bool toEigen(const yarp::sig::Vector & vec_yrp, Eigen::VectorXd & vec_eigen) { if( vec_yrp.size() != vec_eigen.size() ) { vec_eigen.resize(vec_yrp.size()); } if( memcpy(vec_eigen.data(),vec_yrp.data(),sizeof(double)*vec_eigen.size()) != NULL ) { return true; } else { return false; } }
void OpenSoT::tasks::velocity::Postural::setReference(const yarp::sig::Vector &x_desired, const yarp::sig::Vector &xdot_desired) { assert(x_desired.size() == _x_size); assert(xdot_desired.size() == _x_size); _x_desired = x_desired; _xdot_desired = xdot_desired; this->update_b(); }
bool iDynTreetoYarp(const iDynTree::Wrench & iDynTreeWrench,yarp::sig::Vector & yarpVector) { if( yarpVector.size() != 6 ) { yarpVector.resize(6); } memcpy(yarpVector.data(),iDynTreeWrench.getLinearVec3().data(),3*sizeof(double)); memcpy(yarpVector.data()+3,iDynTreeWrench.getAngularVec3().data(),3*sizeof(double)); return true; }
//ANALOG SENSOR int GazeboYarpJointSensorsDriver::read(yarp::sig::Vector &out) { ///< \todo TODO in my opinion the reader should care of passing a vector of the proper dimension to the driver, but apparently this is not the case /* if( (int)jointsensors_data.size() != jointsensors_nr_of_channels || (int)out.size() != jointsensors_nr_of_channels ) { return AS_ERROR; } */ if( (int)jointsensors_data.size() != jointsensors_nr_of_channels ) { return AS_ERROR; } if( (int)out.size() != jointsensors_nr_of_channels ) { std::cout << " GazeboYarpJointSensorsDriver:read() warning : resizing input vector, this can probably be avoided" << std::endl; out.resize(jointsensors_nr_of_channels); } data_mutex.wait(); out = jointsensors_data; data_mutex.post(); return AS_OK; }
void ObjectModelGrid::addContactPoint(const yarp::sig::Vector fingertipPosition){ assert(fingertipPosition.size() == 3); cout << "Contact position: " << fingertipPosition.toString() << endl; _contactPoints.push_back(fingertipPosition); }
bool toiDynTree(const yarp::sig::Vector& yarpVector, iDynTree::Vector3& iDynTreeVector3) { if( yarpVector.size() != 3 ) { return false; } memcpy(iDynTreeVector3.data(),yarpVector.data(),3*sizeof(double)); return true; }
bool LinearMean::setHyperparameters(const yarp::sig::Vector newHyperPar) { if (newHyperPar.size()!=this->getNumberOfHyperparameters()) return false; meanLinearHyperparam=newHyperPar.subVector(0, newHyperPar.size()-2); meanOffset=newHyperPar(newHyperPar.size()-1); return true; }
bool isEqual(const yarp::sig::Vector& a, const yarp::sig::Vector& b, const double& tolerance) { if (a.size() != b.size()) return false; for (size_t i = 0; i < a.size(); i++) { if (fabs(a[i] - b[i]) > tolerance) { return false; } } return true; }
bool yarpWholeBodyModelV1::convertGeneralizedTorques(yarp::sig::Vector idyntree_base_force, yarp::sig::Vector idyntree_torques, double * tau) { if( idyntree_base_force.size() != 6 && (int)idyntree_torques.size() != p_model->getNrOfDOFs() ) { return false; } for(int j = 0; j < 6; j++ ) { tau[j] = idyntree_base_force[j]; } for(int wbi_joint_numeric_id=0; wbi_joint_numeric_id < this->dof; wbi_joint_numeric_id++ ) { tau[wbi_joint_numeric_id+6] = idyntree_torques[wbiToiDynTreeJointId[wbi_joint_numeric_id]]; } return true; }
//--------------------------------------------------------- bool yarpToEigenVector(const yarp::sig::Vector &yarpVector, Eigen::VectorXd &eigenVector) { if(yarpVector.size() == 0) { cout<<"ERROR: input vector is empty (yarpToEigenVector)"<<endl; return false; } //resize and fill eigen vector with yarp vector elements eigenVector.resize(yarpVector.size()); for(unsigned int i = 0; i < yarpVector.size(); i++) eigenVector(i) = yarpVector(i); return true; };
void MultiTaskLinearGPRLearner::setWeightsStandardDeviation(const yarp::sig::Vector& s) { if( s.size() != this->getDomainCols() ) { throw std::runtime_error("MultiTaskLinearGPRLearner: wrong dimension of noise std deviation"); } inv_Sigma_w = zeros(this->getDomainCols(),this->getDomainCols()); for(unsigned i=0; i < s.size(); i++ ) { inv_Sigma_w(i,i) = 1/(s[i]*s[i]); } this->weight_prior_indefinite = false; this->reset(); }
bool RobotUtils::setReferenceSpeeds(const yarp::sig::Vector &maximum_velocity) { assert(maximum_velocity.size() == this->getNumberOfJoints()); if(!bodyIsInPositionMode()) { std::cout << "Trying to set reference speeds for the whole coman " << "but the robot is not entirely in Position Mode"; return false; } yarp::sig::Vector velocity_torso, velocity_right_arm, velocity_left_arm, velocity_right_leg, velocity_left_leg, velocity_head; idynutils.fromIDynToRobot(maximum_velocity, velocity_torso, idynutils.torso); idynutils.fromIDynToRobot(maximum_velocity, velocity_right_arm, idynutils.right_arm); idynutils.fromIDynToRobot(maximum_velocity, velocity_left_arm, idynutils.left_arm); idynutils.fromIDynToRobot(maximum_velocity, velocity_right_leg, idynutils.right_leg); idynutils.fromIDynToRobot(maximum_velocity, velocity_left_leg, idynutils.left_leg); if(head.isAvailable) idynutils.fromIDynToRobot(maximum_velocity, velocity_head, idynutils.head); return torso.setReferenceSpeeds(velocity_torso) && right_arm.setReferenceSpeeds(velocity_right_arm) && left_arm.setReferenceSpeeds(velocity_left_arm) && right_leg.setReferenceSpeeds(velocity_right_leg) && left_leg.setReferenceSpeeds(velocity_left_leg) && (head.isAvailable || head.setReferenceSpeeds(velocity_head)); }
/** * Some helper function for converting between Yarp,KDL and Eigen * matrix types. * */ bool toYarp(const KDL::Wrench & ft, yarp::sig::Vector & ft_yrp) { if( ft_yrp.size() != 6 ) { ft_yrp.resize(6); } for(int i=0; i < 6; i++ ) { ft_yrp[i] = ft[i]; } }
bool MathHelper::yarpToEigenVector(const yarp::sig::Vector& yarpVector, Eigen::VectorXd& eigenVector) { if(yarpVector.size() == 0) { printf ("ERROR: input vector is empty.\n"); return false; } //resize and fill eigen vector with yarp vector elements eigenVector.resize(yarpVector.size()); for(unsigned int i = 0; i < yarpVector.size(); i++) { eigenVector(i) = yarpVector(i); } return true; }
bool toYarp(const Vector3& iDynTreeVector3, yarp::sig::Vector& yarpVector) { if( yarpVector.size() != 3 ) { yarpVector.resize(3); } memcpy(yarpVector.data(),iDynTreeVector3.data(),3*sizeof(double)); return true; }
bool toYarp(const iDynTree::Position& iDynTreePosition, yarp::sig::Vector& yarpVector) { if( yarpVector.size() != 3 ) { yarpVector.resize(3); } memcpy(yarpVector.data(),iDynTreePosition.data(),3*sizeof(double)); return true; }
bool toiDynTree(const yarp::sig::Vector& yarpVector, VectorDynSize& iDynTreeVector) { iDynTreeVector.resize(yarpVector.size()); memcpy(iDynTreeVector.data(),yarpVector.data(),yarpVector.size()*sizeof(double)); return true; }
bool yarp::dev::FrameTransformClient::transformPose(const std::string &target_frame_id, const std::string &source_frame_id, const yarp::sig::Vector &input_pose, yarp::sig::Vector &transformed_pose) { if (input_pose.size() != 6) { yError() << "sorry.. only 6 dimensional vector (3 axes + roll pith and yaw) allowed, dear friend of mine.."; return false; } if (transformed_pose.size() != 6) { yWarning("FrameTransformClient::transformPose() performance warning: size transformed_pose should be 6, resizing"); transformed_pose.resize(6, 0.0); } yarp::sig::Matrix m(4, 4); if (!getTransform(target_frame_id, source_frame_id, m)) { yError() << "no transform found between source '" << target_frame_id << "' and target '" << source_frame_id << "'"; return false; } FrameTransform t; t.transFromVec(input_pose[0], input_pose[1], input_pose[2]); t.rotFromRPY(input_pose[3], input_pose[4], input_pose[5]); t.fromMatrix(m * t.toMatrix()); transformed_pose[0] = t.translation.tX; transformed_pose[1] = t.translation.tY; transformed_pose[2] = t.translation.tZ; yarp::sig::Vector rot; rot = t.getRPYRot(); transformed_pose[3] = rot[0]; transformed_pose[4] = rot[1]; transformed_pose[5] = rot[2]; return true; }
void Postural::setReference(const yarp::sig::Vector& x_desired) { assert(x_desired.size() == _x_size); _x_desired = x_desired; _xdot_desired.zero(); this->update_b(); }
Postural::Postural( const yarp::sig::Vector& x) : Task("Postural", x.size()), _x(x), _x_desired(x.size(),0.0), _xdot_desired(x.size(),0.0) { _W.resize(_x_size, _x_size); _W.eye(); _A.resize(_x_size, _x_size); _A.eye(); _hessianType = HST_IDENTITY; /* first update. Setting desired pose equal to the actual pose */ this->setReference(x); this->_update(x); }
void MultiTaskLinearGPRLearner::setNoiseStandardDeviation(const yarp::sig::Vector& s) { if( s.size() != this->getDomainRows() ) { throw std::runtime_error("MultiTaskLinearGPRLearner: wrong dimension of noise std deviation"); } inv_Sigma_n = zeros(this->getDomainRows(),this->getDomainRows()); for(unsigned i=0; i < s.size(); i++ ) { inv_Sigma_n(i,i) = 1/(s[i]*s[i]); } this->no_output_error = false; this->reset(); }
/* Both ds and result should be of the same dimension */ bool TactileData::diff(TactileData &ds, yarp::sig::Vector &result, bool ifAbs) { double *data = this->data(); int size = this->size(); //check if dimensions of two DataSample match (though it will be always ;) ) if(ds.size() != size) { cout << "Dimensions do not match: " << ds.size() << " " << size << endl; return false; } if(result.size() != size) { cout << "WARNING. Dimension of result vector is different. Reset it" << endl; result.resize(size); } if(ifAbs) { for(int i = 0; i < size; i++) { result[i] = std::fabs(data[i] - ds[i]); //result.push_back(this->data[i] - ds[i]); } } else { for(int i = 0; i < size; i++) { result[i] = data[i] - ds[i]; //result.push_back(this->data[i] - ds[i]); } } return true; }
bool YarptoiDynTree(const yarp::sig::Vector & yarpVector, iDynTree::Wrench & iDynTreeWrench) { if( yarpVector.size() != 6 ) return false; memcpy(iDynTreeWrench.getLinearVec3().data(),yarpVector.data(),3*sizeof(double)); memcpy(iDynTreeWrench.getAngularVec3().data(),yarpVector.data()+3,3*sizeof(double)); return true; }
bool Vector_write(const std::string file_name, const yarp::sig::Vector & vec) { FILE * fp; uint32_t len; double elem; len = vec.size(); fp = fopen(file_name.c_str(),"wb"); if( fp == NULL ) return false; fwrite(&len,sizeof(uint32_t),1,fp); for(size_t i=0;i<len;i++) { elem = vec[i]; fwrite(&elem,sizeof(double),1,fp); } /* if( gsl_vector_fwrite(fp,(gsl_vector *)vec.getGslVector()) == GSL_EFAILED ) { fclose(fp); return false; }*/ fclose(fp); return true; }
void iCub::skinDynLib::vectorIntoBottle(const yarp::sig::Vector v, yarp::os::Bottle &b) { for (unsigned int i = 0; i < v.size(); i++) { b.addDouble(v[i]); } }
void CB::iCubConfigurationReference::setVals(yarp::sig::Vector ref) { if(ref.size() != values.size()) { std::cout << "Couldn't set reference values for " << deviceName.c_str() << "!!" << std::endl; return; } else { values = ref; } }
void yarp::rtf::jointsPosMotion::setSpeed(yarp::sig::Vector &speedlist) { RTF_ASSERT_ERROR_IF_FALSE((speedlist.size() != mPriv->jointsList.size()), "Speed list has a different size of joint list"); mPriv->speed = speedlist; for (size_t i = 0; i < mPriv->n_joints; i++) { mPriv->ipos->setRefSpeed((int)mPriv->jointsList[i], mPriv->speed[i]); } }
bool isEqual(const yarp::sig::Vector& v1, const yarp::sig::Vector& v2, double precision) { if (v1.size() != v2.size()) { return false; } for (size_t i = 0; i < v1.size(); i++) { double check = fabs(v1[i] - v2[i]); if (check > precision) { return false; } } return true; }
void Recognizer::saveFilteredScores(const yarp::sig::Vector &scores, string &path) { ofstream outFile(path.c_str(), ios_base::app); for (unsigned int i=0; i<scores.size(); i++) { outFile << scores[i] << " "; } outFile << endl; outFile.close(); }
void yarp2idyntree(const yarp::sig::Vector & yarpVector, iDynTree::VectorDynSize & idyntreeVector) { idyntreeVector.resize(yarpVector.size()); for(size_t row=0; row < idyntreeVector.size(); row++) { idyntreeVector(row) = yarpVector(row); } return; }