void AcpiDmIndent ( UINT32 Level) { if (!Level) { return; } AcpiOsPrintf ("%*.s", ACPI_MUL_4 (Level), " "); }
ACPI_STATUS AcpiExOpcode_1A_1T_1R ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_OPERAND_OBJECT *ReturnDesc = NULL; ACPI_OPERAND_OBJECT *ReturnDesc2 = NULL; UINT32 Temp32; UINT32 i; UINT64 PowerOfTen; UINT64 Digit; ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_1T_1R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_BIT_NOT_OP: case AML_FIND_SET_LEFT_BIT_OP: case AML_FIND_SET_RIGHT_BIT_OP: case AML_FROM_BCD_OP: case AML_TO_BCD_OP: case AML_COND_REF_OF_OP: /* Create a return object of type Integer for these opcodes */ ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } switch (WalkState->Opcode) { case AML_BIT_NOT_OP: /* Not (Operand, Result) */ ReturnDesc->Integer.Value = ~Operand[0]->Integer.Value; break; case AML_FIND_SET_LEFT_BIT_OP: /* FindSetLeftBit (Operand, Result) */ ReturnDesc->Integer.Value = Operand[0]->Integer.Value; /* * Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (Temp32 = 0; ReturnDesc->Integer.Value && Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32) { ReturnDesc->Integer.Value >>= 1; } ReturnDesc->Integer.Value = Temp32; break; case AML_FIND_SET_RIGHT_BIT_OP: /* FindSetRightBit (Operand, Result) */ ReturnDesc->Integer.Value = Operand[0]->Integer.Value; /* * The Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (Temp32 = 0; ReturnDesc->Integer.Value && Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32) { ReturnDesc->Integer.Value <<= 1; } /* Since the bit position is one-based, subtract from 33 (65) */ ReturnDesc->Integer.Value = Temp32 == 0 ? 0 : (ACPI_INTEGER_BIT_SIZE + 1) - Temp32; break; case AML_FROM_BCD_OP: /* FromBcd (BCDValue, Result) */ /* * The 64-bit ACPI integer can hold 16 4-bit BCD characters * (if table is 32-bit, integer can hold 8 BCD characters) * Convert each 4-bit BCD value */ PowerOfTen = 1; ReturnDesc->Integer.Value = 0; Digit = Operand[0]->Integer.Value; /* Convert each BCD digit (each is one nybble wide) */ for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++) { /* Get the least significant 4-bit BCD digit */ Temp32 = ((UINT32) Digit) & 0xF; /* Check the range of the digit */ if (Temp32 > 9) { ACPI_ERROR ((AE_INFO, "BCD digit too large (not decimal): 0x%X", Temp32)); Status = AE_AML_NUMERIC_OVERFLOW; goto Cleanup; } /* Sum the digit into the result with the current power of 10 */ ReturnDesc->Integer.Value += (((UINT64) Temp32) * PowerOfTen); /* Shift to next BCD digit */ Digit >>= 4; /* Next power of 10 */ PowerOfTen *= 10; } break; case AML_TO_BCD_OP: /* ToBcd (Operand, Result) */ ReturnDesc->Integer.Value = 0; Digit = Operand[0]->Integer.Value; /* Each BCD digit is one nybble wide */ for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++) { (void) AcpiUtShortDivide (Digit, 10, &Digit, &Temp32); /* * Insert the BCD digit that resides in the * remainder from above */ ReturnDesc->Integer.Value |= (((UINT64) Temp32) << ACPI_MUL_4 (i)); } /* Overflow if there is any data left in Digit */ if (Digit > 0) { ACPI_ERROR ((AE_INFO, "Integer too large to convert to BCD: 0x%8.8X%8.8X", ACPI_FORMAT_UINT64 (Operand[0]->Integer.Value))); Status = AE_AML_NUMERIC_OVERFLOW; goto Cleanup; } break; case AML_COND_REF_OF_OP: /* CondRefOf (SourceObject, Result) */ /* * This op is a little strange because the internal return value is * different than the return value stored in the result descriptor * (There are really two return values) */ if ((ACPI_NAMESPACE_NODE *) Operand[0] == AcpiGbl_RootNode) { /* * This means that the object does not exist in the namespace, * return FALSE */ ReturnDesc->Integer.Value = 0; goto Cleanup; } /* Get the object reference, store it, and remove our reference */ Status = AcpiExGetObjectReference (Operand[0], &ReturnDesc2, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } Status = AcpiExStore (ReturnDesc2, Operand[1], WalkState); AcpiUtRemoveReference (ReturnDesc2); /* The object exists in the namespace, return TRUE */ ReturnDesc->Integer.Value = ACPI_UINT64_MAX; goto Cleanup; default: /* No other opcodes get here */ break; } break; case AML_STORE_OP: /* Store (Source, Target) */ /* * A store operand is typically a number, string, buffer or lvalue * Be careful about deleting the source object, * since the object itself may have been stored. */ Status = AcpiExStore (Operand[0], Operand[1], WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* It is possible that the Store already produced a return object */ if (!WalkState->ResultObj) { /* * Normally, we would remove a reference on the Operand[0] * parameter; But since it is being used as the internal return * object (meaning we would normally increment it), the two * cancel out, and we simply don't do anything. */ WalkState->ResultObj = Operand[0]; WalkState->Operands[0] = NULL; /* Prevent deletion */ } return_ACPI_STATUS (Status); /* * ACPI 2.0 Opcodes */ case AML_COPY_OP: /* Copy (Source, Target) */ Status = AcpiUtCopyIobjectToIobject ( Operand[0], &ReturnDesc, WalkState); break; case AML_TO_DECSTRING_OP: /* ToDecimalString (Data, Result) */ Status = AcpiExConvertToString ( Operand[0], &ReturnDesc, ACPI_EXPLICIT_CONVERT_DECIMAL); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_HEXSTRING_OP: /* ToHexString (Data, Result) */ Status = AcpiExConvertToString ( Operand[0], &ReturnDesc, ACPI_EXPLICIT_CONVERT_HEX); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_BUFFER_OP: /* ToBuffer (Data, Result) */ Status = AcpiExConvertToBuffer (Operand[0], &ReturnDesc); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_INTEGER_OP: /* ToInteger (Data, Result) */ /* Perform "explicit" conversion */ Status = AcpiExConvertToInteger (Operand[0], &ReturnDesc, 0); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_SHIFT_LEFT_BIT_OP: /* ShiftLeftBit (Source, BitNum) */ case AML_SHIFT_RIGHT_BIT_OP: /* ShiftRightBit (Source, BitNum) */ /* These are two obsolete opcodes */ ACPI_ERROR ((AE_INFO, "%s is obsolete and not implemented", AcpiPsGetOpcodeName (WalkState->Opcode))); Status = AE_SUPPORT; goto Cleanup; default: /* Unknown opcode */ ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; goto Cleanup; } if (ACPI_SUCCESS (Status)) { /* Store the return value computed above into the target object */ Status = AcpiExStore (ReturnDesc, Operand[1], WalkState); } Cleanup: /* Delete return object on error */ if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); } /* Save return object on success */ else if (!WalkState->ResultObj) { WalkState->ResultObj = ReturnDesc; } return_ACPI_STATUS (Status); }
static UINT32 AcpiExConvertToAscii ( UINT64 Integer, UINT16 Base, UINT8 *String, UINT8 DataWidth) { UINT64 Digit; UINT32 i; UINT32 j; UINT32 k = 0; UINT32 HexLength; UINT32 DecimalLength; UINT32 Remainder; BOOLEAN SupressZeros; ACPI_FUNCTION_ENTRY (); switch (Base) { case 10: /* Setup max length for the decimal number */ switch (DataWidth) { case 1: DecimalLength = ACPI_MAX8_DECIMAL_DIGITS; break; case 4: DecimalLength = ACPI_MAX32_DECIMAL_DIGITS; break; case 8: default: DecimalLength = ACPI_MAX64_DECIMAL_DIGITS; break; } SupressZeros = TRUE; /* No leading zeros */ Remainder = 0; for (i = DecimalLength; i > 0; i--) { /* Divide by nth factor of 10 */ Digit = Integer; for (j = 0; j < i; j++) { (void) AcpiUtShortDivide (Digit, 10, &Digit, &Remainder); } /* Handle leading zeros */ if (Remainder != 0) { SupressZeros = FALSE; } if (!SupressZeros) { String[k] = (UINT8) (ACPI_ASCII_ZERO + Remainder); k++; } } break; case 16: /* HexLength: 2 ascii hex chars per data byte */ HexLength = ACPI_MUL_2 (DataWidth); for (i = 0, j = (HexLength-1); i < HexLength; i++, j--) { /* Get one hex digit, most significant digits first */ String[k] = (UINT8) AcpiUtHexToAsciiChar (Integer, ACPI_MUL_4 (j)); k++; } break; default: return (0); } /* * Since leading zeros are suppressed, we must check for the case where * the integer equals 0 * * Finally, null terminate the string and return the length */ if (!k) { String [0] = ACPI_ASCII_ZERO; k = 1; } String [k] = 0; return ((UINT32) k); }
static u32 acpi_ex_convert_to_ascii(acpi_integer integer, u16 base, u8 * string, u8 data_width) { acpi_integer digit; acpi_native_uint i; acpi_native_uint j; acpi_native_uint k = 0; acpi_native_uint hex_length; acpi_native_uint decimal_length; u32 remainder; u8 supress_zeros; ACPI_FUNCTION_ENTRY(); switch (base) { case 10: /* Setup max length for the decimal number */ switch (data_width) { case 1: decimal_length = ACPI_MAX8_DECIMAL_DIGITS; break; case 4: decimal_length = ACPI_MAX32_DECIMAL_DIGITS; break; case 8: default: decimal_length = ACPI_MAX64_DECIMAL_DIGITS; break; } supress_zeros = TRUE; /* No leading zeros */ remainder = 0; for (i = decimal_length; i > 0; i--) { /* Divide by nth factor of 10 */ digit = integer; for (j = 0; j < i; j++) { (void)acpi_ut_short_divide(digit, 10, &digit, &remainder); } /* Handle leading zeros */ if (remainder != 0) { supress_zeros = FALSE; } if (!supress_zeros) { string[k] = (u8) (ACPI_ASCII_ZERO + remainder); k++; } } break; case 16: /* hex_length: 2 ascii hex chars per data byte */ hex_length = (acpi_native_uint) ACPI_MUL_2(data_width); for (i = 0, j = (hex_length - 1); i < hex_length; i++, j--) { /* Get one hex digit, most significant digits first */ string[k] = (u8) acpi_ut_hex_to_ascii_char(integer, ACPI_MUL_4(j)); k++; } break; default: return (0); } /* * Since leading zeros are supressed, we must check for the case where * the integer equals 0 * * Finally, null terminate the string and return the length */ if (!k) { string[0] = ACPI_ASCII_ZERO; k = 1; } string[k] = 0; return ((u32) k); }
ACPI_STATUS AcpiNsConvertToBuffer ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; ACPI_STATUS Status; ACPI_OPERAND_OBJECT **Elements; UINT32 *DwordBuffer; UINT32 Count; UINT32 i; switch (OriginalObject->Common.Type) { case ACPI_TYPE_INTEGER: /* * Integer-to-Buffer conversion. * Convert the Integer to a packed-byte buffer. _MAT and other * objects need this sometimes, if a read has been performed on a * Field object that is less than or equal to the global integer * size (32 or 64 bits). */ Status = AcpiExConvertToBuffer (OriginalObject, &NewObject); if (ACPI_FAILURE (Status)) { return (Status); } break; case ACPI_TYPE_STRING: /* String-to-Buffer conversion. Simple data copy */ NewObject = AcpiUtCreateBufferObject (OriginalObject->String.Length); if (!NewObject) { return (AE_NO_MEMORY); } memcpy (NewObject->Buffer.Pointer, OriginalObject->String.Pointer, OriginalObject->String.Length); break; case ACPI_TYPE_PACKAGE: /* * This case is often seen for predefined names that must return a * Buffer object with multiple DWORD integers within. For example, * _FDE and _GTM. The Package can be converted to a Buffer. */ /* All elements of the Package must be integers */ Elements = OriginalObject->Package.Elements; Count = OriginalObject->Package.Count; for (i = 0; i < Count; i++) { if ((!*Elements) || ((*Elements)->Common.Type != ACPI_TYPE_INTEGER)) { return (AE_AML_OPERAND_TYPE); } Elements++; } /* Create the new buffer object to replace the Package */ NewObject = AcpiUtCreateBufferObject (ACPI_MUL_4 (Count)); if (!NewObject) { return (AE_NO_MEMORY); } /* Copy the package elements (integers) to the buffer as DWORDs */ Elements = OriginalObject->Package.Elements; DwordBuffer = ACPI_CAST_PTR (UINT32, NewObject->Buffer.Pointer); for (i = 0; i < Count; i++) { *DwordBuffer = (UINT32) (*Elements)->Integer.Value; DwordBuffer++; Elements++; } break; default: return (AE_AML_OPERAND_TYPE); } *ReturnObject = NewObject; return (AE_OK); }
acpi_status acpi_ns_convert_to_buffer(union acpi_operand_object *original_object, union acpi_operand_object **return_object) { union acpi_operand_object *new_object; acpi_status status; union acpi_operand_object **elements; u32 *dword_buffer; u32 count; u32 i; switch (original_object->common.type) { case ACPI_TYPE_INTEGER: /* * Integer-to-Buffer conversion. * Convert the Integer to a packed-byte buffer. _MAT and other * objects need this sometimes, if a read has been performed on a * Field object that is less than or equal to the global integer * size (32 or 64 bits). */ status = acpi_ex_convert_to_buffer(original_object, &new_object); if (ACPI_FAILURE(status)) { return (status); } break; case ACPI_TYPE_STRING: /* String-to-Buffer conversion. Simple data copy */ new_object = acpi_ut_create_buffer_object(original_object->string. length); if (!new_object) { return (AE_NO_MEMORY); } ACPI_MEMCPY(new_object->buffer.pointer, original_object->string.pointer, original_object->string.length); break; case ACPI_TYPE_PACKAGE: /* * This case is often seen for predefined names that must return a * Buffer object with multiple DWORD integers within. For example, * _FDE and _GTM. The Package can be converted to a Buffer. */ /* All elements of the Package must be integers */ elements = original_object->package.elements; count = original_object->package.count; for (i = 0; i < count; i++) { if ((!*elements) || ((*elements)->common.type != ACPI_TYPE_INTEGER)) { return (AE_AML_OPERAND_TYPE); } elements++; } /* Create the new buffer object to replace the Package */ new_object = acpi_ut_create_buffer_object(ACPI_MUL_4(count)); if (!new_object) { return (AE_NO_MEMORY); } /* Copy the package elements (integers) to the buffer as DWORDs */ elements = original_object->package.elements; dword_buffer = ACPI_CAST_PTR(u32, new_object->buffer.pointer); for (i = 0; i < count; i++) { *dword_buffer = (u32)(*elements)->integer.value; dword_buffer++; elements++; } break; default: return (AE_AML_OPERAND_TYPE); } *return_object = new_object; return (AE_OK); }
acpi_status acpi_ex_opcode_1A_1T_1R(struct acpi_walk_state *walk_state) { acpi_status status = AE_OK; union acpi_operand_object **operand = &walk_state->operands[0]; union acpi_operand_object *return_desc = NULL; union acpi_operand_object *return_desc2 = NULL; u32 temp32; u32 i; acpi_integer power_of_ten; acpi_integer digit; ACPI_FUNCTION_TRACE_STR(ex_opcode_1A_1T_1R, acpi_ps_get_opcode_name(walk_state->opcode)); /* Examine the AML opcode */ switch (walk_state->opcode) { case AML_BIT_NOT_OP: case AML_FIND_SET_LEFT_BIT_OP: case AML_FIND_SET_RIGHT_BIT_OP: case AML_FROM_BCD_OP: case AML_TO_BCD_OP: case AML_COND_REF_OF_OP: /* Create a return object of type Integer for these opcodes */ return_desc = acpi_ut_create_internal_object(ACPI_TYPE_INTEGER); if (!return_desc) { status = AE_NO_MEMORY; goto cleanup; } switch (walk_state->opcode) { case AML_BIT_NOT_OP: /* Not (Operand, Result) */ return_desc->integer.value = ~operand[0]->integer.value; break; case AML_FIND_SET_LEFT_BIT_OP: /* find_set_left_bit (Operand, Result) */ return_desc->integer.value = operand[0]->integer.value; /* * Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (temp32 = 0; return_desc->integer.value && temp32 < ACPI_INTEGER_BIT_SIZE; ++temp32) { return_desc->integer.value >>= 1; } return_desc->integer.value = temp32; break; case AML_FIND_SET_RIGHT_BIT_OP: /* find_set_right_bit (Operand, Result) */ return_desc->integer.value = operand[0]->integer.value; /* * The Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (temp32 = 0; return_desc->integer.value && temp32 < ACPI_INTEGER_BIT_SIZE; ++temp32) { return_desc->integer.value <<= 1; } /* Since the bit position is one-based, subtract from 33 (65) */ return_desc->integer.value = temp32 == 0 ? 0 : (ACPI_INTEGER_BIT_SIZE + 1) - temp32; break; case AML_FROM_BCD_OP: /* from_bcd (BCDValue, Result) */ /* * The 64-bit ACPI integer can hold 16 4-bit BCD characters * (if table is 32-bit, integer can hold 8 BCD characters) * Convert each 4-bit BCD value */ power_of_ten = 1; return_desc->integer.value = 0; digit = operand[0]->integer.value; /* Convert each BCD digit (each is one nybble wide) */ for (i = 0; (i < acpi_gbl_integer_nybble_width) && (digit > 0); i++) { /* Get the least significant 4-bit BCD digit */ temp32 = ((u32) digit) & 0xF; /* Check the range of the digit */ if (temp32 > 9) { ACPI_ERROR((AE_INFO, "BCD digit too large (not decimal): 0x%X", temp32)); status = AE_AML_NUMERIC_OVERFLOW; goto cleanup; } /* Sum the digit into the result with the current power of 10 */ return_desc->integer.value += (((acpi_integer) temp32) * power_of_ten); /* Shift to next BCD digit */ digit >>= 4; /* Next power of 10 */ power_of_ten *= 10; } break; case AML_TO_BCD_OP: /* to_bcd (Operand, Result) */ return_desc->integer.value = 0; digit = operand[0]->integer.value; /* Each BCD digit is one nybble wide */ for (i = 0; (i < acpi_gbl_integer_nybble_width) && (digit > 0); i++) { (void)acpi_ut_short_divide(digit, 10, &digit, &temp32); /* * Insert the BCD digit that resides in the * remainder from above */ return_desc->integer.value |= (((acpi_integer) temp32) << ACPI_MUL_4(i)); } /* Overflow if there is any data left in Digit */ if (digit > 0) { ACPI_ERROR((AE_INFO, "Integer too large to convert to BCD: %8.8X%8.8X", ACPI_FORMAT_UINT64(operand[0]-> integer.value))); status = AE_AML_NUMERIC_OVERFLOW; goto cleanup; } break; case AML_COND_REF_OF_OP: /* cond_ref_of (source_object, Result) */ /* * This op is a little strange because the internal return value is * different than the return value stored in the result descriptor * (There are really two return values) */ if ((struct acpi_namespace_node *)operand[0] == acpi_gbl_root_node) { /* * This means that the object does not exist in the namespace, * return FALSE */ return_desc->integer.value = 0; goto cleanup; } /* Get the object reference, store it, and remove our reference */ status = acpi_ex_get_object_reference(operand[0], &return_desc2, walk_state); if (ACPI_FAILURE(status)) { goto cleanup; } status = acpi_ex_store(return_desc2, operand[1], walk_state); acpi_ut_remove_reference(return_desc2); /* The object exists in the namespace, return TRUE */ return_desc->integer.value = ACPI_INTEGER_MAX; goto cleanup; default: /* No other opcodes get here */ break; } break; case AML_STORE_OP: /* Store (Source, Target) */ /* * A store operand is typically a number, string, buffer or lvalue * Be careful about deleting the source object, * since the object itself may have been stored. */ status = acpi_ex_store(operand[0], operand[1], walk_state); if (ACPI_FAILURE(status)) { return_ACPI_STATUS(status); } /* It is possible that the Store already produced a return object */ if (!walk_state->result_obj) { /* * Normally, we would remove a reference on the Operand[0] * parameter; But since it is being used as the internal return * object (meaning we would normally increment it), the two * cancel out, and we simply don't do anything. */ walk_state->result_obj = operand[0]; walk_state->operands[0] = NULL; /* Prevent deletion */ } return_ACPI_STATUS(status); /* * ACPI 2.0 Opcodes */ case AML_COPY_OP: /* Copy (Source, Target) */ status = acpi_ut_copy_iobject_to_iobject(operand[0], &return_desc, walk_state); break; case AML_TO_DECSTRING_OP: /* to_decimal_string (Data, Result) */ status = acpi_ex_convert_to_string(operand[0], &return_desc, ACPI_EXPLICIT_CONVERT_DECIMAL); if (return_desc == operand[0]) { /* No conversion performed, add ref to handle return value */ acpi_ut_add_reference(return_desc); } break; case AML_TO_HEXSTRING_OP: /* to_hex_string (Data, Result) */ status = acpi_ex_convert_to_string(operand[0], &return_desc, ACPI_EXPLICIT_CONVERT_HEX); if (return_desc == operand[0]) { /* No conversion performed, add ref to handle return value */ acpi_ut_add_reference(return_desc); } break; case AML_TO_BUFFER_OP: /* to_buffer (Data, Result) */ status = acpi_ex_convert_to_buffer(operand[0], &return_desc); if (return_desc == operand[0]) { /* No conversion performed, add ref to handle return value */ acpi_ut_add_reference(return_desc); } break; case AML_TO_INTEGER_OP: /* to_integer (Data, Result) */ status = acpi_ex_convert_to_integer(operand[0], &return_desc, ACPI_ANY_BASE); if (return_desc == operand[0]) { /* No conversion performed, add ref to handle return value */ acpi_ut_add_reference(return_desc); } break; case AML_SHIFT_LEFT_BIT_OP: /* shift_left_bit (Source, bit_num) */ case AML_SHIFT_RIGHT_BIT_OP: /* shift_right_bit (Source, bit_num) */ /* These are two obsolete opcodes */ ACPI_ERROR((AE_INFO, "%s is obsolete and not implemented", acpi_ps_get_opcode_name(walk_state->opcode))); status = AE_SUPPORT; goto cleanup; default: /* Unknown opcode */ ACPI_ERROR((AE_INFO, "Unknown AML opcode %X", walk_state->opcode)); status = AE_AML_BAD_OPCODE; goto cleanup; } if (ACPI_SUCCESS(status)) { /* Store the return value computed above into the target object */ status = acpi_ex_store(return_desc, operand[1], walk_state); } cleanup: /* Delete return object on error */ if (ACPI_FAILURE(status)) { acpi_ut_remove_reference(return_desc); } /* Save return object on success */ else if (!walk_state->result_obj) { walk_state->result_obj = return_desc; } return_ACPI_STATUS(status); }