Exemplo n.º 1
0
double LEP2TwoFermions::AFB_l(const StandardModel::lepton l, const double mf, 
                              const double s, const double Mw, 
                              const double GammaZ, const bool bWeak) const 
{
    double I3f = SM.getLeptons(l).getIsospin();
    double Qf = SM.getLeptons(l).getCharge();

    return AFB(s, Mw, GammaZ, I3f, Qf, mf, 0.0, bWeak);
}
Exemplo n.º 2
0
double LEP2TwoFermions::AFB_q(const QCD::quark q, const double mf, 
                              const double s, const double Mw, 
                              const double GammaZ, const bool bWeak) const 
{
    double I3f = SM.getQuarks(q).getIsospin();
    double Qf = SM.getQuarks(q).getCharge();
    double mfp;
    if (q==SM.TOP)
        throw std::runtime_error("Error in LEP2TwoFermions::AFB_q()");
    else if (q==SM.BOTTOM)
        mfp = SM.getMtpole();
    else
        mfp = 0.0;
    
    return ( AFB(s, Mw, GammaZ, I3f, Qf, mf, mfp, bWeak) );
}
Exemplo n.º 3
0
/* Subroutine */ int zpbrfs_(char *uplo, integer *n, integer *kd, integer *
	nrhs, doublecomplex *ab, integer *ldab, doublecomplex *afb, integer *
	ldafb, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
	 doublereal *ferr, doublereal *berr, doublecomplex *work, doublereal *
	rwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZPBRFS improves the computed solution to a system of linear   
    equations when the coefficient matrix is Hermitian positive definite 
  
    and banded, and provides error bounds and backward error estimates   
    for the solution.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X.  NRHS >= 0.   

    AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)   
            The upper or lower triangle of the Hermitian band matrix A,   
            stored in the first KD+1 rows of the array.  The j-th column 
  
            of A is stored in the j-th column of the array AB as follows: 
  
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). 
  

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)   
            The triangular factor U or L from the Cholesky factorization 
  
            A = U**H*U or A = L*L**H of the band matrix A as computed by 
  
            ZPBTRF, in the same storage format as A (see AB).   

    LDAFB   (input) INTEGER   
            The leading dimension of the array AFB.  LDAFB >= KD+1.   

    B       (input) COMPLEX*16 array, dimension (LDB,NRHS)   
            The right hand side matrix B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)   
            On entry, the solution matrix X, as computed by ZPBTRS.   
            On exit, the improved solution matrix X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    FERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The estimated forward error bound for each solution vector   
            X(j) (the j-th column of the solution matrix X).   
            If XTRUE is the true solution corresponding to X(j), FERR(j) 
  
            is an estimated upper bound for the magnitude of the largest 
  
            element in (X(j) - XTRUE) divided by the magnitude of the   
            largest element in X(j).  The estimate is as reliable as   
            the estimate for RCOND, and is almost always a slight   
            overestimate of the true error.   

    BERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector X(j) (i.e., the smallest relative change in   
            any element of A or B that makes X(j) an exact solution).   

    WORK    (workspace) COMPLEX*16 array, dimension (2*N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Internal Parameters   
    ===================   

    ITMAX is the maximum number of steps of iterative refinement.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer kase;
    static doublereal safe1, safe2;
    static integer i, j, k, l;
    static doublereal s;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zhbmv_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *);
    static integer count;
    static logical upper;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    static doublereal xk;
    static integer nz;
    static doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacon_(
	    integer *, doublecomplex *, doublecomplex *, doublereal *, 
	    integer *);
    static doublereal lstres;
    extern /* Subroutine */ int zpbtrs_(char *, integer *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
	    integer *);
    static doublereal eps;



#define FERR(I) ferr[(I)-1]
#define BERR(I) berr[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]
#define AFB(I,J) afb[(I)-1 + ((J)-1)* ( *ldafb)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]
#define X(I,J) x[(I)-1 + ((J)-1)* ( *ldx)]

    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldafb < *kd + 1) {
	*info = -8;
    } else if (*ldb < max(1,*n)) {
	*info = -10;
    } else if (*ldx < max(1,*n)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= *nrhs; ++j) {
	    FERR(j) = 0.;
	    BERR(j) = 0.;
/* L10: */
	}
	return 0;
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1   

   Computing MIN */
    i__1 = *n + 1, i__2 = (*kd << 1) + 2;
    nz = min(i__1,i__2);
    eps = dlamch_("Epsilon");
    safmin = dlamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= *nrhs; ++j) {

	count = 1;
	lstres = 3.;
L20:

/*        Loop until stopping criterion is satisfied.   

          Compute residual R = B - A * X */

	zcopy_(n, &B(1,j), &c__1, &WORK(1), &c__1);
	z__1.r = -1., z__1.i = 0.;
	zhbmv_(uplo, n, kd, &z__1, &AB(1,1), ldab, &X(1,j), &
		c__1, &c_b1, &WORK(1), &c__1);

/*        Compute componentwise relative backward error from formula 
  

          max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )   

          where abs(Z) is the componentwise absolute value of the matr
ix   
          or vector Z.  If the i-th component of the denominator is le
ss   
          than SAFE2, then SAFE1 is added to the i-th components of th
e   
          numerator and denominator before dividing. */

	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
	    i__3 = i + j * b_dim1;
	    RWORK(i) = (d__1 = B(i,j).r, abs(d__1)) + (d__2 = d_imag(&B(i,j)), abs(d__2));
/* L30: */
	}

/*        Compute abs(A)*abs(X) + abs(B). */

	if (upper) {
	    i__2 = *n;
	    for (k = 1; k <= *n; ++k) {
		s = 0.;
		i__3 = k + j * x_dim1;
		xk = (d__1 = X(k,j).r, abs(d__1)) + (d__2 = d_imag(&X(k,j)), abs(d__2));
		l = *kd + 1 - k;
/* Computing MAX */
		i__3 = 1, i__4 = k - *kd;
		i__5 = k - 1;
		for (i = max(1,k-*kd); i <= k-1; ++i) {
		    i__3 = l + i + k * ab_dim1;
		    RWORK(i) += ((d__1 = AB(l+i,k).r, abs(d__1)) + (d__2 = 
			    d_imag(&AB(l+i,k)), abs(d__2))) * 
			    xk;
		    i__3 = l + i + k * ab_dim1;
		    i__4 = i + j * x_dim1;
		    s += ((d__1 = AB(l+i,k).r, abs(d__1)) + (d__2 = d_imag(&AB(l+i,k)), abs(d__2))) * ((d__3 = X(i,j).r, abs(d__3)) + (d__4 = d_imag(&X(i,j)), abs(d__4)));
/* L40: */
		}
		i__5 = *kd + 1 + k * ab_dim1;
		RWORK(k) = RWORK(k) + (d__1 = AB(*kd+1,k).r, abs(d__1)) * xk + s;
/* L50: */
	    }
	} else {
	    i__2 = *n;
	    for (k = 1; k <= *n; ++k) {
		s = 0.;
		i__5 = k + j * x_dim1;
		xk = (d__1 = X(k,j).r, abs(d__1)) + (d__2 = d_imag(&X(k,j)), abs(d__2));
		i__5 = k * ab_dim1 + 1;
		RWORK(k) += (d__1 = AB(1,k).r, abs(d__1)) * xk;
		l = 1 - k;
/* Computing MIN */
		i__3 = *n, i__4 = k + *kd;
		i__5 = min(i__3,i__4);
		for (i = k + 1; i <= min(*n,k+*kd); ++i) {
		    i__3 = l + i + k * ab_dim1;
		    RWORK(i) += ((d__1 = AB(l+i,k).r, abs(d__1)) + (d__2 = 
			    d_imag(&AB(l+i,k)), abs(d__2))) * 
			    xk;
		    i__3 = l + i + k * ab_dim1;
		    i__4 = i + j * x_dim1;
		    s += ((d__1 = AB(l+i,k).r, abs(d__1)) + (d__2 = d_imag(&AB(l+i,k)), abs(d__2))) * ((d__3 = X(i,j).r, abs(d__3)) + (d__4 = d_imag(&X(i,j)), abs(d__4)));
/* L60: */
		}
		RWORK(k) += s;
/* L70: */
	    }
	}
	s = 0.;
	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
	    if (RWORK(i) > safe2) {
/* Computing MAX */
		i__5 = i;
		d__3 = s, d__4 = ((d__1 = WORK(i).r, abs(d__1)) + (d__2 = 
			d_imag(&WORK(i)), abs(d__2))) / RWORK(i);
		s = max(d__3,d__4);
	    } else {
/* Computing MAX */
		i__5 = i;
		d__3 = s, d__4 = ((d__1 = WORK(i).r, abs(d__1)) + (d__2 = 
			d_imag(&WORK(i)), abs(d__2)) + safe1) / (RWORK(i) + 
			safe1);
		s = max(d__3,d__4);
	    }
/* L80: */
	}
	BERR(j) = s;

/*        Test stopping criterion. Continue iterating if   
             1) The residual BERR(J) is larger than machine epsilon, a
nd   
             2) BERR(J) decreased by at least a factor of 2 during the
   
                last iteration, and   
             3) At most ITMAX iterations tried. */

	if (BERR(j) > eps && BERR(j) * 2. <= lstres && count <= 5) {

/*           Update solution and try again. */

	    zpbtrs_(uplo, n, kd, &c__1, &AFB(1,1), ldafb, &WORK(1), n, 
		    info);
	    zaxpy_(n, &c_b1, &WORK(1), &c__1, &X(1,j), &c__1);
	    lstres = BERR(j);
	    ++count;
	    goto L20;
	}

/*        Bound error from formula   

          norm(X - XTRUE) / norm(X) .le. FERR =   
          norm( abs(inv(A))*   
             ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)   

          where   
            norm(Z) is the magnitude of the largest component of Z   
            inv(A) is the inverse of A   
            abs(Z) is the componentwise absolute value of the matrix o
r   
               vector Z   
            NZ is the maximum number of nonzeros in any row of A, plus
 1   
            EPS is machine epsilon   

          The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) 
  
          is incremented by SAFE1 if the i-th component of   
          abs(A)*abs(X) + abs(B) is less than SAFE2.   

          Use ZLACON to estimate the infinity-norm of the matrix   
             inv(A) * diag(W),   
          where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
	    if (RWORK(i) > safe2) {
		i__5 = i;
		RWORK(i) = (d__1 = WORK(i).r, abs(d__1)) + (d__2 = d_imag(&
			WORK(i)), abs(d__2)) + nz * eps * RWORK(i);
	    } else {
		i__5 = i;
		RWORK(i) = (d__1 = WORK(i).r, abs(d__1)) + (d__2 = d_imag(&
			WORK(i)), abs(d__2)) + nz * eps * RWORK(i) + safe1;
	    }
/* L90: */
	}

	kase = 0;
L100:
	zlacon_(n, &WORK(*n + 1), &WORK(1), &FERR(j), &kase);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(A'). */

		zpbtrs_(uplo, n, kd, &c__1, &AFB(1,1), ldafb, &WORK(1),
			 n, info);
		i__2 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__5 = i;
		    i__3 = i;
		    i__4 = i;
		    z__1.r = RWORK(i) * WORK(i).r, z__1.i = RWORK(i) 
			    * WORK(i).i;
		    WORK(i).r = z__1.r, WORK(i).i = z__1.i;
/* L110: */
		}
	    } else if (kase == 2) {

/*              Multiply by inv(A)*diag(W). */

		i__2 = *n;
		for (i = 1; i <= *n; ++i) {
		    i__5 = i;
		    i__3 = i;
		    i__4 = i;
		    z__1.r = RWORK(i) * WORK(i).r, z__1.i = RWORK(i) 
			    * WORK(i).i;
		    WORK(i).r = z__1.r, WORK(i).i = z__1.i;
/* L120: */
		}
		zpbtrs_(uplo, n, kd, &c__1, &AFB(1,1), ldafb, &WORK(1),
			 n, info);
	    }
	    goto L100;
	}

/*        Normalize error. */

	lstres = 0.;
	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
/* Computing MAX */
	    i__5 = i + j * x_dim1;
	    d__3 = lstres, d__4 = (d__1 = X(i,j).r, abs(d__1)) + (d__2 = 
		    d_imag(&X(i,j)), abs(d__2));
	    lstres = max(d__3,d__4);
/* L130: */
	}
	if (lstres != 0.) {
	    FERR(j) /= lstres;
	}

/* L140: */
    }

    return 0;

/*     End of ZPBRFS */

} /* zpbrfs_ */
Exemplo n.º 4
0
/* Subroutine */ int dpbsvx_(char *fact, char *uplo, integer *n, integer *kd, 
	integer *nrhs, doublereal *ab, integer *ldab, doublereal *afb, 
	integer *ldafb, char *equed, doublereal *s, doublereal *b, integer *
	ldb, doublereal *x, integer *ldx, doublereal *rcond, doublereal *ferr,
	 doublereal *berr, doublereal *work, integer *iwork, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DPBSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to   
    compute the solution to a real system of linear equations   
       A * X = B,   
    where A is an N-by-N symmetric positive definite band matrix and X   
    and B are N-by-NRHS matrices.   

    Error bounds on the solution and a condition estimate are also   
    provided.   

    Description   
    ===========   

    The following steps are performed:   

    1. If FACT = 'E', real scaling factors are computed to equilibrate   
       the system:   
          diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B   
       Whether or not the system will be equilibrated depends on the   
       scaling of the matrix A, but if equilibration is used, A is   
       overwritten by diag(S)*A*diag(S) and B by diag(S)*B.   

    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to   
       factor the matrix A (after equilibration if FACT = 'E') as   
          A = U**T * U,  if UPLO = 'U', or   
          A = L * L**T,  if UPLO = 'L',   
       where U is an upper triangular band matrix, and L is a lower   
       triangular band matrix.   

    3. The factored form of A is used to estimate the condition number   
       of the matrix A.  If the reciprocal of the condition number is   
       less than machine precision, steps 4-6 are skipped.   

    4. The system of equations is solved for X using the factored form   
       of A.   

    5. Iterative refinement is applied to improve the computed solution   
       matrix and calculate error bounds and backward error estimates   
       for it.   

    6. If equilibration was used, the matrix X is premultiplied by   
       diag(S) so that it solves the original system before   
       equilibration.   

    Arguments   
    =========   

    FACT    (input) CHARACTER*1   
            Specifies whether or not the factored form of the matrix A is 
  
            supplied on entry, and if not, whether the matrix A should be 
  
            equilibrated before it is factored.   
            = 'F':  On entry, AFB contains the factored form of A.   
                    If EQUED = 'Y', the matrix A has been equilibrated   
                    with scaling factors given by S.  AB and AFB will not 
  
                    be modified.   
            = 'N':  The matrix A will be copied to AFB and factored.   
            = 'E':  The matrix A will be equilibrated if necessary, then 
  
                    copied to AFB and factored.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    NRHS    (input) INTEGER   
            The number of right-hand sides, i.e., the number of columns   
            of the matrices B and X.  NRHS >= 0.   

    AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)   
            On entry, the upper or lower triangle of the symmetric band   
            matrix A, stored in the first KD+1 rows of the array, except 
  
            if FACT = 'F' and EQUED = 'Y', then A must contain the   
            equilibrated matrix diag(S)*A*diag(S).  The j-th column of A 
  
            is stored in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD). 
  
            See below for further details.   

            On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by   
            diag(S)*A*diag(S).   

    LDAB    (input) INTEGER   
            The leading dimension of the array A.  LDAB >= KD+1.   

    AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) 
  
            If FACT = 'F', then AFB is an input argument and on entry   
            contains the triangular factor U or L from the Cholesky   
            factorization A = U**T*U or A = L*L**T of the band matrix   
            A, in the same storage format as A (see AB).  If EQUED = 'Y', 
  
            then AFB is the factored form of the equilibrated matrix A.   

            If FACT = 'N', then AFB is an output argument and on exit   
            returns the triangular factor U or L from the Cholesky   
            factorization A = U**T*U or A = L*L**T.   

            If FACT = 'E', then AFB is an output argument and on exit   
            returns the triangular factor U or L from the Cholesky   
            factorization A = U**T*U or A = L*L**T of the equilibrated   
            matrix A (see the description of A for the form of the   
            equilibrated matrix).   

    LDAFB   (input) INTEGER   
            The leading dimension of the array AFB.  LDAFB >= KD+1.   

    EQUED   (input or output) CHARACTER*1   
            Specifies the form of equilibration that was done.   
            = 'N':  No equilibration (always true if FACT = 'N').   
            = 'Y':  Equilibration was done, i.e., A has been replaced by 
  
                    diag(S) * A * diag(S).   
            EQUED is an input argument if FACT = 'F'; otherwise, it is an 
  
            output argument.   

    S       (input or output) DOUBLE PRECISION array, dimension (N)   
            The scale factors for A; not accessed if EQUED = 'N'.  S is   
            an input argument if FACT = 'F'; otherwise, S is an output   
            argument.  If FACT = 'F' and EQUED = 'Y', each element of S   
            must be positive.   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',   
            B is overwritten by diag(S) * B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)   
            If INFO = 0, the N-by-NRHS solution matrix X to the original 
  
            system of equations.  Note that if EQUED = 'Y', A and B are   
            modified on exit, and the solution to the equilibrated system 
  
            is inv(diag(S))*X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    RCOND   (output) DOUBLE PRECISION   
            The estimate of the reciprocal condition number of the matrix 
  
            A after equilibration (if done).  If RCOND is less than the   
            machine precision (in particular, if RCOND = 0), the matrix   
            is singular to working precision.  This condition is   
            indicated by a return code of INFO > 0, and the solution and 
  
            error bounds are not computed.   

    FERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The estimated forward error bound for each solution vector   
            X(j) (the j-th column of the solution matrix X).   
            If XTRUE is the true solution corresponding to X(j), FERR(j) 
  
            is an estimated upper bound for the magnitude of the largest 
  
            element in (X(j) - XTRUE) divided by the magnitude of the   
            largest element in X(j).  The estimate is as reliable as   
            the estimate for RCOND, and is almost always a slight   
            overestimate of the true error.   

    BERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector X(j) (i.e., the smallest relative change in   
            any element of A or B that makes X(j) an exact solution).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)   

    IWORK   (workspace) INTEGER array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, and i is   
                  <= N: the leading minor of order i of A is   
                       not positive definite, so the factorization could 
  
                       not be completed, and the solution has not been   
                       computed.   
                 = N+1: RCOND is less than machine precision.  The   
                       factorization has been completed, but the matrix   
                       is singular to working precision, and the solution 
  
                       and error bounds have not been computed.   

    Further Details   
    ===============   

    The band storage scheme is illustrated by the following example, when 
  
    N = 6, KD = 2, and UPLO = 'U':   

    Two-dimensional storage of the symmetric matrix A:   

       a11  a12  a13   
            a22  a23  a24   
                 a33  a34  a35   
                      a44  a45  a46   
                           a55  a56   
       (aij=conjg(aji))         a66   

    Band storage of the upper triangle of A:   

        *    *   a13  a24  a35  a46   
        *   a12  a23  a34  a45  a56   
       a11  a22  a33  a44  a55  a66   

    Similarly, if UPLO = 'L' the format of A is as follows:   

       a11  a22  a33  a44  a55  a66   
       a21  a32  a43  a54  a65   *   
       a31  a42  a53  a64   *    *   

    VISArray elements marked * are not used by the routine.   

    ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
	    x_dim1, x_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Local variables */
    static doublereal amax, smin, smax;
    static integer i, j;
    extern logical lsame_(char *, char *);
    static doublereal scond, anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static logical equil, rcequ, upper;
    static integer j1, j2;
    extern doublereal dlamch_(char *), dlansb_(char *, char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dpbcon_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *), dlaqsb_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, char *);
    static logical nofact;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dpbequ_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    static doublereal bignum;
    extern /* Subroutine */ int dpbrfs_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), dpbtrf_(char *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    static integer infequ;
    extern /* Subroutine */ int dpbtrs_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, integer *);
    static doublereal smlnum;



#define S(I) s[(I)-1]
#define FERR(I) ferr[(I)-1]
#define BERR(I) berr[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]
#define AFB(I,J) afb[(I)-1 + ((J)-1)* ( *ldafb)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]
#define X(I,J) x[(I)-1 + ((J)-1)* ( *ldx)]

    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    upper = lsame_(uplo, "U");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (*ldafb < *kd + 1) {
	*info = -9;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(equed, "N"))) {
	*info = -10;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.;
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MIN */
		d__1 = smin, d__2 = S(j);
		smin = min(d__1,d__2);
/* Computing MAX */
		d__1 = smax, d__2 = S(j);
		smax = max(d__1,d__2);
/* L10: */
	    }
	    if (smin <= 0.) {
		*info = -11;
	    } else if (*n > 0) {
		scond = max(smin,smlnum) / min(smax,bignum);
	    } else {
		scond = 1.;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -13;
	    } else if (*ldx < max(1,*n)) {
		*info = -15;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPBSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A.
 */

	dpbequ_(uplo, n, kd, &AB(1,1), ldab, &S(1), &scond, &amax, &
		infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    dlaqsb_(uplo, n, kd, &AB(1,1), ldab, &S(1), &scond, &amax, 
		    equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= *nrhs; ++j) {
	    i__2 = *n;
	    for (i = 1; i <= *n; ++i) {
		B(i,j) = S(i) * B(i,j);
/* L20: */
	    }
/* L30: */
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MAX */
		i__2 = j - *kd;
		j1 = max(i__2,1);
		i__2 = j - j1 + 1;
		dcopy_(&i__2, &AB(*kd+1-j+j1,j), &c__1, &
			AFB(*kd+1-j+j1,j), &c__1);
/* L40: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MIN */
		i__2 = j + *kd;
		j2 = min(i__2,*n);
		i__2 = j2 - j + 1;
		dcopy_(&i__2, &AB(1,j), &c__1, &AFB(1,j), &c__1);
/* L50: */
	    }
	}

	dpbtrf_(uplo, n, kd, &AFB(1,1), ldafb, info);

/*        Return if INFO is non-zero. */

	if (*info != 0) {
	    if (*info > 0) {
		*rcond = 0.;
	    }
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = dlansb_("1", uplo, n, kd, &AB(1,1), ldab, &WORK(1));

/*     Compute the reciprocal of the condition number of A. */

    dpbcon_(uplo, n, kd, &AFB(1,1), ldafb, &anorm, rcond, &WORK(1), &
	    IWORK(1), info);

/*     Return if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
	return 0;
    }

/*     Compute the solution matrix X. */

    dlacpy_("Full", n, nrhs, &B(1,1), ldb, &X(1,1), ldx);
    dpbtrs_(uplo, n, kd, nrhs, &AFB(1,1), ldafb, &X(1,1), ldx, 
	    info);

/*     Use iterative refinement to improve the computed solution and   
       compute error bounds and backward error estimates for it. */

    dpbrfs_(uplo, n, kd, nrhs, &AB(1,1), ldab, &AFB(1,1), ldafb, 
	    &B(1,1), ldb, &X(1,1), ldx, &FERR(1), &BERR(1), &WORK(1)
	    , &IWORK(1), info);

/*     Transform the solution matrix X to a solution of the original   
       system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= *nrhs; ++j) {
	    i__2 = *n;
	    for (i = 1; i <= *n; ++i) {
		X(i,j) = S(i) * X(i,j);
/* L60: */
	    }
/* L70: */
	}
	i__1 = *nrhs;
	for (j = 1; j <= *nrhs; ++j) {
	    FERR(j) /= scond;
/* L80: */
	}
    }

    return 0;

/*     End of DPBSVX */

} /* dpbsvx_ */