void drawVector(RenderingContext & rc, const Geometry::Vec3 & from, const Geometry::Vec3 & to) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); mesh = new Mesh(vertexDescription, 2, 2); mesh->setDrawMode(Mesh::DRAW_LINES); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); indices[0] = 0; indices[1] = 1; id.updateIndexRange(); id.markAsChanged(); mesh->setDataStrategy(SimpleMeshDataStrategy::getPureLocalStrategy()); } MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *> (vd.data()); *vertices++ = from.getX(); // From *vertices++ = from.getY(); *vertices++ = from.getZ(); *vertices++ = to.getX(); // To *vertices++ = to.getY(); *vertices++ = to.getZ(); vd.updateBoundingBox(); vd.markAsChanged(); rc.displayMesh(mesh.get()); }
void drawTriangle(RenderingContext & rc, const Geometry::Vec3f & vertexA, const Geometry::Vec3f & vertexB, const Geometry::Vec3f & vertexC) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); mesh = new Mesh(vertexDescription, 3, 3); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); indices[0] = 0; indices[1] = 1; indices[2] = 2; id.updateIndexRange(); id.markAsChanged(); } MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *>(vd.data()); // First vertex *vertices++ = vertexA.getX(); *vertices++ = vertexA.getY(); *vertices++ = vertexA.getZ(); // Second vertex *vertices++ = vertexB.getX(); *vertices++ = vertexB.getY(); *vertices++ = vertexB.getZ(); // Third vertex *vertices++ = vertexC.getX(); *vertices++ = vertexC.getY(); *vertices++ = vertexC.getZ(); vd.updateBoundingBox(); vd.markAsChanged(); rc.displayMesh(mesh.get()); }
void drawWireframeBox(RenderingContext & rc, const Geometry::Box & box) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); mesh = new Mesh(vertexDescription, 8, 16); mesh->setDataStrategy(SimpleMeshDataStrategy::getPureLocalStrategy()); mesh->setDrawMode(Mesh::DRAW_LINE_STRIP); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); /* * Corners: * 6---------7 * /| /| * / | / | * 2---------3 | * | | | | * | 4------|--5 * | / | / * |/ |/ * 0---------1 */ indices[0] = 0; indices[1] = 2; indices[2] = 3; indices[3] = 1; indices[4] = 5; indices[5] = 7; indices[6] = 6; indices[7] = 4; indices[8] = 0; indices[9] = 1; indices[10] = 3; indices[11] = 7; indices[12] = 5; indices[13] = 4; indices[14] = 6; indices[15] = 2; id.updateIndexRange(); id.markAsChanged(); } MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *>(vd.data()); for (uint_fast8_t c = 0; c < 8; ++c) { const Geometry::Vec3 & corner = box.getCorner(static_cast<Geometry::corner_t> (c)); *vertices++ = corner.getX(); *vertices++ = corner.getY(); *vertices++ = corner.getZ(); } vd._setBoundingBox(box); vd.markAsChanged(); rc.displayMesh(mesh.get()); }
void drawGrid(RenderingContext & rc, float scale) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); mesh = new Mesh(vertexDescription, 4 * 101, 4 * 101); mesh->setDrawMode(Mesh::DRAW_LINES); MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *> (vd.data()); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); uint32_t nextIndex = 0; const float step = 1.0f / 100.0f; for (uint_fast8_t line = 0; line < 101; ++line) { const float pos = -0.5f + static_cast<float> (line) * step; *vertices++ = -0.5f; *vertices++ = 0.0f; *vertices++ = pos; *vertices++ = 0.5f; *vertices++ = 0.0f; *vertices++ = pos; *indices++ = nextIndex++; *indices++ = nextIndex++; *vertices++ = pos; *vertices++ = 0.0f; *vertices++ = -0.5f; *vertices++ = pos; *vertices++ = 0.0f; *vertices++ = 0.5f; *indices++ = nextIndex++; *indices++ = nextIndex++; } vd.updateBoundingBox(); vd.markAsChanged(); id.updateIndexRange(); id.markAsChanged(); } Geometry::Matrix4x4 matrix; matrix.scale(scale); rc.pushMatrix_modelToCamera(); rc.multMatrix_modelToCamera(matrix); rc.displayMesh(mesh.get()); rc.popMatrix_modelToCamera(); }
void drawFrustum(RenderingContext & rc, const Geometry::Frustum & frustum, const Util::Color4f & color, float lineWidth) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); mesh = new Mesh(vertexDescription, 8, 16); mesh->setDrawMode(Mesh::DRAW_LINE_STRIP); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); indices[0] = 0; indices[1] = 2; indices[2] = 3; indices[3] = 1; indices[4] = 5; indices[5] = 7; indices[6] = 6; indices[7] = 4; indices[8] = 0; indices[9] = 1; indices[10] = 3; indices[11] = 7; indices[12] = 5; indices[13] = 4; indices[14] = 6; indices[15] = 2; id.updateIndexRange(); } MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *>(vd.data()); for (uint_fast8_t c = 0; c < 8; ++c) { const Geometry::Vec3 & corner = frustum[static_cast<Geometry::corner_t> (c)]; *vertices++ = corner.getX(); *vertices++ = corner.getY(); *vertices++ = corner.getZ(); } vd.updateBoundingBox(); vd.markAsChanged(); rc.pushAndSetLine(lineWidth); rc.pushAndSetLighting(LightingParameters(false)); rc.pushAndSetColorMaterial(color); rc.displayMesh(mesh.get()); rc.popMaterial(); rc.popLighting(); rc.popLine(); }
void drawRect(RenderingContext & rc, const Geometry::Rect & rect) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition2D(); mesh = new Mesh(vertexDescription, 4, 6); mesh->setDrawMode(Mesh::DRAW_TRIANGLES); MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *> (vd.data()); *vertices++ = 0.0f; // Bottom left *vertices++ = 0.0f; *vertices++ = 1.0f; // Bottom right *vertices++ = 0.0f; *vertices++ = 1.0f; // Top right *vertices++ = 1.0f; *vertices++ = 0.0f; // Top left *vertices++ = 1.0f; vd.updateBoundingBox(); vd.markAsChanged(); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); indices[0] = 0; indices[1] = 2; indices[2] = 1; indices[3] = 0; indices[4] = 3; indices[5] = 2; id.updateIndexRange(); id.markAsChanged(); } Geometry::Matrix4x4 matrix; matrix.translate(rect.getX(), rect.getY(), 0.0f); matrix.scale(rect.getWidth(), rect.getHeight(), 1.0f); rc.pushMatrix_modelToCamera(); rc.multMatrix_modelToCamera(matrix); rc.displayMesh(mesh.get()); rc.popMatrix_modelToCamera(); }
void ParticlePointRenderer::operator()(ParticleSystemNode* psys, FrameContext & context, const RenderParam & rp /* = 0 */) { if ( (rp.getFlag(NO_GEOMETRY)) ) return; // render particles std::vector<Particle> & particles = psys->getParticles(); uint32_t count = psys->getParticleCount(); Rendering::VertexDescription vertexDesc; const Rendering::VertexAttribute & posAttrib = vertexDesc.appendPosition3D(); const Rendering::VertexAttribute & colorAttrib = vertexDesc.appendColorRGBAByte(); // The usage of a cache for the mesh has been tested. Reusing a preallocated mesh is not faster. Util::Reference<Rendering::Mesh> mesh = new Rendering::Mesh(vertexDesc, count, count); mesh->setDataStrategy(Rendering::SimpleMeshDataStrategy::getPureLocalStrategy()); mesh->setDrawMode(Rendering::Mesh::DRAW_POINTS); // mesh->setUseIndexData(false); Rendering::MeshIndexData & indexData = mesh->openIndexData(); Rendering::MeshVertexData & vertexData = mesh->openVertexData(); Util::Reference<Rendering::PositionAttributeAccessor> positionAccessor = Rendering::PositionAttributeAccessor::create(vertexData, posAttrib.getNameId()); Util::Reference<Rendering::ColorAttributeAccessor> colorAccessor = Rendering::ColorAttributeAccessor::create(vertexData, colorAttrib.getNameId()); uint32_t * indices = indexData.data(); for(uint_fast32_t index = 0; index < count; ++index) { const Particle & p = particles[index]; colorAccessor->setColor(index, p.color); positionAccessor->setPosition(index, p.position); *indices++ = index; } indexData.markAsChanged(); indexData.updateIndexRange(); vertexData.markAsChanged(); vertexData.updateBoundingBox(); context.displayMesh(mesh.get()); }
void drawQuad(RenderingContext & rc, const Geometry::Vec3 & lowerLeft, const Geometry::Vec3 & lowerRight, const Geometry::Vec3 & upperRight, const Geometry::Vec3 & upperLeft) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); vertexDescription.appendNormalFloat(); vertexDescription.appendTexCoord(); mesh = new Mesh(vertexDescription, 4, 6); MeshIndexData & id = mesh->openIndexData(); uint32_t * indices = id.data(); indices[0] = 0; indices[1] = 1; indices[2] = 2; indices[3] = 0; indices[4] = 2; indices[5] = 3; id.updateIndexRange(); id.markAsChanged(); } const Geometry::Vec3 edgeA = lowerRight - lowerLeft; const Geometry::Vec3 edgeB = upperLeft - lowerLeft; Geometry::Vec3 normal = edgeA.cross(edgeB); normal.normalize(); MeshVertexData & vd = mesh->openVertexData(); float * vertices = reinterpret_cast<float *> (vd.data()); // Lower left *vertices++ = lowerLeft.getX(); *vertices++ = lowerLeft.getY(); *vertices++ = lowerLeft.getZ(); *vertices++ = normal.getX(); *vertices++ = normal.getY(); *vertices++ = normal.getZ(); *vertices++ = 0.0f; *vertices++ = 0.0f; // Lower right *vertices++ = lowerRight.getX(); *vertices++ = lowerRight.getY(); *vertices++ = lowerRight.getZ(); *vertices++ = normal.getX(); *vertices++ = normal.getY(); *vertices++ = normal.getZ(); *vertices++ = 1.0f; *vertices++ = 0.0f; // Upper right *vertices++ = upperRight.getX(); *vertices++ = upperRight.getY(); *vertices++ = upperRight.getZ(); *vertices++ = normal.getX(); *vertices++ = normal.getY(); *vertices++ = normal.getZ(); *vertices++ = 1.0f; *vertices++ = 1.0f; // Upper left *vertices++ = upperLeft.getX(); *vertices++ = upperLeft.getY(); *vertices++ = upperLeft.getZ(); *vertices++ = normal.getX(); *vertices++ = normal.getY(); *vertices++ = normal.getZ(); *vertices++ = 0.0f; *vertices++ = 1.0f; vd.updateBoundingBox(); vd.markAsChanged(); rc.displayMesh(mesh.get()); }
void ParticleBillboardRenderer::operator()(ParticleSystemNode * psys, FrameContext & context, const RenderParam & rp) { if(rp.getFlag(NO_GEOMETRY)) { return; } const auto & worldToCamera = context.getRenderingContext().getMatrix_worldToCamera(); const auto cameraToWorld = worldToCamera.inverse(); const auto halfRight = cameraToWorld.transformDirection(context.getWorldRightVector() * 0.5f); const auto halfUp = cameraToWorld.transformDirection(context.getWorldUpVector() * 0.5f); // 2. just update position for each particle and render // render particles const uint32_t count = psys->getParticleCount(); Rendering::VertexDescription vertexDesc; const Rendering::VertexAttribute & posAttrib = vertexDesc.appendPosition3D(); const Rendering::VertexAttribute & colorAttrib = vertexDesc.appendColorRGBAByte(); const Rendering::VertexAttribute & texCoordAttrib = vertexDesc.appendTexCoord(); // The usage of a cache for the mesh has been tested. Reusing a preallocated mesh is not faster. Util::Reference<Rendering::Mesh> mesh = new Rendering::Mesh(vertexDesc, 4 * count, 6 * count); mesh->setDataStrategy(Rendering::SimpleMeshDataStrategy::getPureLocalStrategy()); Rendering::MeshIndexData & indexData = mesh->openIndexData(); Rendering::MeshVertexData & vertexData = mesh->openVertexData(); Util::Reference<Rendering::PositionAttributeAccessor> positionAccessor = Rendering::PositionAttributeAccessor::create(vertexData, posAttrib.getNameId()); Util::Reference<Rendering::ColorAttributeAccessor> colorAccessor = Rendering::ColorAttributeAccessor::create(vertexData, colorAttrib.getNameId()); Util::Reference<Rendering::TexCoordAttributeAccessor> texCoordAccessor = Rendering::TexCoordAttributeAccessor::create(vertexData, texCoordAttrib.getNameId()); uint32_t * indices = indexData.data(); uint_fast32_t index = 0; for(const auto & p : psys->getParticles()) { const Geometry::Vec3f upOffset = halfUp * p.size.getHeight(); const Geometry::Vec3f rightOffset = halfRight * p.size.getWidth(); colorAccessor->setColor(index + 0, p.color); texCoordAccessor->setCoordinate(index + 0, Geometry::Vec2f(0.0f, 0.0f)); positionAccessor->setPosition(index + 0, p.position + upOffset - rightOffset); colorAccessor->setColor(index + 1, p.color); texCoordAccessor->setCoordinate(index + 1, Geometry::Vec2f(0.0f, 1.0f)); positionAccessor->setPosition(index + 1, p.position - upOffset - rightOffset); colorAccessor->setColor(index + 2, p.color); texCoordAccessor->setCoordinate(index + 2, Geometry::Vec2f(1.0f, 1.0f)); positionAccessor->setPosition(index + 2, p.position - upOffset + rightOffset); colorAccessor->setColor(index + 3, p.color); texCoordAccessor->setCoordinate(index + 3, Geometry::Vec2f(1.0f, 0.0f)); positionAccessor->setPosition(index + 3, p.position + upOffset + rightOffset); *indices++ = index + 0; *indices++ = index + 1; *indices++ = index + 3; *indices++ = index + 1; *indices++ = index + 2; *indices++ = index + 3; index += 4; } indexData.markAsChanged(); indexData.updateIndexRange(); vertexData.markAsChanged(); vertexData.updateBoundingBox(); context.displayMesh(mesh.get()); }
int test_OutOfCore() { #ifdef MINSG_EXT_OUTOFCORE const bool verbose = true; // Tests for MinSG::OutOfCore::CacheObjectPriority if(sizeof(MinSG::OutOfCore::CacheObjectPriority) != 8) { return EXIT_FAILURE; } if(!(MinSG::OutOfCore::CacheObjectPriority(1, 2, 3) == MinSG::OutOfCore::CacheObjectPriority(1, 2, 3))) { return EXIT_FAILURE; } if(!(MinSG::OutOfCore::CacheObjectPriority(1, 100, 100) < MinSG::OutOfCore::CacheObjectPriority(2, 0, 0))) { return EXIT_FAILURE; } if(!(MinSG::OutOfCore::CacheObjectPriority(2, 1, 100) < MinSG::OutOfCore::CacheObjectPriority(2, 2, 0))) { return EXIT_FAILURE; } if(!(MinSG::OutOfCore::CacheObjectPriority(2, 2, 1) < MinSG::OutOfCore::CacheObjectPriority(2, 2, 2))) { return EXIT_FAILURE; } std::default_random_engine engine; std::uniform_int_distribution<std::size_t> vertexCountDist(10, 1000); const uint32_t numMeshes = 30000; const Util::TemporaryDirectory tempDir("MinSGTest_OutOfCore"); // Create empty meshes and save them into a subdirectory. { Rendering::VertexDescription vertexDesc; vertexDesc.appendPosition3D(); for(uint_fast32_t i = 0; i < numMeshes; ++i) { Util::Reference<Rendering::Mesh> mesh = new Rendering::Mesh(vertexDesc, vertexCountDist(engine), 64); Rendering::MeshVertexData & vertexData = mesh->openVertexData(); std::fill_n(vertexData.data(), vertexData.dataSize(), 0); vertexData.markAsChanged(); Rendering::MeshIndexData & indexData = mesh->openIndexData(); std::fill_n(indexData.data(), indexData.getIndexCount(), 0); indexData.markAsChanged(); const std::string numberString = Util::StringUtils::toString<uint32_t>(i); Rendering::Serialization::saveMesh(mesh.get(), Util::FileName(tempDir.getPath().getDir() + numberString + ".mmf")); } } // Set up the OutOfCore system. MinSG::FrameContext frameContext; MinSG::OutOfCore::setUp(frameContext); MinSG::OutOfCore::CacheManager & manager = MinSG::OutOfCore::getCacheManager(); manager.addCacheLevel(MinSG::OutOfCore::CacheLevelType::FILE_SYSTEM, 0); manager.addCacheLevel(MinSG::OutOfCore::CacheLevelType::FILES, 512 * kibibyte); manager.addCacheLevel(MinSG::OutOfCore::CacheLevelType::MAIN_MEMORY, 256 * kibibyte); Util::Timer addTimer; addTimer.reset(); std::cout << "Adding meshes ..." << std::flush; // Add the meshes to the OutOfCore system. std::vector<Util::Reference<Rendering::Mesh> > meshes; meshes.reserve(numMeshes); static const Geometry::Box boundingBox(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f); for(uint_fast32_t i = 0; i < numMeshes; ++i) { const std::string numberString = Util::StringUtils::toString<uint32_t>(i); meshes.push_back(MinSG::OutOfCore::addMesh(Util::FileName(tempDir.getPath().getDir() + numberString + ".mmf"), boundingBox)); } manager.trigger(); addTimer.stop(); std::cout << " done (" << addTimer.getSeconds() << " s)" << std::endl; Util::Timer displayTimer; Util::Timer assureLocalTimer; Util::Timer overallTimer; overallTimer.reset(); uint32_t frame = 0; { // Simulate frames to get the OutOfCore system working. std::uniform_int_distribution<std::size_t> indexDist(0, meshes.size() - 1); for(; frame < 10; ++frame) { std::cout << "Executing frame " << frame << " ..." << std::flush; frameContext.beginFrame(); displayTimer.reset(); // Simulate display of meshes to change the priorities of the system. for(uint32_t i = 0; i < meshes.size() / 2; ++i) { const uint32_t meshIndex = indexDist(engine); Rendering::Mesh * mesh = meshes[meshIndex].get(); manager.meshDisplay(mesh); } manager.trigger(); displayTimer.stop(); assureLocalTimer.reset(); for(uint32_t i = 0; i < 10; ++i) { const uint32_t meshIndex = indexDist(engine); Rendering::Mesh * mesh = meshes[meshIndex].get(); const Rendering::MeshVertexData & vd = mesh->openVertexData(); const Rendering::MeshIndexData & id = mesh->openIndexData(); if (!vd.hasLocalData() || !id.hasLocalData()) { std::cout << "Error: Mesh has no local data." << std::endl; return EXIT_FAILURE; } } assureLocalTimer.stop(); frameContext.endFrame(); std::cout << " done (display: " << displayTimer.getSeconds() << " s, assureLocal: " << assureLocalTimer.getSeconds() << " s)" << std::endl; if(verbose) { outputCacheLevelInformation(); } } } for(uint32_t round = 0; round < 10; ++round) { Util::Timer addAgainTimer; addAgainTimer.reset(); std::cout << "Adding additional meshes ..." << std::flush; // Simulate loading a second scene by adding meshes again. meshes.reserve(meshes.size() + 3 * numMeshes); for(uint_fast32_t i = 0; i < numMeshes; ++i) { const std::string numberString = Util::StringUtils::toString<uint32_t>(i); meshes.push_back(MinSG::OutOfCore::addMesh(Util::FileName(tempDir.getPath().getDir() + numberString + ".mmf"), boundingBox)); meshes.push_back(MinSG::OutOfCore::addMesh(Util::FileName(tempDir.getPath().getDir() + numberString + ".mmf"), boundingBox)); meshes.push_back(MinSG::OutOfCore::addMesh(Util::FileName(tempDir.getPath().getDir() + numberString + ".mmf"), boundingBox)); } manager.trigger(); addAgainTimer.stop(); std::cout << " done (" << addAgainTimer.getSeconds() << " s)" << std::endl; // Simulate frames to get the OutOfCore system working. std::normal_distribution<double> indexDist(meshes.size() / 2, std::sqrt(meshes.size() / 2)); const auto untilFrame = frame + 5; for(; frame < untilFrame; ++frame) { std::cout << "Executing frame " << frame << " ..." << std::flush; frameContext.beginFrame(); displayTimer.reset(); // Simulate display of meshes to change the priorities of the system. for(uint32_t i = 0; i < meshes.size() / 10; ++i) { const std::size_t meshIndex = std::max(static_cast<std::size_t>(0), std::min(static_cast<std::size_t>(indexDist(engine)), meshes.size() - 1)); Rendering::Mesh * mesh = meshes[meshIndex].get(); manager.meshDisplay(mesh); } manager.trigger(); displayTimer.stop(); frameContext.endFrame(); std::cout << " done (display: " << displayTimer.getSeconds() << " s)" << std::endl; if(verbose) { outputCacheLevelInformation(); } } } overallTimer.stop(); std::cout << "Overall duration: " << overallTimer.getSeconds() << " s" << std::endl; MinSG::OutOfCore::shutDown(); return EXIT_SUCCESS; #else /* MINSG_EXT_OUTOFCORE */ return EXIT_FAILURE; #endif /* MINSG_EXT_OUTOFCORE */ }