[1],1, lift_p,1,lift_p,1); Fxp += bc->Integral(drag_p); Fyp += bc->Integral(lift_p); Fxv += bc->Integral(drag_t); Fyp += bc->Integral(lift_t); } } else { cnt += BndExp[n]->GetExpSize(); } } } vComm->AllReduce(Fxp, LibUtilities::ReduceSum); vComm->AllReduce(Fxv, LibUtilities::ReduceSum); Fx = Fxp + Fxv; vComm->AllReduce(Fyp, LibUtilities::ReduceSum); vComm->AllReduce(Fyv, LibUtilities::ReduceSum); Fy = Fyp + Fyv; vComm->AllReduce(Fzp, LibUtilities::ReduceSum); vComm->AllReduce(Fzv, LibUtilities::ReduceSum); Fz = Fzp + Fzv; if (vComm->GetRank() == 0) { m_outputStream.width(8); m_outputStream << setprecision(6) << time; m_outputStream.width(25); m_outputStream << setprecision(8) << Fxp; m_outputStream.width(25); m_outputStream << setprecision(8) << Fxv; m_outputStream.width(25); m_outputStream << setprecision(8) << Fx; m_outputStream.width(25); m_outputStream << setprecision(8) << Fyp; m_outputStream.width(25); m_outputStream << setprecision(8) << Fyv; m_outputStream.width(25); m_outputStream << setprecision(8) << Fy; m_outputStream.width(25); m_outputStream << setprecision(8) << Fzp; m_outputStream.width(25); m_outputStream << setprecision(8) << Fzv; m_outputStream.width(25); m_outputStream << setprecision(8) << Fz; m_outputStream << endl; } }
void MappingExtrapolate::v_CalcNeumannPressureBCs( const Array<OneD, const Array<OneD, NekDouble> > &fields, const Array<OneD, const Array<OneD, NekDouble> > &N, NekDouble kinvis) { if (m_mapping->HasConstantJacobian() && !m_implicitViscous) { Extrapolate::v_CalcNeumannPressureBCs( fields, N, kinvis); } else { int physTot = m_fields[0]->GetTotPoints(); int nvel = m_fields.num_elements()-1; Array<OneD, NekDouble> Pvals; StdRegions::StdExpansionSharedPtr Pbc; StdRegions::StdExpansionSharedPtr elmt; Array<OneD, Array<OneD, const NekDouble> > Velocity(m_bnd_dim); Array<OneD, Array<OneD, const NekDouble> > Advection(m_bnd_dim); // Get transformation Jacobian Array<OneD, NekDouble> Jac(physTot,0.0); m_mapping->GetJacobian(Jac); // Declare variables Array<OneD, Array<OneD, NekDouble> > BndValues(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > Q(m_bnd_dim); Array<OneD, Array<OneD, NekDouble> > Q_field(nvel); Array<OneD, Array<OneD, NekDouble> > fields_new(nvel); Array<OneD, Array<OneD, NekDouble> > N_new(m_bnd_dim); // Temporary variables Array<OneD, NekDouble> tmp(physTot,0.0); Array<OneD, NekDouble> tmp2(physTot,0.0); for(int i = 0; i < m_bnd_dim; i++) { BndValues[i] = Array<OneD, NekDouble> (m_pressureBCsMaxPts,0.0); Q[i] = Array<OneD, NekDouble> (m_pressureBCsElmtMaxPts,0.0); N_new[i] = Array<OneD, NekDouble> (physTot,0.0); } for(int i = 0; i < nvel; i++) { Q_field[i] = Array<OneD, NekDouble> (physTot,0.0); fields_new[i] = Array<OneD, NekDouble> (physTot,0.0); } // Multiply convective terms by Jacobian for(int i = 0; i < m_bnd_dim; i++) { if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(N[i],N_new[i]); } else { Vmath::Vcopy(physTot, N[i], 1, N_new[i], 1); } Vmath::Vmul(physTot, Jac, 1, N_new[i], 1, N_new[i], 1); if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousFwdTrans(N_new[i],N_new[i]); } } // Get velocity in physical space for(int i = 0; i < nvel; i++) { if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousBwdTrans(fields[i],fields_new[i]); } else { Vmath::Vcopy(physTot, fields[i], 1, fields_new[i], 1); } } // Calculate appropriate form of the CurlCurl operator m_mapping->CurlCurlField(fields_new, Q_field, m_implicitViscous); // If viscous terms are treated explicitly, // add grad(U/J \dot grad J) to CurlCurl if ( !m_implicitViscous) { m_mapping->DotGradJacobian(fields_new, tmp); Vmath::Vdiv(physTot, tmp, 1, Jac, 1, tmp, 1); bool wavespace = m_fields[0]->GetWaveSpace(); m_fields[0]->SetWaveSpace(false); for(int i = 0; i < m_bnd_dim; i++) { m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[i], tmp, tmp2); Vmath::Vadd(physTot, Q_field[i], 1, tmp2, 1, Q_field[i], 1); } m_fields[0]->SetWaveSpace(wavespace); } // Multiply by Jacobian and convert to wavespace (if necessary) for(int i = 0; i < m_bnd_dim; i++) { Vmath::Vmul(physTot, Jac, 1, fields_new[i], 1, fields_new[i], 1); Vmath::Vmul(physTot, Jac, 1, Q_field[i] , 1, Q_field[i] , 1); if (m_fields[0]->GetWaveSpace()) { m_fields[0]->HomogeneousFwdTrans(fields_new[i],fields_new[i]); m_fields[0]->HomogeneousFwdTrans(Q_field[i],Q_field[i]); } } for(int j = 0 ; j < m_HBCdata.num_elements() ; j++) { /// Casting the boundary expansion to the specific case Pbc = boost::dynamic_pointer_cast<StdRegions::StdExpansion> (m_PBndExp[m_HBCdata[j].m_bndryID] ->GetExp(m_HBCdata[j].m_bndElmtID)); /// Picking up the element where the HOPBc is located elmt = m_pressure->GetExp(m_HBCdata[j].m_globalElmtID); /// Assigning for(int i = 0; i < m_bnd_dim; i++) { Velocity[i] = fields_new[i] + m_HBCdata[j].m_physOffset; Advection[i] = N_new[i] + m_HBCdata[j].m_physOffset; Q[i] = Q_field[i] + m_HBCdata[j].m_physOffset; } // Mounting advection component into the high-order condition for(int i = 0; i < m_bnd_dim; i++) { MountHOPBCs(m_HBCdata[j].m_ptsInElmt,kinvis,Q[i],Advection[i]); } Pvals = m_pressureHBCs[0] + m_HBCdata[j].m_coeffOffset; // Getting values on the edge and filling the pressure boundary // expansion and the acceleration term. Multiplication by the // normal is required switch(m_pressure->GetExpType()) { case MultiRegions::e2D: case MultiRegions::e3DH1D: { elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[0], BndValues[0]); elmt->GetEdgePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[1], BndValues[1]); // InnerProduct Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], Pvals); } break; case MultiRegions::e3DH2D: { if(m_HBCdata[j].m_elmtTraceID == 0) { (m_PBndExp[m_HBCdata[j].m_bndryID]->UpdateCoeffs() + m_PBndExp[m_HBCdata[j].m_bndryID] ->GetCoeff_Offset( m_HBCdata[j].m_bndElmtID))[0] = -1.0*Q[0][0]; } else if (m_HBCdata[j].m_elmtTraceID == 1) { (m_PBndExp[m_HBCdata[j].m_bndryID]->UpdateCoeffs() + m_PBndExp[m_HBCdata[j].m_bndryID] ->GetCoeff_Offset( m_HBCdata[j].m_bndElmtID))[0] = Q[0][m_HBCdata[j].m_ptsInElmt-1]; } else { ASSERTL0(false, "In the 3D homogeneous 2D approach BCs edge " "ID can be just 0 or 1 "); } } break; case MultiRegions::e3D: { elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[0], BndValues[0]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[1], BndValues[1]); elmt->GetFacePhysVals(m_HBCdata[j].m_elmtTraceID, Pbc, Q[2], BndValues[2]); Pbc->NormVectorIProductWRTBase(BndValues[0], BndValues[1], BndValues[2], Pvals); } break; default: ASSERTL0(0,"Dimension not supported"); break; } } } // If pressure terms are treated implicitly, we need to multiply // by the relaxation parameter, and zero the correction term if (m_implicitPressure) { Vmath::Smul(m_pressureHBCs[0].num_elements(), m_pressureRelaxation, m_pressureHBCs[0], 1, m_pressureHBCs[0], 1); } m_bcCorrection = Array<OneD, NekDouble> (m_pressureHBCs[0].num_elements(), 0.0); }