typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type prod_impl(const SparseMatrixType & mat, const viennacl::vector_base<ScalarType> & vec, viennacl::vector_base<ScalarType> & result) { assert( (mat.size1() == result.size()) && bool("Size check failed for compressed matrix-vector product: size1(mat) != size(result)")); assert( (mat.size2() == vec.size()) && bool("Size check failed for compressed matrix-vector product: size2(mat) != size(x)")); switch (viennacl::traits::handle(mat).get_active_handle_id()) { case viennacl::MAIN_MEMORY: viennacl::linalg::host_based::prod_impl(mat, vec, result); break; #ifdef VIENNACL_WITH_OPENCL case viennacl::OPENCL_MEMORY: viennacl::linalg::opencl::prod_impl(mat, vec, result); break; #endif #ifdef VIENNACL_WITH_CUDA case viennacl::CUDA_MEMORY: viennacl::linalg::cuda::prod_impl(mat, vec, result); break; #endif case viennacl::MEMORY_NOT_INITIALIZED: throw memory_exception("not initialised!"); default: throw memory_exception("not implemented"); } }
typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type block_inplace_solve(const matrix_expression<const SparseMatrixType, const SparseMatrixType, op_trans> & mat, viennacl::backend::mem_handle const & block_index_array, vcl_size_t num_blocks, viennacl::vector_base<ScalarType> const & mat_diagonal, viennacl::vector_base<ScalarType> & vec, SOLVERTAG tag) { assert( (mat.size1() == mat.size2()) && bool("Size check failed for triangular solve on transposed compressed matrix: size1(mat) != size2(mat)")); assert( (mat.size1() == vec.size()) && bool("Size check failed for transposed compressed matrix triangular solve: size1(mat) != size(x)")); switch (viennacl::traits::handle(mat.lhs()).get_active_handle_id()) { case viennacl::MAIN_MEMORY: viennacl::linalg::host_based::detail::block_inplace_solve(mat, block_index_array, num_blocks, mat_diagonal, vec, tag); break; #ifdef VIENNACL_WITH_OPENCL case viennacl::OPENCL_MEMORY: viennacl::linalg::opencl::detail::block_inplace_solve(mat, block_index_array, num_blocks, mat_diagonal, vec, tag); break; #endif #ifdef VIENNACL_WITH_CUDA case viennacl::CUDA_MEMORY: viennacl::linalg::cuda::detail::block_inplace_solve(mat, block_index_array, num_blocks, mat_diagonal, vec, tag); break; #endif case viennacl::MEMORY_NOT_INITIALIZED: throw memory_exception("not initialised!"); default: throw memory_exception("not implemented"); } }
typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value, viennacl::vector<SCALARTYPE> >::type operator-(viennacl::vector_base<SCALARTYPE> & result, const viennacl::vector_expression< const SparseMatrixType, const viennacl::vector_base<SCALARTYPE>, viennacl::op_prod> & proxy) { assert(proxy.lhs().size1() == result.size() && bool("Dimensions for addition of sparse matrix-vector product to vector don't match!")); vector<SCALARTYPE> temp(proxy.lhs().size1()); viennacl::linalg::prod_impl(proxy.lhs(), proxy.rhs(), temp); result += temp; return result; }
void prod_impl(const viennacl::toeplitz_matrix<SCALARTYPE, ALIGNMENT> & mat, const viennacl::vector_base<SCALARTYPE> & vec, viennacl::vector_base<SCALARTYPE> & result) { assert(mat.size1() == result.size()); assert(mat.size2() == vec.size()); viennacl::vector<SCALARTYPE> tmp(vec.size() * 4); tmp.clear(); viennacl::vector<SCALARTYPE> tmp2(vec.size() * 4); viennacl::vector<SCALARTYPE> tep(mat.elements().size() * 2); viennacl::linalg::real_to_complex(mat.elements(), tep, mat.elements().size()); viennacl::copy(vec.begin(), vec.end(), tmp.begin()); viennacl::linalg::real_to_complex(tmp, tmp2, vec.size() * 2); viennacl::linalg::convolve(tep, tmp2, tmp); viennacl::linalg::complex_to_real(tmp, tmp2, vec.size() * 2); viennacl::copy(tmp2.begin(), tmp2.begin() + static_cast<vcl_ptrdiff_t>(vec.size()), result.begin()); }
void prod_impl(viennacl::circulant_matrix<NumericT, AlignmentV> const & mat, viennacl::vector_base<NumericT> const & vec, viennacl::vector_base<NumericT> & result) { assert(mat.size1() == result.size() && bool("Dimension mismatch")); assert(mat.size2() == vec.size() && bool("Dimension mismatch")); //result.clear(); //Rcpp::Rcout << "prod(circulant_matrix" << ALIGNMENT << ", vector) called with internal_nnz=" << mat.internal_nnz() << std::endl; viennacl::vector<NumericT> circ(mat.elements().size() * 2); viennacl::linalg::real_to_complex(mat.elements(), circ, mat.elements().size()); viennacl::vector<NumericT> tmp(vec.size() * 2); viennacl::vector<NumericT> tmp2(vec.size() * 2); viennacl::linalg::real_to_complex(vec, tmp, vec.size()); viennacl::linalg::convolve(circ, tmp, tmp2); viennacl::linalg::complex_to_real(tmp2, result, vec.size()); }
typename result_of::size_type< viennacl::vector_base<T> >::type stride(viennacl::vector_base<T> const & s) { return s.stride(); }
void MyOperator<NumericT>::apply_host(viennacl::vector_base<NumericT> const & x, viennacl::vector_base<NumericT> & y) const { NumericT const * values_x = viennacl::linalg::host_based::detail::extract_raw_pointer<NumericT>(x.handle()); NumericT * values_y = viennacl::linalg::host_based::detail::extract_raw_pointer<NumericT>(y.handle()); NumericT dx = NumericT(1) / NumericT(N_ + 1); NumericT dy = NumericT(1) / NumericT(N_ + 1); /** * In the following we iterate over all \f$ N \times N \f$ points and apply the five-point stencil directly. * This is done in a straightforward manner for illustration purposes. * Multi-threaded execution via OpenMP can be obtained by uncommenting the pragma below. * * Feel free to apply additional optimizations with respect to data access patterns and the like. **/ // feel free to use // #pragma omp parallel for // here for (std::size_t i=0; i<N_; ++i) for (std::size_t j=0; j<N_; ++j) { NumericT value_right = (j < N_ - 1) ? values_x[ i *N_ + j + 1] : 0; NumericT value_left = (j > 0 ) ? values_x[ i *N_ + j - 1] : 0; NumericT value_top = (i < N_ - 1) ? values_x[(i+1)*N_ + j ] : 0; NumericT value_bottom = (i > 0 ) ? values_x[(i-1)*N_ + j ] : 0; NumericT value_center = values_x[i*N_ + j]; values_y[i*N_ + j] = ((value_right - value_center) / dx - (value_center - value_left) / dx) / dx + ((value_top - value_center) / dy - (value_center - value_bottom) / dy) / dy; } }
static vcl_size_t size2(viennacl::vector_base<ScalarType> const & /*lhs*/, viennacl::vector_base<ScalarType> const & rhs) { return rhs.size(); }
static vcl_size_t size1(viennacl::vector_base<ScalarType> const & lhs, viennacl::vector_base<ScalarType> const & /*rhs*/) { return lhs.size(); }
static vcl_size_t size2(viennacl::vector_base<T> const & lhs, const int k) { return lhs.size() + static_cast<vcl_size_t>(std::fabs(double(k))); }