int32_t TR::RegDepCopyRemoval::perform() { if (!cg()->supportsPassThroughCopyToNewVirtualRegister()) return 0; discardAllNodeChoices(); TR::TreeTop *tt; for (tt = comp()->getStartTree(); tt != NULL; tt = tt->getNextTreeTop()) { TR::Node *node = tt->getNode(); switch (node->getOpCodeValue()) { case TR::BBStart: if (!node->getBlock()->isExtensionOfPreviousBlock()) { if (trace()) traceMsg(comp(), "clearing remembered node choices at start of extended block at block_%d\n", node->getBlock()->getNumber()); discardAllNodeChoices(); } if (node->getNumChildren() > 0) processRegDeps(node->getFirstChild(), tt); break; case TR::BBEnd: if (node->getNumChildren() > 0) processRegDeps(node->getFirstChild(), tt); break; default: if (node->getOpCode().isSwitch()) { TR::Node *defaultDest = node->getSecondChild(); if (defaultDest->getNumChildren() > 0) processRegDeps(defaultDest->getFirstChild(), tt); } else if (node->getOpCode().isBranch()) { int nChildren = node->getNumChildren(); // only the last child may be GlRegDeps for (int i = 0; i < nChildren - 1; i++) TR_ASSERT(node->getChild(i)->getOpCodeValue() != TR::GlRegDeps, "GlRegDeps for branch is not the last child\n"); if (nChildren > 0) { TR::Node *lastChild = node->getChild(nChildren - 1); if (lastChild->getOpCodeValue() == TR::GlRegDeps) processRegDeps(lastChild, tt); } } break; } } return 1; // a bit arbitrary... }
TR::TreeTop *searchForStringAppend(TR::ValuePropagation *vp,const char *sig, TR::TreeTop *tt, TR::TreeTop *exitTree, TR::ILOpCodes opCode, TR::Node *newBuffer, vcount_t visitCount, TR::Node **string) { int len = 0; bool isGlobal = false; for (;tt != exitTree; tt = tt->getNextRealTreeTop()) { TR::Node *node = tt->getNode(); if (node->getNumChildren() == 1 && node->getFirstChild()->getOpCodeValue() == opCode) { if (checkMethodSignature(vp,node->getFirstChild()->getSymbolReference(), sig)) { TR::Node *call = node->getFirstChild(); if (call->getFirstChild() == newBuffer) { if (vp->getConstraint(call->getSecondChild(),isGlobal)) { if (vp->getConstraint(call->getSecondChild(),isGlobal)->getClassType()) { const char *sigAppend = vp->getConstraint(call->getSecondChild(),isGlobal)->getClassType()->getClassSignature(len); if (call->getSecondChild()->getOpCodeValue() == TR::aload && (!strncmp(sigAppend,"Ljava/lang/String;",18))) { *string = call->getSecondChild(); } } } } return tt; } else return tt; } //if (countNodeOccurrencesInSubTree(node, newBuffer, visitCount) > 0) return tt; } return tt; }
TR::Node * OMR::TransformUtil::scalarizeArrayCopy( TR::Compilation *comp, TR::Node *node, TR::TreeTop *tt, bool useElementType, bool &didTransformArrayCopyNode, TR::SymbolReference *sourceRef, TR::SymbolReference *targetRef, bool castToIntegral) { TR::CodeGenerator *cg = comp->cg(); didTransformArrayCopyNode = false; if ((comp->getOptLevel() == noOpt) || !comp->getOption(TR_ScalarizeSSOps) || node->getOpCodeValue() != TR::arraycopy || node->getNumChildren() != 3 || comp->requiresSpineChecks() || !node->getChild(2)->getOpCode().isLoadConst() || cg->getOptimizationPhaseIsComplete()) return node; int64_t byteLen = node->getChild(2)->get64bitIntegralValue(); if (byteLen == 0) { if (tt) { // Anchor the first two children if (!node->getFirstChild()->safeToDoRecursiveDecrement()) TR::TreeTop::create(comp, tt->getPrevTreeTop(), TR::Node::create(TR::treetop, 1, node->getFirstChild())); if (!node->getSecondChild()->safeToDoRecursiveDecrement()) TR::TreeTop::create(comp, tt->getPrevTreeTop(), TR::Node::create(TR::treetop, 1, node->getSecondChild())); tt->getPrevTreeTop()->join(tt->getNextTreeTop()); tt->getNode()->recursivelyDecReferenceCount(); didTransformArrayCopyNode = true; } return node; } else if (byteLen < 0) { return node; } else if (byteLen > TR_MAX_OTYPE_SIZE) { return node; } TR::DataType dataType = TR::Aggregate; // Get the element datatype from the (hidden) 4th child TR::DataType elementType = node->getArrayCopyElementType(); int32_t elementSize = TR::Symbol::convertTypeToSize(elementType); if (byteLen == elementSize) { dataType = elementType; } else if (!useElementType) { switch (byteLen) { case 1: dataType = TR::Int8; break; case 2: dataType = TR::Int16; break; case 4: dataType = TR::Int32; break; case 8: dataType = TR::Int64; break; } } else { return node; } // load/store double on 64-bit PPC requires offset to be word aligned // abort if this requirement is not met. // TODO: also need to check if the first two children are aload nodes bool cannot_use_load_store_long = false; if (TR::Compiler->target.cpu.isPower()) if (dataType == TR::Int64 && TR::Compiler->target.is64Bit()) { TR::Node * firstChild = node->getFirstChild(); if (firstChild->getNumChildren() == 2) { TR::Node *offsetChild = firstChild->getSecondChild(); TR_ASSERT(offsetChild->getOpCodeValue() != TR::iconst, "iconst shouldn't be used for 64-bit array indexing"); if (offsetChild->getOpCodeValue() == TR::lconst) { if ((offsetChild->getLongInt() & 0x3) != 0) cannot_use_load_store_long = true; } } TR::Node *secondChild = node->getSecondChild(); if (secondChild->getNumChildren() == 2) { TR::Node *offsetChild = secondChild->getSecondChild(); TR_ASSERT(offsetChild->getOpCodeValue() != TR::iconst, "iconst shouldn't be used for 64-bit array indexing"); if (offsetChild->getOpCodeValue() == TR::lconst) { if ((offsetChild->getLongInt() & 0x3) != 0) cannot_use_load_store_long = true; } } } if (cannot_use_load_store_long) return node; TR::SymbolReference *nodeRef; targetRef = comp->getSymRefTab()->findOrCreateGenericIntShadowSymbolReference(0); sourceRef = targetRef; bool trace = comp->getOption(TR_TraceScalarizeSSOps); if (trace) traceMsg(comp,"scalarizeArrayCopy: node %p got targetRef (#%d) and sourceRef (#%d)\n", node,targetRef?targetRef->getReferenceNumber():-1,sourceRef?sourceRef->getReferenceNumber():-1); if (targetRef == NULL || sourceRef == NULL) { if (trace) traceMsg(comp,"do not scalarizeArrayCopy node %p : targetRef is NULL (%s) or sourceRef is NULL (%s)\n",node,targetRef?"no":"yes",sourceRef?"no":"yes"); return node; } #ifdef J9_PROJECT_SPECIFIC if (targetRef->getSymbol()->getDataType().isBCD() || sourceRef->getSymbol()->getDataType().isBCD()) { return node; } #endif if (performTransformation(comp, "%sScalarize arraycopy 0x%p\n", OPT_DETAILS, node)) { TR::Node *store = TR::TransformUtil::scalarizeAddressParameter(comp, node->getSecondChild(), byteLen, dataType, targetRef, true); TR::Node *load = TR::TransformUtil::scalarizeAddressParameter(comp, node->getFirstChild(), byteLen, dataType, sourceRef, false); if (tt) { // Transforming // treetop // arrayCopy <-- node // into // *store // node->recursivelyDecReferenceCount(); tt->setNode(node); } else { for (int16_t c = node->getNumChildren() - 1; c >= 0; c--) cg->recursivelyDecReferenceCount(node->getChild(c)); } TR::Node::recreate(node, store->getOpCodeValue()); node->setSymbolReference(store->getSymbolReference()); if (store->getOpCode().isStoreIndirect()) { node->setChild(0, store->getFirstChild()); node->setAndIncChild(1, load); node->setNumChildren(2); } else { node->setAndIncChild(0, load); node->setNumChildren(1); } didTransformArrayCopyNode = true; } return node; }
bool OMR::Simplifier::isBoundDefinitelyGELength(TR::Node *boundChild, TR::Node *lengthChild) { TR::ILOpCodes boundOp = boundChild->getOpCodeValue(); if (boundOp == TR::iadd) { TR::Node *first = boundChild->getFirstChild(); TR::Node *second = boundChild->getSecondChild(); if (first == lengthChild) { TR::ILOpCodes secondOp = second->getOpCodeValue(); if (second->getOpCode().isArrayLength() || secondOp == TR::bu2i || secondOp == TR::su2i || (secondOp == TR::iconst && second->getInt() >= 0) || (secondOp == TR::iand && second->getSecondChild()->getOpCodeValue() == TR::iconst && (second->getSecondChild()->getInt() & 80000000) == 0) || (secondOp == TR::iushr && second->getSecondChild()->getOpCodeValue() == TR::iconst && (second->getSecondChild()->getInt() & 0x1f) > 0)) { return true; } } else if (second == lengthChild) { TR::ILOpCodes firstOp = first->getOpCodeValue(); if (first->getOpCode().isArrayLength() || firstOp == TR::bu2i || firstOp == TR::su2i || (firstOp == TR::iand && first->getSecondChild()->getOpCodeValue() == TR::iconst && (first->getSecondChild()->getInt() & 80000000) == 0) || (firstOp == TR::iushr && first->getSecondChild()->getOpCodeValue() == TR::iconst && (first->getSecondChild()->getInt() & 0x1f) > 0)) { return true; } } } else if (boundOp == TR::isub) { TR::Node *first = boundChild->getFirstChild(); TR::Node *second = boundChild->getSecondChild(); if (first == lengthChild) { TR::ILOpCodes secondOp = second->getOpCodeValue(); if ((secondOp == TR::iconst && second->getInt() < 0) || (secondOp == TR::ior && second->getSecondChild()->getOpCodeValue() == TR::iconst && (second->getSecondChild()->getInt() & 0x80000000) != 0)) { return true; } } } return false; }
TR::Node * OMR::Simplifier::unaryCancelOutWithChild(TR::Node * node, TR::Node * firstChild, TR::TreeTop *anchorTree, TR::ILOpCodes opcode, bool anchorChildren) { if (!isLegalToUnaryCancel(node, firstChild, opcode)) return NULL; if (firstChild->getOpCodeValue() == opcode && (node->getType().isAggregate() || firstChild->getType().isAggregate()) && (node->getSize() > firstChild->getSize() || node->getSize() != firstChild->getFirstChild()->getSize())) { // ensure a truncation side-effect of a conversion is not lost // o2a size=3 // a2o size=3 // conversion truncates in addition to type cast so cannot be removed // loadaddr size=4 // This restriction could be loosened to only disallow intermediate truncations (see BCD case above) but then would require a node // op that would just correct for size (e.g. addrSizeMod size=3 to replace the o2a/a2o pair) // // Do allow cases when all three sizes are the same and when the middle node widens but the top and bottom node have the same size, e.g. // // i2o size=3 // o2i size=4 // oload size=3 // // Also allow the special case where the grandchild is not really truncated as the 'truncated' bytes are known to be zero // (i.e. there really isn't an intermediate truncation of 4->3 even though it appears that way from looking at the sizes alone) // o2i // i2o size=3 // iushr // x // iconst 8 bool disallow = true; TR::Node *grandChild = firstChild->getFirstChild(); size_t nodeSize = node->getSize(); if (node->getType().isIntegral() && nodeSize == grandChild->getSize() && nodeSize > firstChild->getSize()) { size_t truncatedBits = (nodeSize - firstChild->getSize()) * 8; if (grandChild->getOpCode().isRightShift() && grandChild->getOpCode().isShiftLogical() && grandChild->getSecondChild()->getOpCode().isLoadConst() && (grandChild->getSecondChild()->get64bitIntegralValue() == truncatedBits)) { disallow = false; if (trace()) traceMsg(comp(),"do allow unaryCancel of node %s (%p) and firstChild %s (%p) as grandChild %s (%p) zeros the %d truncated bytes\n", node->getOpCode().getName(),node,firstChild->getOpCode().getName(),firstChild, grandChild->getOpCode().getName(),grandChild,truncatedBits/8); } } if (disallow) { if (trace()) traceMsg(comp(),"disallow unaryCancel of node %s (%p) and firstChild %s (%p) due to unequal sizes (nodeSize %d, firstChildSize %d, firstChild->childSize %d)\n", node->getOpCode().getName(),node,firstChild->getOpCode().getName(),firstChild, node->getSize(),firstChild->getSize(),firstChild->getFirstChild()->getSize()); return NULL; } } if (firstChild->getOpCodeValue() == opcode && performTransformation(comp(), "%sRemoving node [" POINTER_PRINTF_FORMAT "] %s and its child [" POINTER_PRINTF_FORMAT "] %s\n", optDetailString(), node, node->getOpCode().getName(), firstChild, firstChild->getOpCode().getName())) { TR::Node *grandChild = firstChild->getFirstChild(); grandChild->incReferenceCount(); bool anchorChildrenNeeded = anchorChildren && (node->getNumChildren() > 1 || firstChild->getNumChildren() > 1 || node->getOpCode().hasSymbolReference() || firstChild->getOpCode().hasSymbolReference()); prepareToStopUsingNode(node, anchorTree, anchorChildrenNeeded); node->recursivelyDecReferenceCount(); node->setVisitCount(0); return grandChild; } return NULL; }
TR_ExpressionsSimplification::LoopInfo* TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region) { ListIterator<TR::CFGEdge> exitEdges(®ion->getExitEdges()); if (region->getExitEdges().getSize() != 1) { if (trace()) traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n"); return 0; } TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom()); if (!exitNode->getStructure()->asBlock()) { if (trace()) traceMsg(comp(), "The exit block can't be found\n"); return 0; } TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock(); TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode(); if (trace()) { traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber()); traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock); } if (!lastTreeInExitBlock->getOpCode().isBranch()) { if (trace()) traceMsg(comp(), "The branch node couldn't be found\n"); return 0; } if (lastTreeInExitBlock->getNumChildren() < 2) { if (trace()) traceMsg(comp(), "The branch node has less than 2 children\n"); return 0; } TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild(); TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild(); if (!firstChildOfLastTree->getOpCode().hasSymbolReference()) { if (trace()) traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree); return 0; } TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference(); if (trace()) traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol()); // Locate the induction variable that matches with the exit node symbol // TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef); if (!indVar) return 0; if (!indVar->getIncr()->asIntConst()) { if (trace()) traceMsg(comp(), "Increment is not a constant\n"); return 0; } int32_t increment = indVar->getIncr()->getLowInt(); _visitCount = comp()->incVisitCount(); bool indVarWrittenAndUsedUnexpectedly = false; if (firstChildOfLastTree->getReferenceCount() > 1) { TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry(); TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit(); bool loadSeen = false; while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock) { TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode(); if (checkForLoad(cursorNode, firstChildOfLastTree)) loadSeen = true; if (!cursorNode->getOpCode().isStore() && (cursorNode->getNumChildren() > 0)) cursorNode = cursorNode->getFirstChild(); if (cursorNode->getOpCode().isStore() && (cursorNode->getSymbolReference() == firstChildSymRef)) { indVarWrittenAndUsedUnexpectedly = true; if ((cursorNode->getFirstChild() == firstChildOfLastTree) || !loadSeen) indVarWrittenAndUsedUnexpectedly = false; else break; } cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop(); } } if (indVarWrittenAndUsedUnexpectedly) { return 0; } int32_t lowerBound; int32_t upperBound = 0; TR::Node *bound = 0; bool equals = false; switch(lastTreeInExitBlock->getOpCodeValue()) { case TR::ificmplt: case TR::ificmpgt: equals = true; case TR::ificmple: case TR::ificmpge: if (!(indVar->getEntry() && indVar->getEntry()->asIntConst())) { if (trace()) traceMsg(comp(), "Entry value is not a constant\n"); return 0; } lowerBound = indVar->getEntry()->getLowInt(); if (secondChildOfLastTree->getOpCode().isLoadConst()) { upperBound = secondChildOfLastTree->getInt(); } else if (secondChildOfLastTree->getOpCode().isLoadVar()) { bound = secondChildOfLastTree; } else { if (trace()) traceMsg(comp(), "Second child is not a const or a load\n"); return 0; } return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals); default: if (trace()) traceMsg(comp(), "The condition has not been implemeted\n"); return 0; } return 0; }
bool TR_ExpressionsSimplification::tranformSummationReductionCandidate(TR::TreeTop *treeTop, LoopInfo *loopInfo, bool *isPreheaderBlockInvalid) { TR::Node *node = treeTop->getNode(); TR::Node *opNode = node->getFirstChild(); TR::Node *expNode = NULL; int32_t expChildNumber = 0; bool removeOnly = false; bool replaceWithNewNode = false; if (opNode->getOpCodeValue() == TR::iadd || opNode->getOpCodeValue() == TR::isub) { if (opNode->getSecondChild()->getOpCode().hasSymbolReference() && node->getSymbolReference() == opNode->getSecondChild()->getSymbolReference()) { expChildNumber = 0; expNode = opNode->getFirstChild(); } else { expChildNumber = 1; expNode = opNode->getSecondChild(); } expNode = iaddisubSimplifier(expNode, loopInfo); replaceWithNewNode = true; } else if (opNode->getOpCodeValue() == TR::ixor || opNode->getOpCodeValue() == TR::ineg) { expNode = ixorinegSimplifier(opNode, loopInfo, &removeOnly); } if (expNode) { if (trace()) comp()->getDebug()->print(comp()->getOutFile(), expNode, 0, true); TR::Block *entryBlock = _currentRegion->getEntryBlock(); TR::Block *preheaderBlock = findPredecessorBlock(entryBlock); if (!preheaderBlock) { if (trace()) traceMsg(comp(), "Fail to find a place to put the hoist code in\n"); *isPreheaderBlockInvalid = true; return true; } if (loopInfo->getNumIterations() > 0 || // make sure that the loop is going to be executed at least once _currentRegion->isCanonicalizedLoop()) // or that the loop is canonicalized, in which case the preheader is { // executed in its first iteration and is protected. if (performTransformation(comp(), "%sMove out loop-invariant node [%p] to block_%d\n", OPT_DETAILS, node, preheaderBlock->getNumber())) { if (!(removeOnly)) { TR::Node *newNode = node->duplicateTree(); if (replaceWithNewNode) newNode->getFirstChild()->setAndIncChild(expChildNumber, expNode); transformNode(newNode, preheaderBlock); } TR::TransformUtil::removeTree(comp(), treeTop); } } } return (expNode != NULL); }
void TR_ExpressionsSimplification::setSummationReductionCandidates(TR::Node *node, TR::TreeTop *tt) { // Must be a store node // if (node->getOpCodeValue() != TR::istore /* || node->getOpCodeValue() != TR::astore */) { if (trace()) traceMsg(comp(), "Node %p: The opcode is not istore so not a summation reduction candidate\n",node); return; } TR::Node *opNode = node->getFirstChild(); if (opNode->getOpCodeValue() == TR::iadd || opNode->getOpCodeValue() == TR::isub) { TR::Node *firstNode = opNode->getFirstChild(); TR::Node *secondNode = opNode->getSecondChild(); if (firstNode->getOpCode().hasSymbolReference() && node->getSymbolReference() == firstNode->getSymbolReference() && opNode->getReferenceCount() == 1 && firstNode->getReferenceCount() == 1) { // The second node must be loop invariant // if (!_currentRegion->isExprInvariant(secondNode)) { if (trace()) { traceMsg(comp(), "The node %p is not loop invariant\n",secondNode); // This can be the arithmetic series case // only when the node is an induction variable if (secondNode->getNumChildren() == 1 && secondNode->getOpCode().hasSymbolReference()) { TR_InductionVariable *indVar = _currentRegion->findMatchingIV(secondNode->getSymbolReference()); if (indVar) { //printf("Found Candidate of arithmetic series\n" ); } } } return; } _candidateTTs->add(tt); } else if (secondNode->getOpCode().hasSymbolReference() && node->getSymbolReference() == secondNode->getSymbolReference() && opNode->getReferenceCount() == 1 && secondNode->getReferenceCount() == 1 && _currentRegion->isExprInvariant(firstNode)) { _candidateTTs->add(tt); } } else if (opNode->getOpCodeValue() == TR::ixor || opNode->getOpCodeValue() == TR::ineg) { if (opNode->getFirstChild()->getOpCode().hasSymbolReference() && node->getSymbolReference() == opNode->getFirstChild()->getSymbolReference() && opNode->getReferenceCount() == 1 && opNode->getFirstChild()->getReferenceCount() == 1 && (opNode->getOpCodeValue() == TR::ineg || _currentRegion->isExprInvariant(opNode->getSecondChild()))) _candidateTTs->add(tt); else if (opNode->getOpCodeValue() == TR::ixor && opNode->getSecondChild()->getOpCode().hasSymbolReference() && node->getSymbolReference() == opNode->getSecondChild()->getSymbolReference() && opNode->getReferenceCount() == 1 && opNode->getSecondChild()->getReferenceCount() == 1 && _currentRegion->isExprInvariant(opNode->getFirstChild())) _candidateTTs->add(tt); } }
TR_LocalAnalysisInfo::TR_LocalAnalysisInfo(TR::Compilation *c, bool t) : _compilation(c), _trace(t), _trMemory(c->trMemory()) { _numNodes = -1; #if 0 // somehow stops PRE from happening // We are going to increment visit count for every tree so can reach max // for big methods quickly. Perhaps can improve containsCall() in the future. comp()->resetVisitCounts(0); #endif if (comp()->getVisitCount() > HIGH_VISIT_COUNT) { _compilation->resetVisitCounts(1); dumpOptDetails(comp(), "\nResetting visit counts for this method before LocalAnalysisInfo\n"); } TR::CFG *cfg = comp()->getFlowGraph(); _numBlocks = cfg->getNextNodeNumber(); TR_ASSERT(_numBlocks > 0, "Local analysis, node numbers not assigned"); // Allocate information on the stack. It is the responsibility of the user // of this class to determine the life of the information by using jitStackMark // and jitStackRelease. // //_blocksInfo = (TR::Block **) trMemory()->allocateStackMemory(_numBlocks*sizeof(TR::Block *)); //memset(_blocksInfo, 0, _numBlocks*sizeof(TR::Block *)); TR::TreeTop *currentTree = comp()->getStartTree(); // Only do this if not done before; typically this would be done in the // first call to this method through LocalTransparency and would NOT // need to be re-done by LocalAnticipatability. // if (_numNodes < 0) { _optimizer = comp()->getOptimizer(); int32_t numBuckets; int32_t numNodes = comp()->getNodeCount(); if (numNodes < 10) numBuckets = 1; else if (numNodes < 100) numBuckets = 7; else if (numNodes < 500) numBuckets = 31; else if (numNodes < 3000) numBuckets = 127; else if (numNodes < 6000) numBuckets = 511; else numBuckets = 1023; // Allocate hash table for matching expressions // HashTable hashTable(numBuckets, comp()); _hashTable = &hashTable; // Null checks are handled differently as the criterion for // commoning a null check is different than that used for // other nodes; for a null check, the null check reference is // important (and not the actual indirect access itself) // _numNullChecks = 0; while (currentTree) { if (currentTree->getNode()->getOpCodeValue() == TR::NULLCHK) //////if (currentTree->getNode()->getOpCode().isNullCheck()) _numNullChecks++; currentTree = currentTree->getNextTreeTop(); } if (_numNullChecks == 0) _nullCheckNodesAsArray = NULL; else { _nullCheckNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNullChecks*sizeof(TR::Node*)); memset(_nullCheckNodesAsArray, 0, _numNullChecks*sizeof(TR::Node*)); } currentTree = comp()->getStartTree(); int32_t symRefCount = comp()->getSymRefCount(); _checkSymbolReferences = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc); _numNodes = 1; _numNullChecks = 0; // This loop counts all the nodes that are going to take part in PRE. // This is a computation intensive loop as we check if the node that // is syntactically equivalent to a given node has been seen before // and if so we use the local index of the original node (that // is syntactically equivalent to the given node). Could be improved // in complexity with value numbering at some stage. // _visitCount = comp()->incVisitCount(); while (currentTree) { TR::Node *firstNodeInTree = currentTree->getNode(); TR::ILOpCode *opCode = &firstNodeInTree->getOpCode(); if (((firstNodeInTree->getOpCodeValue() == TR::treetop) || (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) && (firstNodeInTree->getFirstChild()->getOpCode().isStore())) { firstNodeInTree->setLocalIndex(-1); if (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor()) firstNodeInTree->getSecondChild()->setLocalIndex(-1); firstNodeInTree = firstNodeInTree->getFirstChild(); opCode = &firstNodeInTree->getOpCode(); } // This call finds nodes with opcodes that are supported by PRE // in this subtree; this accounts for all opcodes other than stores/checks // which are handled later on below // bool firstNodeInTreeHasCallsInStoreLhs = false; countSupportedNodes(firstNodeInTree, NULL, firstNodeInTreeHasCallsInStoreLhs); if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) || opCode->isCheck()) { int32_t oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree); // // Return value 0 denotes that the node contains some sub-expression // that cannot participate in PRE; e.g. a call or a new // // Return value -1 denotes that the node can participate in PRE // but did not match with any existing expression seen so far // // Any other return value (should be positive always) denotes that // the node can participate in PRE and has been matched with a seen // expression having local index == return value // if (oldExpressionOnRhs == -1) { if (trace()) { traceMsg(comp(), "\nExpression #%d is : \n", _numNodes); comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree, 6, true); } firstNodeInTree->setLocalIndex(_numNodes++); } else firstNodeInTree->setLocalIndex(oldExpressionOnRhs); if (opCode->isCheck() && (firstNodeInTree->getFirstChild()->getOpCode().isStore() && !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm())) { int oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree->getFirstChild()); if (oldExpressionOnRhs == -1) { if (trace()) { traceMsg(comp(), "\nExpression #%d is : \n", _numNodes); comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree->getFirstChild(), 6, true); } firstNodeInTree->getFirstChild()->setLocalIndex(_numNodes++); } else firstNodeInTree->getFirstChild()->setLocalIndex(oldExpressionOnRhs); } } else firstNodeInTree->setLocalIndex(-1); currentTree = currentTree->getNextTreeTop(); } } _supportedNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNodes*sizeof(TR::Node*)); memset(_supportedNodesAsArray, 0, _numNodes*sizeof(TR::Node*)); _checkExpressions = new (trStackMemory()) TR_BitVector(_numNodes, trMemory(), stackAlloc); //_checkExpressions.init(_numNodes, trMemory(), stackAlloc); // This loop goes through the trees and collects the nodes // that would take part in PRE. Each node has its local index set to // the bit position that it occupies in the bit vector analyses. // currentTree = comp()->getStartTree(); _visitCount = comp()->incVisitCount(); while (currentTree) { TR::Node *firstNodeInTree = currentTree->getNode(); TR::ILOpCode *opCode = &firstNodeInTree->getOpCode(); if (((firstNodeInTree->getOpCodeValue() == TR::treetop) || (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) && (firstNodeInTree->getFirstChild()->getOpCode().isStore())) { firstNodeInTree = firstNodeInTree->getFirstChild(); opCode = &firstNodeInTree->getOpCode(); } collectSupportedNodes(firstNodeInTree, NULL); if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) || opCode->isCheck()) { if (opCode->isCheck()) { _checkSymbolReferences->set(firstNodeInTree->getSymbolReference()->getReferenceNumber()); _checkExpressions->set(firstNodeInTree->getLocalIndex()); } if (!_supportedNodesAsArray[firstNodeInTree->getLocalIndex()]) _supportedNodesAsArray[firstNodeInTree->getLocalIndex()] = firstNodeInTree; if (opCode->isCheck() && firstNodeInTree->getFirstChild()->getOpCode().isStore() && !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm() && !_supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()]) _supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()] = firstNodeInTree->getFirstChild(); } currentTree = currentTree->getNextTreeTop(); } //initialize(toBlock(cfg->getStart())); }
int32_t TR::DeadTreesElimination::process(TR::TreeTop *startTree, TR::TreeTop *endTree) { TR::StackMemoryRegion stackRegion(*comp()->trMemory()); LongestPathMap longestPaths(std::less<TR::Node*>(), stackRegion); typedef TR::typed_allocator<CRAnchor, TR::Region&> CRAnchorAlloc; typedef TR::forward_list<CRAnchor, CRAnchorAlloc> CRAnchorList; CRAnchorList anchors(stackRegion); vcount_t visitCount = comp()->incOrResetVisitCount(); TR::TreeTop *treeTop; for (treeTop = startTree; (treeTop != endTree); treeTop = treeTop->getNextTreeTop()) treeTop->getNode()->initializeFutureUseCounts(visitCount); TR::Block *block = NULL; bool delayedRegStoresBeforeThisPass = _delayedRegStores; // Update visitCount as they are used in this optimization and need to be visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTopIterator iter(startTree, comp()); iter != endTree; ++iter) { TR::Node *node = iter.currentTree()->getNode(); if (node->getOpCodeValue() == TR::BBStart) { block = node->getBlock(); if (!block->isExtensionOfPreviousBlock()) longestPaths.clear(); } int vcountLimit = MAX_VCOUNT - 3; if (comp()->getVisitCount() > vcountLimit) { dumpOptDetails(comp(), "%sVisit count %d exceeds limit %d; stopping\n", optDetailString(), comp()->getVisitCount(), vcountLimit); return 0; } // correct at all intermediate stages // if ((node->getOpCodeValue() != TR::treetop) && (!node->getOpCode().isAnchor() || (node->getFirstChild()->getReferenceCount() != 1)) && (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() != 1)) && (delayedRegStoresBeforeThisPass || (iter.currentTree() == block->getLastRealTreeTop()) || !node->getOpCode().isStoreReg() || (node->getVisitCount() == visitCount))) { if (node->getOpCode().isAnchor() && node->getFirstChild()->getOpCode().isLoadIndirect()) anchors.push_front(CRAnchor(iter.currentTree(), block)); TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); continue; } if (node->getOpCode().isStoreReg()) _delayedRegStores = true; TR::Node *child = node->getFirstChild(); if (child->getOpCodeValue() == TR::PassThrough) { TR::Node *newChild = child->getFirstChild(); node->setAndIncChild(0, newChild); newChild->incFutureUseCount(); if (child->getReferenceCount() <= 1) optimizer()->prepareForNodeRemoval(child); child->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); child = newChild; } bool treeTopCanBeEliminated = false; // If the treetop child has been seen before then it must be anchored // somewhere above already; so we don't need the treetop to be anchoring // this node (as the computation is already done at the first reference to // the node). // if (visitCount == child->getVisitCount()) { treeTopCanBeEliminated = true; } else { TR::ILOpCode &childOpCode = child->getOpCode(); TR::ILOpCodes opCodeValue = childOpCode.getOpCodeValue(); bool seenConditionalBranch = false; bool callWithNoSideEffects = child->getOpCode().isCall() && child->getSymbolReference()->getSymbol()->isResolvedMethod() && child->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree(); if (callWithNoSideEffects) { treeTopCanBeEliminated = true; } else if (!((childOpCode.isCall() && !callWithNoSideEffects) || childOpCode.isStore() || ((opCodeValue == TR::New || opCodeValue == TR::anewarray || opCodeValue == TR::newarray) && child->getReferenceCount() > 1) || opCodeValue == TR::multianewarray || opCodeValue == TR::MergeNew || opCodeValue == TR::checkcast || opCodeValue == TR::Prefetch || opCodeValue == TR::iu2l || ((childOpCode.isDiv() || childOpCode.isRem()) && child->getNumChildren() == 3))) { // Perform the rather complex check to see whether its safe // to disconnect the child node from the treetop // bool safeToReplaceNode = false; if (child->getReferenceCount() == 1) { safeToReplaceNode = true; #ifdef J9_PROJECT_SPECIFIC if (child->getOpCode().isPackedExponentiation()) { // pdexp has a possible message side effect in truncating or no significant digits left cases safeToReplaceNode = false; } #endif if (opCodeValue == TR::loadaddr) treeTopCanBeEliminated = true; } else if (!_cannotBeEliminated) { safeToReplaceNode = isSafeToReplaceNode( child, iter.currentTree(), &seenConditionalBranch, visitCount, comp(), &_targetTrees, _cannotBeEliminated, longestPaths); } if (safeToReplaceNode) { if (childOpCode.hasSymbolReference()) { TR::SymbolReference *symRef = child->getSymbolReference(); if (symRef->getSymbol()->isAuto() || symRef->getSymbol()->isParm()) treeTopCanBeEliminated = true; else { if (childOpCode.isLoad() || (opCodeValue == TR::loadaddr) || (opCodeValue == TR::instanceof) || (((opCodeValue == TR::New) || (opCodeValue == TR::anewarray || opCodeValue == TR::newarray)) && ///child->getFirstChild()->isNonNegative())) child->markedAllocationCanBeRemoved())) // opCodeValue == TR::multianewarray || // opCodeValue == TR::MergeNew) treeTopCanBeEliminated = true; } } else treeTopCanBeEliminated = true; } } // Fix for the case when a float to non-float conversion node swings // down past a branch on IA32; this would cause a FP value to be commoned // across a branch where there was none originally; this causes pblms // as a value is left on the stack. // if (treeTopCanBeEliminated && seenConditionalBranch) { if (!cg()->getSupportsJavaFloatSemantics()) { if (child->getOpCode().isConversion() || child->getOpCode().isBooleanCompare()) { if (child->getFirstChild()->getOpCode().isFloatingPoint() && !child->getOpCode().isFloatingPoint()) treeTopCanBeEliminated = false; } } } if (treeTopCanBeEliminated) { TR::NodeChecklist visited(comp()); bool containsFloatingPoint = false; for (int32_t i = 0; i < child->getNumChildren(); ++i) { // Anchor nodes with reference count > 1 // bool highGlobalIndex = false; if (fixUpTree(child->getChild(i), iter.currentTree(), visited, highGlobalIndex, self(), visitCount)) containsFloatingPoint = true; if (highGlobalIndex) { dumpOptDetails(comp(), "%sGlobal index limit exceeded; stopping\n", optDetailString()); return 0; } } if (seenConditionalBranch && containsFloatingPoint) { if (!cg()->getSupportsJavaFloatSemantics()) treeTopCanBeEliminated = false; } } } // Update visitCount as they are used in this optimization and need to be // correct at all intermediate stages // if (!treeTopCanBeEliminated) TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); if (treeTopCanBeEliminated) { TR::TreeTop *prevTree = iter.currentTree()->getPrevTreeTop(); TR::TreeTop *nextTree = iter.currentTree()->getNextTreeTop(); if (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() == 1)) { // Actually going to remove the treetop now // if (performTransformation(comp(), "%sRemove tree : [" POINTER_PRINTF_FORMAT "] ([" POINTER_PRINTF_FORMAT "] = %s)\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); optimizer()->prepareForNodeRemoval(node); ///child->recursivelyDecReferenceCount(); node->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); iter.jumpTo(prevTree); if (child->getReferenceCount() == 1) requestOpt(OMR::treeSimplification, true, block); if (nextTree->getNode()->getOpCodeValue() == TR::Goto && prevTree->getNode()->getOpCodeValue() == TR::BBStart && !prevTree->getNode()->getBlock()->isExtensionOfPreviousBlock()) { requestOpt( OMR::redundantGotoElimination, prevTree->getNode()->getBlock()); } } } else { if (performTransformation(comp(), "%sMove tree : [" POINTER_PRINTF_FORMAT "]([" POINTER_PRINTF_FORMAT "] = %s) to end of block\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); node->setVisitCount(visitCount); TR::TreeTop *lastTree = findLastTreetop(block, prevTree); TR::TreeTop *prevLastTree = lastTree->getPrevTreeTop(); TR::TreeTop *cursorTreeTop = nextTree; while (cursorTreeTop != lastTree) { if (cursorTreeTop->getNode()->getOpCode().isStoreReg() && (cursorTreeTop->getNode()->getGlobalRegisterNumber() == iter.currentTree()->getNode()->getGlobalRegisterNumber())) { lastTree = cursorTreeTop; prevLastTree = lastTree->getPrevTreeTop(); break; } cursorTreeTop = cursorTreeTop->getNextTreeTop(); } if (lastTree->getNode()->getOpCodeValue() == TR::BBStart) { prevLastTree = lastTree; lastTree = block->getExit(); } TR::Node *lastNode = lastTree->getNode(); TR::Node *prevLastNode = prevLastTree->getNode(); if (lastNode->getOpCode().isIf() && !lastNode->getOpCode().isCompBranchOnly() && prevLastNode->getOpCode().isStoreReg() && ((prevLastNode->getFirstChild() == lastNode->getFirstChild()) || (prevLastNode->getFirstChild() == lastNode->getSecondChild()))) { lastTree = prevLastTree; prevLastTree = lastTree->getPrevTreeTop(); } prevLastTree->join(iter.currentTree()); iter.currentTree()->join(lastTree); iter.jumpTo(prevTree); requestOpt(OMR::treeSimplification, true, block); } } } } for (auto it = anchors.begin(); it != anchors.end(); ++it) { TR::Node *anchor = it->tree->getNode(); TR::Node *load = anchor->getChild(0); if (load->getReferenceCount() > 1) continue; // We can eliminate the indirect load immediately, but for the moment the // subtree providing the base object has to be anchored. TR::Node *heapBase = anchor->getChild(1); TR::Node::recreate(anchor, TR::treetop); anchor->setAndIncChild(0, load->getChild(0)); anchor->setChild(1, NULL); anchor->setNumChildren(1); if (!heapBase->getOpCode().isLoadConst()) { it->tree->insertAfter( TR::TreeTop::create( comp(), TR::Node::create(heapBase, TR::treetop, 1, heapBase))); } load->recursivelyDecReferenceCount(); heapBase->recursivelyDecReferenceCount(); // A later pass of dead trees can likely move (or even remove) the base // object expression. requestOpt(OMR::deadTreesElimination, true, it->block); } return 1; // actual cost }