Exemplo n.º 1
0
/**************************************************************************//**
 * @brief  Setup the ACMP
 *****************************************************************************/
void setupACMP(void)
{
  /* ACMP configuration constant table. */
  static const ACMP_Init_TypeDef initACMP =
  {
    .fullBias = false,                 /* fullBias */
    .halfBias = true,                  /* halfBias */
    .biasProg =  0x0,                  /* biasProg */
    .interruptOnFallingEdge =  false,  /* interrupt on rising edge */
    .interruptOnRisingEdge =  false,   /* interrupt on falling edge */
    //.interruptOnFallingEdge =  true,  /* interrupt on rising edge */
    //.interruptOnRisingEdge =  true,   /* interrupt on falling edge */
    .warmTime = acmpWarmTime4,       /* 512 cycle warmup to be safe */
    .hysteresisLevel = acmpHysteresisLevel0, /* No Hysteresis */
    .inactiveValue = false,            /* inactive value */
    .lowPowerReferenceEnabled = true, /* low power reference */
    .vddLevel = 32,                  /* VDD level : VDD/2 */
    .enable = false                    /* Don't request enabling. */
  };


  /* Configure ACMP. */
  ACMP_Init(ACMP1, &initACMP);
  /* Disable ACMP0 out to a pin. */
  ACMP_GPIOSetup(ACMP1, 0, false, false);
  /* Set up ACMP negSel to VDD, posSel is controlled by LESENSE. */
  ACMP_ChannelSet(ACMP1, acmpChannelVDD, acmpChannel0);
  /* LESENSE controls ACMP thus ACMP_Enable(ACMP0) should NOT be called in order
   * to ensure lower current consumption. */

#ifdef DEBUG_ACMP
  ACMP_ChannelSet(ACMP1, acmpChannelVDD, acmpChannel2);
  ACMP1->IEN = 1;
  ACMP_Enable(ACMP1);
  NVIC_ClearPendingIRQ(ACMP0_IRQn);
  NVIC_EnableIRQ(ACMP0_IRQn);
#endif
}

#ifdef DEBUG_ACMP
// ACMP IRQ Handler is shared between ACMP0 and ACMP1
void ACMP0_IRQHandler(void)
{
  PRINTF("%s\r\n",__func__);
  ACMP1->IFC = 1;
  NVIC_ClearPendingIRQ(ACMP0_IRQn);
}
/**************************************************************************//**
 * @brief  ACMP_setup
 * Configures and starts the ACMP
 *****************************************************************************/
void ACMP_setup(void)
{
  /* Enable necessary clocks */
  CMU_ClockEnable(cmuClock_ACMP0, true);
  CMU_ClockEnable(cmuClock_GPIO, true);

  /* Configure PC4 as input with pull down for ACMP channel 4 input */
  GPIO_PinModeSet(gpioPortC, 4, gpioModeInputPullFilter, 0);

  /* Analog comparator parameters */
  const ACMP_Init_TypeDef acmpInit =
  {
    .fullBias                 = false,                  /* no full bias current*/
    .halfBias                 = false,                  /* no half bias current */
    .biasProg                 = 7,                      /* Biasprog current 1.4 uA */
    .interruptOnFallingEdge   = false,                  /* disable interrupt for falling edge */
    .interruptOnRisingEdge    = false,                  /* disable interrupt for rising edge */
    .warmTime                 = acmpWarmTime256,        /* Warm-up time in clock cycles, should be >140 cycles for >10us warm-up @ 14MHz */
    .hysteresisLevel          = acmpHysteresisLevel0,   /* Hysteresis level 0  - no hysteresis */
    .inactiveValue            = 0,                      /* Inactive comparator output value */
    .lowPowerReferenceEnabled = false,                  /* Low power reference mode disabled */
    .vddLevel                 = 32,                     /* Vdd reference scaling of 32 */
  };

  /* Init ACMP and set ACMP channel 4 as positive input
     and scaled Vdd as negative input */
  ACMP_Init(ACMP0, &acmpInit);
  ACMP_ChannelSet(ACMP0, acmpChannelVDD, acmpChannel4);
  ACMP_Enable(ACMP0);
}

/**************************************************************************//**
 * @brief  PRS_ScanChannel
 * Waits for activity on a selected PRS channel and writes on the LCD 
   when activity occurs
 *  
 * @param[in] timer  
 *   Pointer to TIMER peripheral register block.
 *
 * @param[in] prsCh
 * 	 PRS Channel to be monitored
 *
 * @param[in] edgeType
 *   Signal edge to be monitored/captured 
 *****************************************************************************/
void PRS_ScanChannel(TIMER_TypeDef *timer, TIMER_PRSSEL_TypeDef prsCh, TIMER_Edge_TypeDef edgeType)
{
  
/* enable the clock for the correct timer */  
#define TIMER_Clock(T) (T==TIMER0 ? cmuClock_TIMER0 : \
                          T==TIMER1 ? cmuClock_TIMER1 : 0)
  
  /* Enable necessary clocks */
  CMU_ClockEnable((CMU_Clock_TypeDef)TIMER_Clock(timer), true);
    
  /* Initialize LCD */
  SegmentLCD_Init(false);

  /* Select CC channel parameters */
  const TIMER_InitCC_TypeDef timerCCInit = 
  {
    .eventCtrl  = timerEventFalling,      /* input capture event control */
    .edge       = edgeType,               /* input capture on falling edge */
    .prsSel     = prsCh,                  /* prs channel select channel 5*/
    .cufoa      = timerOutputActionNone,  /* no action on counter underflow */
    .cofoa      = timerOutputActionNone,  /* no action on counter overflow */
    .cmoa       = timerOutputActionNone,  /* no action on counter match */
    .mode       = timerCCModeCapture,     /* CC channel mode capture */
    .filter     = false,                  /* no filter */
    .prsInput   = true,                   /* CC channel PRS input */
    .coist      = false,                  /* comparator output initial state */
    .outInvert  = false,                  /* no output invert */
  };
  
  /* Initialize TIMER0 CC0 */
  TIMER_InitCC(timer, 0, &timerCCInit);
  
  /* Select timer parameters */  
  const TIMER_Init_TypeDef timerInit =
  {
    .enable     = true,                         /* start counting when init complete */         
    .debugRun   = false,                        /* counter not running on debug halt */  
    .prescale   = timerPrescale1024,            /* prescaler of 64 */
    .clkSel     = timerClkSelHFPerClk,          /* TIMER0 clocked by the HFPERCLK */
    .fallAction = timerInputActionNone,         /* stop counter on falling edge */
    .riseAction = timerInputActionNone,         /* reload and start on rising edge */
    .mode       = timerModeUp,                  /* counting up */
    .dmaClrAct  = false,                        /* no DMA */
    .quadModeX4 = false,                        /* no quad decoding */
    .oneShot    = false,                        /* counting up constinuously */
    .sync       = false,                        /* no start/stop/reload by other timers */
  };
  
  /* Initialize TIMER0 */
  TIMER_Init(timer, &timerInit);  
  
  /* Poll the Input Capture Valid flag in the Status register
      The program will hang at this point waiting for activity on this
	  channel */
  while(!((TIMER0->STATUS & _TIMER_STATUS_ICV0_MASK )>>16));  
}

/**************************************************************************//**
 * @brief  Main function
 * Main is called from __iar_program_start, see assembly startup file
 *****************************************************************************/
int main(void)
{
  /* Align different chip revisions*/
  CHIP_Init();
  
  /* Initialise the ACMP */
  ACMP_setup();

  /* PRS setup */
  /* Enable clock for PRS and select ACMP as source and ACMP0OUT (ACMP0 OUTPUT) as signal 
     for channel 5 */
  CMU_ClockEnable(cmuClock_PRS, true);
  PRS_SourceSignalSet(5, PRS_CH_CTRL_SOURCESEL_ACMP0, PRS_CH_CTRL_SIGSEL_ACMP0OUT, prsEdgeOff);
  
  /* Start PRS scan 
     This function will halt the program while there is no PRS activity
     This function assumes that the PRS has been setup previously */
  PRS_ScanChannel(TIMER0, timerPRSSELCh5, timerEdgeFalling);
  
  /* Write PRS and channel number on the LCD to acknowledge PRS activity */  
  SegmentLCD_Write("PRS");
  SegmentLCD_Number((int)timerPRSSELCh5);
  
  while(1)
  {
    /* Enter EM1 while waiting for capture. */
    EMU_EnterEM1();
  }
}
Exemplo n.º 3
0
/**************************************************************************//**
 * @brief  TIMER0_setup
 * Configures the TIMER
 *****************************************************************************/
void TIMER_setup(void)
{
  /* Enable necessary clocks */
  CMU_ClockEnable(cmuClock_TIMER0, true);
  CMU_ClockEnable(cmuClock_PRS, true);

  /* Select CC channel parameters */
  TIMER_InitCC_TypeDef timerCCInit =
  {
    .eventCtrl  = timerEventEveryEdge,      /* Input capture event control */
    .edge       = timerEdgeBoth,       /* Input capture on falling edge */
    .prsSel     = timerPRSSELCh5,         /* Prs channel select channel 5*/
    .cufoa      = timerOutputActionNone,  /* No action on counter underflow */
    .cofoa      = timerOutputActionNone,  /* No action on counter overflow */
    .cmoa       = timerOutputActionNone,  /* No action on counter match */
    .mode       = timerCCModeCapture,     /* CC channel mode capture */
    .filter     = false,                  /* No filter */
    .prsInput   = true,                   /* CC channel PRS input */
    .coist      = false,                  /* Comparator output initial state */
    .outInvert  = false,                  /* No output invert */
  };

  /* Initialize TIMER0 CC0 channel */
  TIMER_InitCC(HIJACK_RX_TIMER, 0, &timerCCInit);

  /* Select timer parameters */
  const TIMER_Init_TypeDef timerInit =
  {
    .enable     = false,                        /* Do not start counting when init complete */
    .debugRun   = false,                        /* Counter not running on debug halt */
    .prescale   = HIJACK_TIMER_RESOLUTION,      /* Prescaler of 1 */
    .clkSel     = timerClkSelHFPerClk,          /* TIMER0 clocked by the HFPERCLK */
    .fallAction = timerInputActionReloadStart,         /* Stop counter on falling edge */
    .riseAction = timerInputActionReloadStart,  /* Reload and start on rising edge */
    .mode       = timerModeUp,                  /* Counting up */
    .dmaClrAct  = false,                        /* No DMA */
    .quadModeX4 = false,                        /* No quad decoding */
    .oneShot    = false,                        /* Counting up constinuously */
    .sync       = false,                        /* No start/stop/reload by other timers */
  };

  /* Initialize TIMER0 */
  TIMER_Init(HIJACK_RX_TIMER, &timerInit);

  /* PRS setup */
  /* Select ACMP as source and ACMP0OUT (ACMP0 OUTPUT) as signal */
  PRS_SourceSignalSet(5, PRS_CH_CTRL_SOURCESEL_ACMP0, PRS_CH_CTRL_SIGSEL_ACMP0OUT, prsEdgeOff);

  /* Enable CC0 interrupt */
  TIMER_IntEnable(HIJACK_RX_TIMER, TIMER_IF_CC0);

  /* Enable TIMER0 interrupt vector in NVIC */
  NVIC_EnableIRQ(TIMER0_IRQn);
}

/**************************************************************************//**
 * @brief  ACMP_setup
 * Configures and starts the ACMP
 *****************************************************************************/
static void ACMP_setup(void)
{
  /* Enable necessary clocks */
  CMU_ClockEnable(HIJACK_RX_ACMPCLK, true);
  CMU_ClockEnable(cmuClock_GPIO, true);

  /* Configure ACMP input pin. */
  GPIO_PinModeSet(HIJACK_RX_GPIO_PORT, HIJACK_RX_GPIO_PIN, gpioModeInput, 0);

  /* Analog comparator parameters */
  const ACMP_Init_TypeDef acmpInit =
  {
    .fullBias                 = false,                  /* No full bias current*/
    .halfBias                 = true,                  /* No half bias current */
    .biasProg                 = 2,                      /* Biasprog current 1.4 uA */
    .interruptOnFallingEdge   = false,                  /* Disable interrupt for falling edge */
    .interruptOnRisingEdge    = false,                  /* Disable interrupt for rising edge */
    .warmTime                 = acmpWarmTime256,        /* Warm-up time in clock cycles, should be >140 cycles for >10us warm-up @ 14MHz */
    .hysteresisLevel          = acmpHysteresisLevel7,   /* Hysteresis level 0  - no hysteresis */
    .inactiveValue            = 1,                      /* Inactive comparator output value */
    .lowPowerReferenceEnabled = false,                  /* Low power reference mode disabled */
    .vddLevel                 = HIJACK_RX_ACMP_LEVEL,                     /* Vdd reference scaling of 32 */
  };

  /* Use ACMP0 output, PD6 . */
  //GPIO_PinModeSet(gpioPortD, 6, gpioModePushPull, 0);
  //ACMP_GPIOSetup(ACMP0, 2, true, false);

  /* Init ACMP and set ACMP channel 4 as positive input
     and scaled Vdd as negative input */
  ACMP_Init(HIJACK_RX_ACMP, &acmpInit);
  ACMP_ChannelSet(HIJACK_RX_ACMP, HIJACK_RX_ACMP_NEG, HIJACK_RX_ACMP_CH);
  ACMP_Enable(HIJACK_RX_ACMP);
}

/**
 * @brief calculate whether cnt is in 500us region
 * ticker = 64Mhz/128 = 2us
 * 475us < cnt < 510us
 *
 */
static chk_result_t IsTime2Detect(uint32_t inv)
{
  	chk_result_t ret;
	
  	if( inv < HIJACK_DEC_NUM_TICKS_MIN){
    	offset = inv;
	    ret = pass;
  	}
	else if ( ( inv <= HIJACK_DEC_NUM_TICKS_MAX ) && ( inv >= HIJACK_DEC_NUM_TICKS_MIN ) ) {
		offset = 0;
		inv = 0;
	  	ret = suit;
	}
	else{
		offset = 0;
		inv = 0;
		ret = error;
	}
	return ret;
}

/*
 * Find phase remain or phase reversal.
*/

static void dec_parser(uint8_t bit_msk, state_t state)
{
  	if ( ( suit == IsTime2Detect(inv) ) ){ //it's time to determine
		if( falling == cur_edge ){
	  		dec.data &= ~(1 << bit_msk);
#if DEC_DEBUG == 1
			uartPutChar( '+' ) ;
			uartPutChar( '_' ) ;
#endif//DEC_DEBUG == 1
		}
		else{
		   	dec.data |= (1 << bit_msk);
#if DEC_DEBUG == 1
			uartPutChar( '_' ) ;
			uartPutChar( '+' ) ;
#endif//DEC_DEBUG == 1
			dec.odd++;
		}
		dec.state = state;   //state switch
	}
	else if ( error == IsTime2Detect(inv) ){   //wait for edge detection time
		dec.state = Waiting;   //state switch
	}
}
/**************************************************************************//**
 * @brief  decode state machine
 * Invoke in TIMER_ISR for decoding.
 *****************************************************************************/
void decode_machine(void)
{
   	inv = offset + cur_stamp;  //update offset
#if 0
	if( dec.state > Waiting ){
	  	USART_printHexBy16u(inv);
		if(cur_edge == rising){
			uartPutChar( '\\' ) ;
		}
		else{
			uartPutChar( '/' ) ;
		}
	}
#endif	
	switch (dec.state){
		case Waiting:
         	/* go to start bit if rising edge exist. */
         	if (rising == cur_edge) {
            	dec.state = Sta0;
            	offset = 0;
				inv = 0;
         	}
			break;
			//
		case Sta0:
         	if( ( suit == IsTime2Detect(inv) ) && ( falling == cur_edge ) ){
				dec.data = 0;  //clear data field for store new potential data
				dec.odd = 0;   //clear odd field parity counter
				dec.state = Bit0;
#if DEC_DEBUG == 1
			  	uartPutChar( 'S' ) ;
				uartPutChar( '+' ) ;
				uartPutChar( '_' ) ;
#endif
         	}
			else{
				dec.state = Waiting;
			}
	   		break;
			//
		case Bit0:
#if DEC_DEBUG == 1
			uartPutChar( '0' ) ;
#endif
		  	dec_parser(BIT0, Bit1);
	   		break;
			//
		case Bit1:
#if DEC_DEBUG == 1
			uartPutChar( '1' ) ;
#endif
		  	dec_parser(BIT1, Bit2);
	   		break;
			//
		case Bit2:
#if DEC_DEBUG == 1
			uartPutChar( '2' ) ;
#endif
		  	dec_parser(BIT2, Bit3);
	   		break;
			//
		case Bit3:
#if DEC_DEBUG == 1
			uartPutChar( '3' ) ;
#endif
		  	dec_parser(BIT3, Bit4);
	   		break;
			//
		case Bit4:
#if DEC_DEBUG == 1
			uartPutChar( '4' ) ;
#endif
		  	dec_parser(BIT4, Bit5);
	   		break;
			//
		case Bit5:
#if DEC_DEBUG == 1
			uartPutChar( '5' ) ;
#endif
		  	dec_parser(BIT5, Bit6);
	   		break;
			//
		case Bit6:
#if DEC_DEBUG == 1
			uartPutChar( '6' ) ;
#endif
		  	dec_parser(BIT6, Bit7);
	   		break;
			//
		case Bit7:
#if DEC_DEBUG == 1
			uartPutChar( '7' ) ;
#endif
		  	dec_parser(BIT7, Parity);
	   		break;
			//
		case Parity:		
			if ( ( suit == IsTime2Detect(inv) ) ){ //it's time to determine
				if( rising == cur_edge ){
				   dec.odd++;
#if DEC_DEBUG == 1
				   uartPutChar( '_' ) ;
				   uartPutChar( '+' ) ;
#endif
				}
				else{
#if DEC_DEBUG == 1
				   uartPutChar( '+' ) ;
				 	uartPutChar( '_' ) ;
#endif					
				}
#if DEC_DEBUG == 1
					uartPutChar( dec.odd + 0x30) ;
#endif
				if( 1 == (dec.odd%2)){  //parity pass
				   dec.state = Sto0;
				}
				else{ //parity failed
				   dec.state = Waiting;
				}
			 }
			 else if ( error == IsTime2Detect(inv) ){   //wait for edge detection time
				dec.state = Waiting;
			 }
			break;
			//
      	case Sto0:	
         	if ( ( suit == IsTime2Detect(inv) ) ){ //it's time to determine
				if( rising == cur_edge ){  //stop bit is rising edge
				    USART_txByte(dec.data);
#if DEC_DEBUG == 1
					uartPutChar( '_' ) ;
				    uartPutChar( '+' ) ;
#endif
				    HIJACKPutData(&dec.data, &decBuf, sizeof(uint8_t));
				}
				else{
#if DEC_DEBUG == 1
				  	uartPutChar( '+' ) ;
				 	uartPutChar( '_' ) ;
#endif			
				}
				dec.state = Waiting;
#if DEC_DEBUG == 1
				uartPutChar( '\r' ) ;
				uartPutChar( '\n' ) ;
#endif
         	}
         	else if ( error == IsTime2Detect(inv) ){   //wait for edge detection time
				dec.state = Waiting;
			}
         	break;
         	//
		default:
	  		break;
			//
	}
}
/**************************************************************************//**
 * @brief  Sets up the ACMP
 *****************************************************************************/
void setupACMP(void)
{
  /* Configuration structure for ACMP */
  static const ACMP_Init_TypeDef acmpInit =
  {
    .fullBias                 = false,                
    .halfBias                 = false,                
    .biasProg                 = 0x6,                  /* Experiment with higher value if sensor doesn't work */
    .interruptOnFallingEdge   = false,
    .interruptOnRisingEdge    = false,
    .warmTime                 = acmpWarmTime256,      /* Warmuptime should be longer than 10 micro s */
    .hysteresisLevel          = acmpHysteresisLevel0, 
    .inactiveValue            = false,
    .lowPowerReferenceEnabled = false,
    .vddLevel                 = 0x00,                 /* Controlled by LESENSE */
    .enable                   = false
  };

  /* Initialize ACMP */
  ACMP_Init(ACMP0, &acmpInit);
  /* Disable ACMP0 out to a pin. */
  ACMP_GPIOSetup(ACMP0, 0, false, false);
  
  /* Set up ACMP negSel to VDD, posSel is controlled by LESENSE. */
  ACMP_ChannelSet(ACMP0, acmpChannelVDD, acmpChannel0);

  /* LESENSE controls ACMP thus ACMP_Enable(ACMP0) should NOT be called in order
   * to ensure lower current consumption. */
}



/**************************************************************************//**
 * @brief  Sets up the LESENSE
 *****************************************************************************/
void setupLESENSE(void)
{
  /* LESENSE configuration structure */
  static const LESENSE_Init_TypeDef initLesense =
  {
    .coreCtrl         =  LESENSE_CORECTRL_DESC_DEFAULT,
    .timeCtrl         =  LESENSE_TIMECTRL_DESC_DEFAULT,
    .perCtrl          = 
    {
      .dacCh0Data     = lesenseDACIfData,
      .dacCh0ConvMode = lesenseDACConvModeDisable,
      .dacCh0OutMode  = lesenseDACOutModeDisable,
      .dacCh1Data     = lesenseDACIfData,
      .dacCh1ConvMode = lesenseDACConvModeDisable,
      .dacCh1OutMode  = lesenseDACOutModeDisable,
      .dacPresc       = 0,
      .dacRef         = lesenseDACRefBandGap,
      .acmp0Mode      = lesenseACMPModeMuxThres, /* LESENSE controls the threshold value (VDDLEVEL) of ACMP0 */
      .acmp1Mode      = lesenseACMPModeMuxThres, /* LESENSE controls the threshold value (VDDLEVEL) of ACMP1 */
      .warmupMode     = lesenseWarmupModeNormal  /* The analog comparators are shut down when LESENSE is idle */
    },
    .decCtrl          = LESENSE_DECCTRL_DESC_DEFAULT
  };

  /* Channel configuration */
  static const LESENSE_ChDesc_TypeDef initLesenseCh =
  {
    .enaScanCh     = true,                      /* Enable scan on this channel */
    .enaPin        = false,
    .enaInt        = false, 
    .chPinExMode   = lesenseChPinExHigh,        /*  Pin is high when excitating */
    .chPinIdleMode = lesenseChPinIdleDis,       /* Pin idle when channel idle  */
    .useAltEx      = true,                      /* Use alternative excitation pin  */
    .shiftRes      = true,                      /* Result is shifted into the decoder register */
    .invRes        = false,
    .storeCntRes   = true,
    .exClk         = lesenseClkHF,              /* Use HF clock for excitation timing */
    .sampleClk     = lesenseClkHF,              /* Use HF clock for sample timing */
    .exTime        = 0x1F,                      /* Clk cycles to excite emitter and decoder */
    .sampleDelay   = 0x1F,                      /* Clc cycles to wait before sampling comparator */
    .measDelay     = 0x00, 
    .acmpThres     = 0x0F,                      /* Initial comperator threshold  */
    .sampleMode    = lesenseSampleModeACMP,
    .intMode       = lesenseSetIntNone,
    .cntThres      = 0x0000,
    .compMode      = lesenseCompModeLess 
  };

  /* Alternate excitation channels configuration */
  static const LESENSE_ConfAltEx_TypeDef initAltEx =
  {
    .altExMap = lesenseAltExMapALTEX, 
    .AltEx[0] = 
    {
      .enablePin = true,
      .idleConf  = lesenseAltExPinIdleDis,
      .alwaysEx  = true /* Connected to IR sensor */
    },
    .AltEx[1] = 
    {
      .enablePin = true,
      .idleConf  = lesenseAltExPinIdleDis,
      .alwaysEx  = false /* Connected to IR LED */
    }
  };

  /* Initialize LESENSE interface _with_ RESET. */
  LESENSE_Init(&initLesense, true);
   
  /* Configure channels */
  LESENSE_ChannelConfig(&initLesenseCh, 0);
  LESENSE_ChannelConfig(&initLesenseCh, 1); 
  
  /* Configure alternate excitation channels */
  LESENSE_AltExConfig(&initAltEx);
  
  
  /* State machine proximity sensor setup */
  
  LESENSE_DecStDesc_TypeDef decConf =
  {
    .chainDesc = false,
    .confA     = 
    {
      .compVal   = 0x1, /* Trigger transition when scan result = compVal */
      .compMask  = 0xC, /* Mask out the upper two bits */
      .nextState = STATE_1,
      .prsAct    = lesenseTransActNone,
      .setInt    = true
    },
    .confB       = 
    {
      .compVal   = 0x1, 
      .compMask  = 0xC, 
      .nextState = STATE_1,
      .prsAct    = lesenseTransActNone,
      .setInt    = true
    }
  };
Exemplo n.º 5
0
int rt28xx_init(
	IN PRTMP_ADAPTER pAd, 
	IN PSTRING pDefaultMac, 
	IN PSTRING pHostName)
{
	UINT					index;
	UCHAR					TmpPhy;
	NDIS_STATUS				Status;
	UINT32 					MacCsr0 = 0;

#ifdef CONFIG_STA_SUPPORT
#ifdef PCIE_PS_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_STA(pAd)
	{
    	// If dirver doesn't wake up firmware here,
    	// NICLoadFirmware will hang forever when interface is up again.
    	if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE) &&
        	OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_ADVANCE_POWER_SAVE_PCIE_DEVICE))
    	{
        	AUTO_WAKEUP_STRUC AutoWakeupCfg;
			AsicForceWakeup(pAd, TRUE);
        	AutoWakeupCfg.word = 0;
	    	RTMP_IO_WRITE32(pAd, AUTO_WAKEUP_CFG, AutoWakeupCfg.word);
        	OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_DOZE);
    	}
	}
#endif // PCIE_PS_SUPPORT //
#endif // CONFIG_STA_SUPPORT //


	// reset Adapter flags
	RTMP_CLEAR_FLAGS(pAd);

	// Init BssTab & ChannelInfo tabbles for auto channel select.
#ifdef CONFIG_AP_SUPPORT	
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
		AutoChBssTableInit(pAd);
		ChannelInfoInit(pAd);
	}
#endif // CONFIG_AP_SUPPORT //

#ifdef DOT11_N_SUPPORT
	// Allocate BA Reordering memory
	if (ba_reordering_resource_init(pAd, MAX_REORDERING_MPDU_NUM) != TRUE)		
		goto err1;
#endif // DOT11_N_SUPPORT //

	// Make sure MAC gets ready.
	index = 0;
	do
	{
		RTMP_IO_READ32(pAd, MAC_CSR0, &MacCsr0);
		pAd->MACVersion = MacCsr0;

		if ((pAd->MACVersion != 0x00) && (pAd->MACVersion != 0xFFFFFFFF))
			break;

		if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST))			
			goto err1;
		
		RTMPusecDelay(10);
	} while (index++ < 100);
	DBGPRINT(RT_DEBUG_TRACE, ("MAC_CSR0  [ Ver:Rev=0x%08x]\n", pAd->MACVersion));

#ifdef RTMP_MAC_PCI

	// To fix driver disable/enable hang issue when radio off
	RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x2);
#endif // RTMP_MAC_PCI //

	// Disable DMA
	RT28XXDMADisable(pAd);


	// Load 8051 firmware
	Status = NICLoadFirmware(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("NICLoadFirmware failed, Status[=0x%08x]\n", Status));
		goto err1;
	}

	NICLoadRateSwitchingParams(pAd);

	// Disable interrupts here which is as soon as possible
	// This statement should never be true. We might consider to remove it later
#ifdef RTMP_MAC_PCI
	if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_ACTIVE))
	{
		RTMP_ASIC_INTERRUPT_DISABLE(pAd);
	}
#endif // RTMP_MAC_PCI //

#ifdef RESOURCE_PRE_ALLOC
	Status = RTMPInitTxRxRingMemory(pAd);
#else
	Status = RTMPAllocTxRxRingMemory(pAd);
#endif // RESOURCE_PRE_ALLOC //

	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("RTMPAllocTxRxMemory failed, Status[=0x%08x]\n", Status));
		goto err2;
	}

	RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE);

	// initialize MLME
	//

	Status = RtmpMgmtTaskInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
		goto err3;

	Status = MlmeInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("MlmeInit failed, Status[=0x%08x]\n", Status));
		goto err4;
	}

#ifdef RMTP_RBUS_SUPPORT
#ifdef VIDEO_TURBINE_SUPPORT
	VideoConfigInit(pAd);
#endif // VIDEO_TURBINE_SUPPORT //
#endif // RMTP_RBUS_SUPPORT //

	// Initialize pAd->StaCfg, pAd->ApCfg, pAd->CommonCfg to manufacture default
	//
	UserCfgInit(pAd);

	Status = RtmpNetTaskInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
		goto err5;

//	COPY_MAC_ADDR(pAd->ApCfg.MBSSID[apidx].Bssid, netif->hwaddr);
//	pAd->bForcePrintTX = TRUE;

	CfgInitHook(pAd);

#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
		APInitialize(pAd);
#endif // CONFIG_AP_SUPPORT //	

#ifdef BLOCK_NET_IF
	initblockQueueTab(pAd);
#endif // BLOCK_NET_IF //

	Status = MeasureReqTabInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("MeasureReqTabInit failed, Status[=0x%08x]\n",Status));
		goto err6;	
	}
	Status = TpcReqTabInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("TpcReqTabInit failed, Status[=0x%08x]\n",Status));
		goto err6;	
	}

	//
	// Init the hardware, we need to init asic before read registry, otherwise mac register will be reset
	//
	Status = NICInitializeAdapter(pAd, TRUE);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("NICInitializeAdapter failed, Status[=0x%08x]\n", Status));
		if (Status != NDIS_STATUS_SUCCESS)
		goto err6;
	}	

	// Read parameters from Config File 
	Status = RTMPReadParametersHook(pAd);

	DBGPRINT(RT_DEBUG_OFF, ("1. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("RTMPReadParametersHook failed, Status[=0x%08x]\n",Status));
		goto err6;
	}



#ifdef DOT11_N_SUPPORT
   	//Init Ba Capability parameters.
//	RT28XX_BA_INIT(pAd);
	pAd->CommonCfg.DesiredHtPhy.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity;
	pAd->CommonCfg.DesiredHtPhy.AmsduEnable = (USHORT)pAd->CommonCfg.BACapability.field.AmsduEnable;
	pAd->CommonCfg.DesiredHtPhy.AmsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize;
	pAd->CommonCfg.DesiredHtPhy.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode;
	// UPdata to HT IE
	pAd->CommonCfg.HtCapability.HtCapInfo.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode;
	pAd->CommonCfg.HtCapability.HtCapInfo.AMsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize;
	pAd->CommonCfg.HtCapability.HtCapParm.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity;
#endif // DOT11_N_SUPPORT //

	// after reading Registry, we now know if in AP mode or STA mode

	// Load 8051 firmware; crash when FW image not existent
	// Status = NICLoadFirmware(pAd);
	// if (Status != NDIS_STATUS_SUCCESS)
	//    break;

	DBGPRINT(RT_DEBUG_OFF, ("2. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));

	// We should read EEPROM for all cases.  rt2860b
	NICReadEEPROMParameters(pAd, (PUCHAR)pDefaultMac);	
#ifdef CONFIG_STA_SUPPORT
#endif // CONFIG_STA_SUPPORT //

	DBGPRINT(RT_DEBUG_OFF, ("3. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));

	NICInitAsicFromEEPROM(pAd); //rt2860b
	
#ifdef RTMP_INTERNAL_TX_ALC
	//
	// Initialize the desired TSSI table
	//
	InitDesiredTSSITable(pAd);
#endif // RTMP_INTERNAL_TX_ALC //

	// Set PHY to appropriate mode
	TmpPhy = pAd->CommonCfg.PhyMode;
	pAd->CommonCfg.PhyMode = 0xff;
	RTMPSetPhyMode(pAd, TmpPhy);
#ifdef DOT11_N_SUPPORT
	SetCommonHT(pAd);
#endif // DOT11_N_SUPPORT //

	// No valid channels.
	if (pAd->ChannelListNum == 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Wrong configuration. No valid channel found. Check \"ContryCode\" and \"ChannelGeography\" setting.\n"));
		goto err6;
	}

#ifdef DOT11_N_SUPPORT
	DBGPRINT(RT_DEBUG_OFF, ("MCS Set = %02x %02x %02x %02x %02x\n", pAd->CommonCfg.HtCapability.MCSSet[0],
           pAd->CommonCfg.HtCapability.MCSSet[1], pAd->CommonCfg.HtCapability.MCSSet[2],
           pAd->CommonCfg.HtCapability.MCSSet[3], pAd->CommonCfg.HtCapability.MCSSet[4]));
#endif // DOT11_N_SUPPORT //


#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef AP_QLOAD_SUPPORT
		/* init QBSS Element */
		QBSS_LoadInit(pAd);
#endif // AP_QLOAD_SUPPORT //

	}
#endif // CONFIG_AP_SUPPORT //

//		APInitialize(pAd);

#ifdef IKANOS_VX_1X0
	VR_IKANOS_FP_Init(pAd->ApCfg.BssidNum, pAd->PermanentAddress);
#endif // IKANOS_VX_1X0 //


		//
	// Initialize RF register to default value
	//
	AsicSwitchChannel(pAd, pAd->CommonCfg.Channel, FALSE);
	AsicLockChannel(pAd, pAd->CommonCfg.Channel);		

	/*
		Some modules init must be called before APStartUp().
		Or APStartUp() will make up beacon content and call
		other modules API to get some information to fill.
	*/
#ifdef WMM_ACM_SUPPORT
#ifdef CONFIG_AP_SUPPORT
	ACMP_Init(pAd,
			pAd->CommonCfg.APEdcaParm.bACM[0],
			pAd->CommonCfg.APEdcaParm.bACM[1],
			pAd->CommonCfg.APEdcaParm.bACM[2],
			pAd->CommonCfg.APEdcaParm.bACM[3], 0);
#endif // CONFIG_AP_SUPPORT //
#ifdef CONFIG_STA_SUPPORT
	ACMP_Init(pAd);
#endif // CONFIG_STA_SUPPORT //
#endif // WMM_ACM_SUPPORT //



	if (pAd && (Status != NDIS_STATUS_SUCCESS))
	{
		//
		// Undo everything if it failed
		//
		if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE))
		{
//			NdisMDeregisterInterrupt(&pAd->Interrupt);
			RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE);
		}
//		RTMPFreeAdapter(pAd); // we will free it in disconnect()
	}
	else if (pAd)
	{
		// Microsoft HCT require driver send a disconnect event after driver initialization.
		OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED);
//		pAd->IndicateMediaState = NdisMediaStateDisconnected;
		RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_MEDIA_STATE_CHANGE);

		DBGPRINT(RT_DEBUG_TRACE, ("NDIS_STATUS_MEDIA_DISCONNECT Event B!\n"));

#ifdef CONFIG_AP_SUPPORT
		IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
		{
			if (pAd->ApCfg.bAutoChannelAtBootup || (pAd->CommonCfg.Channel == 0))
			{
				UINT8 BBPValue = 0;
				
				// Enable Interrupt first due to we need to scan channel to receive beacons.
				RTMP_IRQ_ENABLE(pAd);

				// Now Enable RxTx
				RTMPEnableRxTx(pAd);
				RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_START_UP);

				// Let BBP register at 20MHz to do scan		
				RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
				BBPValue &= (~0x18);
				RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
				DBGPRINT(RT_DEBUG_ERROR, ("SYNC - BBP R4 to 20MHz.l\n"));

				// Now we can receive the beacon and do the listen beacon
				// use default BW to select channel
				pAd->CommonCfg.Channel = AP_AUTO_CH_SEL(pAd, pAd->ApCfg.AutoChannelAlg);
				pAd->ApCfg.bAutoChannelAtBootup = FALSE;
			}

#ifdef DOT11_N_SUPPORT
			// If phymode > PHY_11ABGN_MIXED and BW=40 check extension channel, after select channel  
			N_ChannelCheck(pAd);

#ifdef DOT11N_DRAFT3
        		/* 
         			We only do this Overlapping BSS Scan when system up, for the 
				other situation of channel changing, we depends on station's 
				report to adjust ourself.
			*/
			if (pAd->CommonCfg.bForty_Mhz_Intolerant == TRUE)
			{
				DBGPRINT(RT_DEBUG_TRACE, ("Disable 20/40 BSSCoex Channel Scan(BssCoex=%d, 40MHzIntolerant=%d)\n", 
											pAd->CommonCfg.bBssCoexEnable, 
											pAd->CommonCfg.bForty_Mhz_Intolerant));
			}
			else if(pAd->CommonCfg.bBssCoexEnable == TRUE)
			{	
				DBGPRINT(RT_DEBUG_TRACE, ("Enable 20/40 BSSCoex Channel Scan(BssCoex=%d)\n", 
							pAd->CommonCfg.bBssCoexEnable));
				APOverlappingBSSScan(pAd);
			}

			RTMP_11N_D3_TimerInit(pAd);
//			RTMPInitTimer(pAd, &pAd->CommonCfg.Bss2040CoexistTimer, GET_TIMER_FUNCTION(Bss2040CoexistTimeOut), pAd, FALSE);
#endif // DOT11N_DRAFT3 //
#endif // DOT11_N_SUPPORT //
#ifdef RELASE_EXCLUDE
	/*
	3090, 3090A and 3390 all support hadware tone radar function. But the soluation of those are different.
	3090 is the old one.
	*/
#endif // RELASE_EXCLUDE //
			APStartUp(pAd);
			DBGPRINT(RT_DEBUG_OFF, ("Main bssid = %02x:%02x:%02x:%02x:%02x:%02x\n", 
									PRINT_MAC(pAd->ApCfg.MBSSID[BSS0].Bssid)));
		}
#endif // CONFIG_AP_SUPPORT //

	}// end of else

#ifdef WSC_INCLUDED
#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
		INT apidx;
#ifdef HOSTAPD_SUPPORT
		if (pAd->ApCfg.Hostapd == TRUE)
		{
			DBGPRINT(RT_DEBUG_TRACE, ("WPS is control by hostapd now.\n"));
		}
		else
#endif //HOSTAPD_SUPPORT//
		for (apidx = 0; apidx < pAd->ApCfg.BssidNum; apidx++)
		{
			PWSC_CTRL pWscControl;
			UCHAR zeros16[16]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

			pWscControl = &pAd->ApCfg.MBSSID[apidx].WscControl;
			DBGPRINT(RT_DEBUG_TRACE, ("Generate UUID for apidx(%d)\n", apidx));

			if (NdisEqualMemory(&pWscControl->Wsc_Uuid_E[0], zeros16, UUID_LEN_HEX))
				WscGenerateUUID(pAd, &pWscControl->Wsc_Uuid_E[0], &pWscControl->Wsc_Uuid_Str[0], apidx, FALSE);

			WscInit(pAd, FALSE, apidx);

			if (pWscControl->WscEnrolleePinCode == 0)
			{
				pWscControl->WscEnrolleePinCode = GenerateWpsPinCode(pAd, FALSE, apidx);
				pWscControl->WscEnrolleePinCodeLen = 8;
			}
		}
	}
#endif // CONFIG_AP_SUPPORT //

#ifdef CONFIG_STA_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_STA(pAd)
	{
		PWSC_CTRL pWscControl = &pAd->StaCfg.WscControl;
		
		WscGenerateUUID(pAd, &pWscControl->Wsc_Uuid_E[0], &pWscControl->Wsc_Uuid_Str[0], 0, FALSE);
		WscInit(pAd, BSS0);
		if (pWscControl->WscEnrolleePinCode == 0)
		{
			pWscControl->WscEnrolleePinCode = GenerateWpsPinCode(pAd, BSS0);
			pWscControl->WscEnrolleePinCodeLen = 8;
		}
	}
#endif // CONFIG_STA_SUPPORT //

	/* WSC hardware push button function 0811 */
	WSC_HDR_BTN_Init(pAd);
#endif // WSC_INCLUDED //

	// Set up the Mac address
	RtmpOSNetDevAddrSet(pAd->net_dev, &pAd->CurrentAddress[0]);

	// Various AP function init
#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef MBSS_SUPPORT
		/* the function can not be moved to RT2860_probe() even register_netdev()
		   is changed as register_netdevice().
		   Or in some PC, kernel will panic (Fedora 4) */
		RT28xx_MBSS_Init(pAd, pAd->net_dev);
#endif // MBSS_SUPPORT //

#ifdef WDS_SUPPORT
		RT28xx_WDS_Init(pAd, pAd->net_dev);
#endif // WDS_SUPPORT //

#ifdef APCLI_SUPPORT
		RT28xx_ApCli_Init(pAd, pAd->net_dev);
#endif // APCLI_SUPPORT //
	}
#endif // CONFIG_AP_SUPPORT //


#ifdef RTMP_RBUS_SUPPORT
#ifdef VIDEO_TURBINE_SUPPORT
	VideoTurbineDynamicTune(pAd);
#endif // VIDEO_TURBINE_SUPPORT //
#endif // RTMP_RBUS_SUPPORT //

#ifdef RTMP_RBUS_SUPPORT
#ifdef RT3XXX_ANTENNA_DIVERSITY_SUPPORT
	RT3XXX_AntDiversity_Init(pAd);
#endif // RT3XXX_ANTENNA_DIVERSITY_SUPPORT //
#endif // RTMP_RBUS_SUPPORT //

#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef MAT_SUPPORT
		MATEngineInit(pAd);
#endif // MAT_SUPPORT //

#ifdef CLIENT_WDS
	CliWds_ProxyTabInit(pAd);
#endif // CLIENT_WDS //
	}
#endif // CONFIG_AP_SUPPORT //

#ifdef CONFIG_STA_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_STA(pAd)
	{
#ifdef DOT11Z_TDLS_SUPPORT
		TDLS_Table_Init(pAd);
#endif // DOT11Z_TDLS_SUPPORT //

#ifdef WPA_SUPPLICANT_SUPPORT
#ifndef NATIVE_WPA_SUPPLICANT_SUPPORT
		// send wireless event to wpa_supplicant for infroming interface up.
		RtmpOSWrielessEventSend(pAd, IWEVCUSTOM, RT_INTERFACE_UP, NULL, NULL, 0);
#endif // NATIVE_WPA_SUPPLICANT_SUPPORT //
#endif // WPA_SUPPLICANT_SUPPORT //

	}
#endif // CONFIG_STA_SUPPORT //

#if defined(RT2883) || defined(RT3883)
#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
		if (IS_RT2883(pAd)  || IS_RT3883(pAd))
		{
#ifdef RANGE_EXT_SUPPORT
			RTMP_IO_WRITE32(pAd, HT_FBK_CFG1, 0xedcba980);
#endif // RANGE_EXT_SUPPORT //
			RTMP_IO_WRITE32(pAd, TX_FBK_CFG_3S_0, 0x12111008);
			RTMP_IO_WRITE32(pAd, TX_FBK_CFG_3S_1, 0x16151413);
		}

#ifdef STREAM_MODE_SUPPORT
		if (pAd->CommonCfg.StreamMode > 0)
		{
			ULONG streamWord = StreamModeRegVal(pAd);

			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR0_L, (ULONG)(pAd->CommonCfg.StreamModeMac[0][0]) | (ULONG)(pAd->CommonCfg.StreamModeMac[0][1] << 8)  | 
							(ULONG)(pAd->CommonCfg.StreamModeMac[0][2] << 16) | (ULONG)(pAd->CommonCfg.StreamModeMac[0][3] << 24));
			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR0_H, streamWord | (ULONG)(pAd->CommonCfg.StreamModeMac[0][4]) | (ULONG)(pAd->CommonCfg.StreamModeMac[0][5] << 8));
			
			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR1_L, (ULONG)(pAd->CommonCfg.StreamModeMac[1][0]) | (ULONG)(pAd->CommonCfg.StreamModeMac[1][1] << 8)  | 
						(ULONG)(pAd->CommonCfg.StreamModeMac[1][2] << 16) | (ULONG)(pAd->CommonCfg.StreamModeMac[1][3] << 24));
			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR1_H, streamWord | (ULONG)(pAd->CommonCfg.StreamModeMac[1][4]) | (ULONG)(pAd->CommonCfg.StreamModeMac[1][5] << 8));

			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR2_L, (ULONG)(pAd->CommonCfg.StreamModeMac[2][0]) | (ULONG)(pAd->CommonCfg.StreamModeMac[2][1] << 8)  | 
						(ULONG)(pAd->CommonCfg.StreamModeMac[2][2] << 16) | (ULONG)(pAd->CommonCfg.StreamModeMac[2][3] << 24));
			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR2_H, streamWord | (ULONG)(pAd->CommonCfg.StreamModeMac[2][4]) | (ULONG)(pAd->CommonCfg.StreamModeMac[2][5] << 8));

			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR3_L, (ULONG)(pAd->CommonCfg.StreamModeMac[3][0]) | (ULONG)(pAd->CommonCfg.StreamModeMac[3][1] << 8)  | 
						(ULONG)(pAd->CommonCfg.StreamModeMac[3][2] << 16) | (ULONG)(pAd->CommonCfg.StreamModeMac[3][3] << 24));
			RTMP_IO_WRITE32(pAd, TX_CHAIN_ADDR3_H, streamWord | (ULONG)(pAd->CommonCfg.StreamModeMac[3][4]) | (ULONG)(pAd->CommonCfg.StreamModeMac[3][5] << 8));

		}
#endif // STREAM_MODE_SUPPORT //
	
	}
#endif // CONFIG_AP_SUPPORT //

	if (pAd->CommonCfg.FineAGC)
	{
		UINT8 BBPValue = 0;
		BBP_IO_READ8_BY_REG_ID(pAd, BBP_R65, &BBPValue);
		BBPValue |= 0x40; // turn on fine AGC
		BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R65, BBPValue);
	}
	else
	{
		UINT8 BBPValue = 0;
		BBP_IO_READ8_BY_REG_ID(pAd, BBP_R65, &BBPValue);
		BBPValue &= ~0x40; // turn off fine AGC
		BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R65, BBPValue);
	}
	
#endif // defined(RT2883) || defined(RT3883) //

#ifdef DOT11_N_SUPPORT
#ifdef TXBF_SUPPORT
	if (pAd->CommonCfg.ITxBfTimeout)
	{
		RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R179, 0x02);
		RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R180, 0);
		RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R182, pAd->CommonCfg.ITxBfTimeout & 0xFF);
		RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R180, 1);
		RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R182, (pAd->CommonCfg.ITxBfTimeout>>8) & 0xFF);
	}
Exemplo n.º 6
0
int rt28xx_init(
	IN PRTMP_ADAPTER pAd, 
	IN PSTRING pDefaultMac, 
	IN PSTRING pHostName)
{
	UINT					index;
	UCHAR					TmpPhy;
	NDIS_STATUS				Status;
	UINT32 					MacCsr0 = 0;
	UINT16					ChipId = 0;
	


	// reset Adapter flags
	RTMP_CLEAR_FLAGS(pAd);

	// Init BssTab & ChannelInfo tabbles for auto channel select.
#ifdef CONFIG_AP_SUPPORT	
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
//#ifdef AUTO_CH_SELECT_ENHANCE
		AutoChBssTableInit(pAd);
		ChannelInfoInit(pAd);
//#endif // AUTO_CH_SELECT_ENHANCE //
	}
#endif // CONFIG_AP_SUPPORT //

#ifdef DOT11_N_SUPPORT
	// Allocate BA Reordering memory
	if (ba_reordering_resource_init(pAd, MAX_REORDERING_MPDU_NUM) != TRUE)		
		goto err1;
#endif // DOT11_N_SUPPORT //

	// Make sure MAC gets ready.
	index = 0;
	do
	{
		RTMP_IO_READ32(pAd, MAC_CSR0, &MacCsr0);
		pAd->MACVersion = MacCsr0;

		/* The purpose is to identify RT5390H */
		RT28xx_EEPROM_READ16(pAd, 0x00, ChipId);
		pAd->ChipId = ChipId;

		if ((pAd->MACVersion != 0x00) && (pAd->MACVersion != 0xFFFFFFFF))
			break;

		if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST))			
			goto err1;
		
		RTMPusecDelay(10);
	} while (index++ < 100);
	DBGPRINT(RT_DEBUG_TRACE, ("MAC_CSR0  [ Ver:Rev=0x%08x]\n", pAd->MACVersion));

#ifdef RT5390
	if (IS_RT5390H(pAd))
		DBGPRINT(RT_DEBUG_ERROR, ("The chip belongs to 0x%04x\n", pAd->ChipId));
#endif /* RT5390 */


#ifdef SPECIFIC_BCN_BUF_SUPPORT
	pAd->BcnCB.DYN_MAX_MBSSID_NUM = 1;
	if (IS_RT5390(pAd) || IS_RT3593(pAd))
	{		
		pAd->BcnCB.bHighShareMemSupport = 1;
		pAd->BcnCB.DYN_HW_BEACON_BASE0 = 0x4000;
		pAd->BcnCB.DYN_HW_BEACON_MAX_SIZE = 0x2000;
		pAd->BcnCB.DYN_HW_BEACON_MAX_COUNT = 16;
#ifdef MBSS_SUPPORT
		
#ifdef APCLI_SUPPORT
		pAd->BcnCB.DYN_MAX_MBSSID_NUM = 8 - MAX_MESH_NUM;
#else
		pAd->BcnCB.DYN_MAX_MBSSID_NUM = 16 - MAX_MESH_NUM;
#endif // APCLI_SUPPORT //		
#endif // MBSS_SUPPORT //
	}
	else
	{		
		pAd->BcnCB.bHighShareMemSupport = 0;
		pAd->BcnCB.DYN_HW_BEACON_BASE0 = 0x7800;
		pAd->BcnCB.DYN_HW_BEACON_MAX_SIZE = 0x1000;
		pAd->BcnCB.DYN_HW_BEACON_MAX_COUNT = 8;		
#ifdef MBSS_SUPPORT
		pAd->BcnCB.DYN_MAX_MBSSID_NUM =	(pAd->BcnCB.DYN_HW_BEACON_MAX_COUNT - MAX_MESH_NUM - MAX_APCLI_NUM);
#endif // MBSS_SUPPORT //
	}
#endif // SPECIFIC_BCN_BUF_SUPPORT //

#ifdef RTMP_MAC_PCI
#if defined(RT3090) || defined(RT3592) || defined(RT3390) || defined(RT3593) || defined(RT5390)
	/*Iverson patch PCIE L1 issue to make sure that driver can be read,write ,BBP and RF register  at pcie L.1 level */
	if ((IS_RT3090(pAd) || IS_RT3572(pAd) ||
		IS_RT3390(pAd) || IS_RT3593(pAd) || IS_RT5390(pAd))&&pAd->infType==RTMP_DEV_INF_PCIE)
	{
		RTMP_IO_READ32(pAd, AUX_CTRL, &MacCsr0);
		MacCsr0 |= 0x402;
		RTMP_IO_WRITE32(pAd, AUX_CTRL, MacCsr0);
		DBGPRINT(RT_DEBUG_TRACE, ("AUX_CTRL = 0x%x\n", MacCsr0));
	}
#endif // RT3090 //

	// To fix driver disable/enable hang issue when radio off
	RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x2);
#endif // RTMP_MAC_PCI //

	// Disable DMA
	RT28XXDMADisable(pAd);


	// Load 8051 firmware
	Status = NICLoadFirmware(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("NICLoadFirmware failed, Status[=0x%08x]\n", Status));
		goto err1;
	}

	NICLoadRateSwitchingParams(pAd);

	// Disable interrupts here which is as soon as possible
	// This statement should never be true. We might consider to remove it later
#ifdef RTMP_MAC_PCI
	if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_ACTIVE))
	{
		RTMP_ASIC_INTERRUPT_DISABLE(pAd);
	}
#endif // RTMP_MAC_PCI //

#ifdef RESOURCE_PRE_ALLOC
	Status = RTMPInitTxRxRingMemory(pAd);
#else
	Status = RTMPAllocTxRxRingMemory(pAd);
#endif // RESOURCE_PRE_ALLOC //

	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("RTMPAllocTxRxMemory failed, Status[=0x%08x]\n", Status));
		goto err2;
	}

	RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE);

	// initialize MLME
	//

	Status = RtmpMgmtTaskInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
		goto err3;

	Status = MlmeInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("MlmeInit failed, Status[=0x%08x]\n", Status));
		goto err4;
	}

#ifdef RMTP_RBUS_SUPPORT
#ifdef VIDEO_TURBINE_SUPPORT
	VideoConfigInit(pAd);
#endif // VIDEO_TURBINE_SUPPORT //
#endif // RMTP_RBUS_SUPPORT //

	// Initialize pAd->StaCfg, pAd->ApCfg, pAd->CommonCfg to manufacture default
	//
	UserCfgInit(pAd);

	Status = RtmpNetTaskInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
		goto err5;

//	COPY_MAC_ADDR(pAd->ApCfg.MBSSID[apidx].Bssid, netif->hwaddr);
//	pAd->bForcePrintTX = TRUE;

	CfgInitHook(pAd);

#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
		APInitialize(pAd);
#endif // CONFIG_AP_SUPPORT //	

#ifdef BLOCK_NET_IF
	initblockQueueTab(pAd);
#endif // BLOCK_NET_IF //

	Status = MeasureReqTabInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("MeasureReqTabInit failed, Status[=0x%08x]\n",Status));
		goto err6;	
	}
	Status = TpcReqTabInit(pAd);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("TpcReqTabInit failed, Status[=0x%08x]\n",Status));
		goto err6;	
	}

	//
	// Init the hardware, we need to init asic before read registry, otherwise mac register will be reset
	//
	Status = NICInitializeAdapter(pAd, TRUE);
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("NICInitializeAdapter failed, Status[=0x%08x]\n", Status));
		if (Status != NDIS_STATUS_SUCCESS)
		goto err6;
	}	

#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
	}
#endif // CONFIG_AP_SUPPORT //

	// Read parameters from Config File 
	/* unknown, it will be updated in NICReadEEPROMParameters */
	pAd->RfIcType = RFIC_UNKNOWN;
	Status = RTMPReadParametersHook(pAd);

	DBGPRINT(RT_DEBUG_OFF, ("1. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));
	if (Status != NDIS_STATUS_SUCCESS)
	{
		DBGPRINT_ERR(("RTMPReadParametersHook failed, Status[=0x%08x]\n",Status));
		goto err6;
	}



#ifdef DOT11_N_SUPPORT
   	//Init Ba Capability parameters.
//	RT28XX_BA_INIT(pAd);
	pAd->CommonCfg.DesiredHtPhy.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity;
	pAd->CommonCfg.DesiredHtPhy.AmsduEnable = (USHORT)pAd->CommonCfg.BACapability.field.AmsduEnable;
	pAd->CommonCfg.DesiredHtPhy.AmsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize;
	pAd->CommonCfg.DesiredHtPhy.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode;
	// UPdata to HT IE
	pAd->CommonCfg.HtCapability.HtCapInfo.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode;
	pAd->CommonCfg.HtCapability.HtCapInfo.AMsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize;
	pAd->CommonCfg.HtCapability.HtCapParm.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity;
#endif // DOT11_N_SUPPORT //

	// after reading Registry, we now know if in AP mode or STA mode

	// Load 8051 firmware; crash when FW image not existent
	// Status = NICLoadFirmware(pAd);
	// if (Status != NDIS_STATUS_SUCCESS)
	//    break;

	DBGPRINT(RT_DEBUG_OFF, ("2. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));

	// We should read EEPROM for all cases.  rt2860b
	NICReadEEPROMParameters(pAd, (PUCHAR)pDefaultMac);	

	DBGPRINT(RT_DEBUG_OFF, ("3. Phy Mode = %d\n", pAd->CommonCfg.PhyMode));

	NICInitAsicFromEEPROM(pAd); //rt2860b
	

#ifdef RTMP_INTERNAL_TX_ALC
	//
	// Initialize the desired TSSI table
	//
	InitDesiredTSSITable(pAd);
#endif // RTMP_INTERNAL_TX_ALC //

 #if defined(RT5390)  || defined(RT5370)
 	//
	// Temperature compensation, initialize the lookup table
	//
	DBGPRINT(RT_DEBUG_ERROR, ("IS_RT5392 = %d, bAutoTxAgcG = %d\n", IS_RT5392(pAd), pAd->bAutoTxAgcG));
	if (IS_RT5392(pAd) && pAd->bAutoTxAgcG && pAd->CommonCfg.TempComp != 0)
	{
		InitLookupTable(pAd);
	}
#endif // defined(RT5390)  || defined(RT5370) //

	// Set PHY to appropriate mode
	TmpPhy = pAd->CommonCfg.PhyMode;
	pAd->CommonCfg.PhyMode = 0xff;
	RTMPSetPhyMode(pAd, TmpPhy);
#ifdef DOT11_N_SUPPORT
	SetCommonHT(pAd);
#endif // DOT11_N_SUPPORT //

	// No valid channels.
	if (pAd->ChannelListNum == 0)
	{
		DBGPRINT(RT_DEBUG_ERROR, ("Wrong configuration. No valid channel found. Check \"ContryCode\" and \"ChannelGeography\" setting.\n"));
		goto err6;
	}

#ifdef DOT11_N_SUPPORT
	DBGPRINT(RT_DEBUG_OFF, ("MCS Set = %02x %02x %02x %02x %02x\n", pAd->CommonCfg.HtCapability.MCSSet[0],
           pAd->CommonCfg.HtCapability.MCSSet[1], pAd->CommonCfg.HtCapability.MCSSet[2],
           pAd->CommonCfg.HtCapability.MCSSet[3], pAd->CommonCfg.HtCapability.MCSSet[4]));
#endif // DOT11_N_SUPPORT //


#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef AP_QLOAD_SUPPORT
		/* init QBSS Element */
		QBSS_LoadInit(pAd);
#endif // AP_QLOAD_SUPPORT //

//#ifdef DOT11K_RRM_SUPPORT
//		RRM_CfgInit(pAd);
//#endif // DOT11K_RRM_SUPPORT //
	}
#endif // CONFIG_AP_SUPPORT //

//		APInitialize(pAd);

#ifdef IKANOS_VX_1X0
	VR_IKANOS_FP_Init(pAd->ApCfg.BssidNum, pAd->PermanentAddress);
#endif // IKANOS_VX_1X0 //


#ifdef CONFIG_AP_SUPPORT
	//
	// Initialize RF register to default value
	//
	if (pAd->OpMode == OPMODE_AP)
	{
		AsicSwitchChannel(pAd, pAd->CommonCfg.Channel, FALSE);
		AsicLockChannel(pAd, pAd->CommonCfg.Channel);
	}
#endif // CONFIG_AP_SUPPORT //

	/*
		Some modules init must be called before APStartUp().
		Or APStartUp() will make up beacon content and call
		other modules API to get some information to fill.
	*/
#ifdef WMM_ACM_SUPPORT
#ifdef CONFIG_AP_SUPPORT
	ACMP_Init(pAd,
			pAd->CommonCfg.APEdcaParm.bACM[0],
			pAd->CommonCfg.APEdcaParm.bACM[1],
			pAd->CommonCfg.APEdcaParm.bACM[2],
			pAd->CommonCfg.APEdcaParm.bACM[3], 0);
#endif // CONFIG_AP_SUPPORT //
#endif // WMM_ACM_SUPPORT //


	if (pAd && (Status != NDIS_STATUS_SUCCESS))
	{
		//
		// Undo everything if it failed
		//
		if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE))
		{
//			NdisMDeregisterInterrupt(&pAd->Interrupt);
			RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE);
		}
//		RTMPFreeAdapter(pAd); // we will free it in disconnect()
	}
	else if (pAd)
	{
		// Microsoft HCT require driver send a disconnect event after driver initialization.
		OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED);
		RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_MEDIA_STATE_CHANGE);

		DBGPRINT(RT_DEBUG_TRACE, ("NDIS_STATUS_MEDIA_DISCONNECT Event B!\n"));

#ifdef CONFIG_AP_SUPPORT
		IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
		{
			if (pAd->ApCfg.bAutoChannelAtBootup || (pAd->CommonCfg.Channel == 0))
			{
				UINT8 BBPValue = 0;
				
				// Enable Interrupt first due to we need to scan channel to receive beacons.
				RTMP_IRQ_ENABLE(pAd);
				// Now Enable RxTx
				RTMPEnableRxTx(pAd);
				RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_START_UP);

				// Let BBP register at 20MHz to do scan		
				RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
				BBPValue &= (~0x18);
				RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
				DBGPRINT(RT_DEBUG_ERROR, ("SYNC - BBP R4 to 20MHz.l\n"));

				// Now we can receive the beacon and do the listen beacon
				// use default BW to select channel
				pAd->CommonCfg.Channel = AP_AUTO_CH_SEL(pAd, pAd->ApCfg.AutoChannelAlg);
				pAd->ApCfg.bAutoChannelAtBootup = FALSE;
			}

#ifdef DOT11_N_SUPPORT
			// If phymode > PHY_11ABGN_MIXED and BW=40 check extension channel, after select channel  
			N_ChannelCheck(pAd);

#ifdef DOT11N_DRAFT3
        		/* 
         			We only do this Overlapping BSS Scan when system up, for the 
				other situation of channel changing, we depends on station's 
				report to adjust ourself.
			*/
			if (pAd->CommonCfg.bForty_Mhz_Intolerant == TRUE)
			{
				DBGPRINT(RT_DEBUG_TRACE, ("Disable 20/40 BSSCoex Channel Scan(BssCoex=%d, 40MHzIntolerant=%d)\n", 
											pAd->CommonCfg.bBssCoexEnable, 
											pAd->CommonCfg.bForty_Mhz_Intolerant));
			}
			else if(pAd->CommonCfg.bBssCoexEnable == TRUE)
			{	
				DBGPRINT(RT_DEBUG_TRACE, ("Enable 20/40 BSSCoex Channel Scan(BssCoex=%d)\n", 
							pAd->CommonCfg.bBssCoexEnable));
				APOverlappingBSSScan(pAd);
			}

			RTMP_11N_D3_TimerInit(pAd);
//			RTMPInitTimer(pAd, &pAd->CommonCfg.Bss2040CoexistTimer, GET_TIMER_FUNCTION(Bss2040CoexistTimeOut), pAd, FALSE);
#endif // DOT11N_DRAFT3 //
#endif // DOT11_N_SUPPORT //
#ifdef RT3090
#ifdef TONE_RADAR_DETECT_SUPPORT
	if (IS_RT3090A(pAd) || IS_RT3390(pAd) || IS_RT5390(pAd))
		pAd->CommonCfg.carrier_func=TONE_RADAR_V2;
	else
		pAd->CommonCfg.carrier_func=TONE_RADAR_V1;
#endif // TONE_RADAR_DETECT_SUPPORT //
#endif // RT3090 //
			APStartUp(pAd);
			DBGPRINT(RT_DEBUG_OFF, ("Main bssid = %02x:%02x:%02x:%02x:%02x:%02x\n", 
									PRINT_MAC(pAd->ApCfg.MBSSID[BSS0].Bssid)));
		}
#endif // CONFIG_AP_SUPPORT //

	}// end of else

#ifdef WSC_INCLUDED
#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
		INT apidx;
#ifdef HOSTAPD_SUPPORT
		if (pAd->ApCfg.Hostapd == TRUE)
		{
			DBGPRINT(RT_DEBUG_TRACE, ("WPS is control by hostapd now.\n"));
		}
		else
#endif //HOSTAPD_SUPPORT//
		for (apidx = 0; apidx < pAd->ApCfg.BssidNum; apidx++)
		{
			PWSC_CTRL pWscControl;
			UCHAR zeros16[16]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
			
			pWscControl = &pAd->ApCfg.MBSSID[apidx].WscControl;
			DBGPRINT(RT_DEBUG_TRACE, ("Generate UUID for apidx(%d)\n", apidx));
			if (NdisEqualMemory(&pWscControl->Wsc_Uuid_E[0], zeros16, UUID_LEN_HEX))
				WscGenerateUUID(pAd, &pWscControl->Wsc_Uuid_E[0], &pWscControl->Wsc_Uuid_Str[0], apidx, FALSE);
			WscInit(pAd, FALSE, apidx);
		}
	}
#endif // CONFIG_AP_SUPPORT //


	/* WSC hardware push button function 0811 */
	WSC_HDR_BTN_Init(pAd);
#endif // WSC_INCLUDED //

	// Set up the Mac address
	RtmpOSNetDevAddrSet(pAd->net_dev, &pAd->CurrentAddress[0]);

	// Various AP function init
#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef MBSS_SUPPORT
		/* the function can not be moved to RT2860_probe() even register_netdev()
		   is changed as register_netdevice().
		   Or in some PC, kernel will panic (Fedora 4) */
		RT28xx_MBSS_Init(pAd, pAd->net_dev);
#endif // MBSS_SUPPORT //

#ifdef WDS_SUPPORT
		RT28xx_WDS_Init(pAd, pAd->net_dev);
#endif // WDS_SUPPORT //

#ifdef APCLI_SUPPORT
		RT28xx_ApCli_Init(pAd, pAd->net_dev);
#endif // APCLI_SUPPORT //
	}
#endif // CONFIG_AP_SUPPORT //



#ifdef CONFIG_AP_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
#ifdef MAT_SUPPORT
		MATEngineInit(pAd);
#endif // MAT_SUPPORT //

#ifdef CLIENT_WDS
	CliWds_ProxyTabInit(pAd);
#endif // CLIENT_WDS //
	}
#endif // CONFIG_AP_SUPPORT //






#ifdef RT33xx
	if (IS_RT3390(pAd))
	{
		RTMP_TxEvmCalibration(pAd);
	}	
#endif // RT33xx //



	DBGPRINT_S(Status, ("<==== rt28xx_init, Status=%x\n", Status));

	return TRUE;

err6:	
	MeasureReqTabExit(pAd);
	TpcReqTabExit(pAd);
err5:	
	RtmpNetTaskExit(pAd);
	UserCfgExit(pAd);
err4:	
	MlmeHalt(pAd);
err3:	
	RtmpMgmtTaskExit(pAd);
err2:
#ifdef RESOURCE_PRE_ALLOC
	RTMPResetTxRxRingMemory(pAd);
#else
	RTMPFreeTxRxRingMemory(pAd);
#endif // RESOURCE_PRE_ALLOC //

err1:

#ifdef DOT11_N_SUPPORT
	if(pAd->mpdu_blk_pool.mem)
		os_free_mem(pAd, pAd->mpdu_blk_pool.mem); // free BA pool
#endif // DOT11_N_SUPPORT //

	// shall not set priv to NULL here because the priv didn't been free yet.
	//net_dev->priv = 0;
#ifdef INF_AMAZON_SE
err0:
#endif // INF_AMAZON_SE //
#ifdef ST
err0:
#endif // ST //

	DBGPRINT(RT_DEBUG_ERROR, ("!!! rt28xx Initialized fail !!!\n"));
	return FALSE;
}
Exemplo n.º 7
0
/**************************************************************************//**
 * @brief  Setup the ACMP
 *****************************************************************************/
void setupACMP(void)
{
  /* ACMP configuration constant table. */
  static const ACMP_Init_TypeDef initACMP =
  {
    .fullBias                 = false,                  /* fullBias */
    .halfBias                 = true,                   /* halfBias */
    .biasProg                 = 0xE,                    /* biasProg */
    .interruptOnFallingEdge   = false,                  /* interrupt on rising edge */
    .interruptOnRisingEdge    = false,                  /* interrupt on falling edge */
    .warmTime                 = acmpWarmTime512,        /* 512 cycle warmup to be safe */
    .hysteresisLevel          = acmpHysteresisLevel0,   /* hysteresis level 0 */
    .inactiveValue            = false,                  /* inactive value */
    .lowPowerReferenceEnabled = false,                  /* low power reference */
    .vddLevel                 = 0x0D                    /* VDD level */
  };


  /* Initialize ACMP */
  ACMP_Init(ACMP0, &initACMP);

  ACMP_ChannelSet(ACMP0, acmpChannelVDD, acmpChannel7);

  /* don't disable ACMP so that output can be routed out to a pin */
  ACMP0->CTRL &= ~ACMP_CTRL_EN;
}


/**************************************************************************//**
 * @brief  Setup the LESENSE
 *****************************************************************************/
void setupLESENSE(void)
{
  /* LESENSE channel configuration constant table. */
  static const LESENSE_ChAll_TypeDef initChs = LESENSE_LCSENSE_SCAN_CONF;
  /* LESENSE central configuration constant table. */
  static const LESENSE_Init_TypeDef initLESENSE =
  {
    .coreCtrl =
    {
      .scanStart      = lesenseScanStartPeriodic,
      .prsSel         = lesensePRSCh0,
      .scanConfSel    = lesenseScanConfDirMap,
      .invACMP0       = false,
      .invACMP1       = false,
      .dualSample     = false,
      .storeScanRes   = false,
      .bufOverWr      = true,
      .bufTrigLevel   = lesenseBufTrigHalf,
      .wakeupOnDMA    = lesenseDMAWakeUpDisable,
      .biasMode       = lesenseBiasModeDutyCycle,
      .debugRun       = false
    },

    .timeCtrl =
    {
      .startDelay     = 0U
    },

    .perCtrl =
    {
      .dacCh0Data     = lesenseDACIfData,
      .dacCh0ConvMode = lesenseDACConvModeSampleOff,
      .dacCh0OutMode  = lesenseDACOutModeDisable,
      .dacCh1Data     = lesenseDACIfData,
      .dacCh1ConvMode = lesenseDACConvModeSampleOff,
      .dacCh1OutMode  = lesenseDACOutModePin,
      .dacPresc       = 31U,
      .dacRef         = lesenseDACRefVdd,
      .acmp0Mode      = lesenseACMPModeMux,
      .acmp1Mode      = lesenseACMPModeDisable,
      .warmupMode     = lesenseWarmupModeNormal
    },

    .decCtrl =
/**************************************************************************//**
 * @brief  Sets up the DAC
 *****************************************************************************/
void setupDAC(void)
{
  /* Configuration structure for the DAC */
  static const DAC_Init_TypeDef dacInit =
  {
    .refresh      = dacRefresh8,
    .reference    = dacRefVDD,
    .outMode      = dacOutputPin,
    .convMode     = dacConvModeContinuous,
    .prescale     = 0,
    .lpEnable     = false,
    .ch0ResetPre  = false,
    .outEnablePRS = false,
    .sineEnable   = false,
    .diff         = false
  };

  /* Initialize DAC */
  DAC_Init(DAC0, &dacInit);

  /* Set data for DAC channel 0 */
  writeDataDAC(DAC0, (unsigned int) DAC_DATA, DAC_CHANNEL);
}

/**************************************************************************//**
 * @brief  Write DAC conversion value
 *****************************************************************************/
void writeDataDAC(DAC_TypeDef *dac, unsigned int value, unsigned int ch)
{
  /* Write data output value to the correct register. */
  if (!ch)
  {
    /* Write data to DAC ch 0 */
    dac->CH0DATA = value;
  }
  else
  {
    /* Write data to DAC ch 1 */
    dac->CH1DATA = value;
  }
}

/**************************************************************************//**
 * @brief  Sets up the ACMP
 *****************************************************************************/
void setupACMP(void)
{
  /* There is no default configuration for this */
  static const ACMP_Init_TypeDef acmpInit =
  {
    .fullBias                 = false,
    .halfBias                 = true,
    .biasProg                 = 0xF,
    .interruptOnFallingEdge   = false,
    .interruptOnRisingEdge    = false,
    .warmTime                 = acmpWarmTime4,
    .hysteresisLevel          = acmpHysteresisLevel0,
    .inactiveValue            = false,
    .lowPowerReferenceEnabled = false,
    .vddLevel                 = ACMP_VDD_SCALE,
    .enable                   = false
  };

  /* Initialize ACMPs */
  ACMP_Init(ACMP0, &acmpInit);
  ACMP_Init(ACMP1, &acmpInit);

  /* Select Vdd as negative reference
   * Positive reference is controlled by LESENSE */
  ACMP_ChannelSet(ACMP0, acmpChannelVDD, acmpChannel6);
  ACMP_ChannelSet(ACMP1, acmpChannelVDD, acmpChannel4);
}

/**************************************************************************//**
 * @brief  Sets up the LESENSE
 *****************************************************************************/
void setupLESENSE(void)
{
  static const LESENSE_Init_TypeDef initLesense =
  {
    .coreCtrl         =
    {
      .scanStart    = lesenseScanStartPeriodic,
      .prsSel       = lesensePRSCh0,
      .scanConfSel  = lesenseScanConfDirMap,
      .invACMP0     = false,
      .invACMP1     = false,
      .dualSample   = false,
      .storeScanRes = false,
      .bufOverWr    = true,
      .bufTrigLevel = lesenseBufTrigHalf,
      .wakeupOnDMA  = lesenseDMAWakeUpDisable,
      .biasMode     = lesenseBiasModeDutyCycle,
      .debugRun     = false
    },

    .timeCtrl         =
    {
      .startDelay     = 0
    },

    .perCtrl          =
    {
      .dacCh0Data     = lesenseDACIfData,
      .dacCh0ConvMode = lesenseDACConvModeSampleOff,
      .dacCh0OutMode  = lesenseDACOutModeDisable,
      .dacCh1Data     = lesenseDACIfData,
      .dacCh1ConvMode = lesenseDACConvModeSampleOff,
      .dacCh1OutMode  = lesenseDACOutModePin,
      .dacPresc       = 31,
      .dacRef         = lesenseDACRefVdd,
      .acmp0Mode      = lesenseACMPModeMux,
      .acmp1Mode      = lesenseACMPModeMux,
      .warmupMode     = lesenseWarmupModeNormal
    },

    .decCtrl          =
    {
      .decInput  = lesenseDecInputSensorSt,
      .initState = 0,
      .chkState  = true,
      .intMap    = false,
      .hystPRS0  = false,
      .hystPRS1  = false,
      .hystPRS2  = false,
      .hystIRQ   = false,
      .prsCount  = true,
      .prsChSel0 = lesensePRSCh0,
      .prsChSel1 = lesensePRSCh1,
      .prsChSel2 = lesensePRSCh2,
      .prsChSel3 = lesensePRSCh3
    }
  };
Exemplo n.º 9
0
/**************************************************************************//**
 * @brief  Setup the ACMP
 *****************************************************************************/
void setupACMP(void)
{
  /* ACMP configuration constant table. */
  static const ACMP_Init_TypeDef initACMP =
  {
    .fullBias = false,                 /* fullBias */
    .halfBias = true,                  /* halfBias */
    .biasProg =  0x0,                  /* biasProg */
    .interruptOnFallingEdge =  false,  /* interrupt on rising edge */
    .interruptOnRisingEdge =  false,   /* interrupt on falling edge */
    .warmTime = acmpWarmTime512,       /* 512 cycle warmup to be safe */
    .hysteresisLevel = acmpHysteresisLevel5, /* hysteresis level 5 */
    .inactiveValue = false,            /* inactive value */
    .lowPowerReferenceEnabled = false, /* low power reference */
    .vddLevel = 0x00,                  /* VDD level */
    .enable = false                    /* Don't request enabling. */
  };


  /* Configure ACMP. */
  ACMP_Init(ACMP0, &initACMP);
  /* Disable ACMP0 out to a pin. */
  ACMP_GPIOSetup(ACMP0, 0, false, false);
  /* Set up ACMP negSel to VDD, posSel is controlled by LESENSE. */
  ACMP_ChannelSet(ACMP0, acmpChannelVDD, acmpChannel0);
  /* LESENSE controls ACMP thus ACMP_Enable(ACMP0) should NOT be called in order
   * to ensure lower current consumption. */
}


/**************************************************************************//**
 * @brief  Setup the LESENSE
 *****************************************************************************/
void setupLESENSE(void)
{
  /* LESENSE channel configuration constant table. */
  static const LESENSE_ChAll_TypeDef initChs = LESENSE_LIGHTSENSE_SCAN_CONF;
  /* LESENSE alternate excitation channel configuration constant table. */
  static const LESENSE_ConfAltEx_TypeDef initAltEx = LESENSE_LIGHTSENSE_ALTEX_CONF;
  /* LESENSE central configuration constant table. */
  static const LESENSE_Init_TypeDef initLESENSE =
  {
    .coreCtrl =
    {
      .scanStart = lesenseScanStartPeriodic,
      .prsSel = lesensePRSCh0,
      .scanConfSel = lesenseScanConfDirMap,
      .invACMP0 = false,
      .invACMP1 = false,
      .dualSample = false,
      .storeScanRes = false,
      .bufOverWr = true,
      .bufTrigLevel = lesenseBufTrigHalf,
      .wakeupOnDMA = lesenseDMAWakeUpDisable,
      .biasMode = lesenseBiasModeDutyCycle,
      .debugRun = false
    },

    .timeCtrl =
    {
      .startDelay = 0U
    },

    .perCtrl =
    {
      .dacCh0Data = lesenseDACIfData,
      .dacCh0ConvMode = lesenseDACConvModeDisable,
      .dacCh0OutMode = lesenseDACOutModeDisable,
      .dacCh1Data = lesenseDACIfData,
      .dacCh1ConvMode = lesenseDACConvModeDisable,
      .dacCh1OutMode = lesenseDACOutModeDisable,
      .dacPresc = 0U,
      .dacRef = lesenseDACRefBandGap,
      .acmp0Mode = lesenseACMPModeMuxThres,
      .acmp1Mode = lesenseACMPModeMuxThres,
      .warmupMode = lesenseWarmupModeNormal
    },

    .decCtrl =