Exemplo n.º 1
0
//===========================================================================
Vector3D gvCamera::eyeCoordsToObjectCoords(const Vector3D& eyept) const
//===========================================================================
{
    glMatrixMode(GL_PROJECTION);
    glPushMatrix();
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    use();

    int viewport[4];
    double projection[16];
    double modelview[16];
    glGetIntegerv(GL_VIEWPORT, viewport);
    glGetDoublev(GL_PROJECTION_MATRIX, projection);
    glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
    Vector3D pt;
    int success = gluUnProject(eyept[0], eyept[1], eyept[2],
			       modelview, projection, viewport,
			       &pt[0], &pt[1], &pt[2]);
    glMatrixMode(GL_PROJECTION);
    glPopMatrix();
    glMatrixMode(GL_MODELVIEW);
    glPopMatrix();

    ALWAYS_ERROR_IF(!success, "gluUnProject() failed!");
    return pt;
}
Exemplo n.º 2
0
//===========================================================================
Vector3D gvCamera::objectCoordsToWindowCoords(const Vector3D& pt) const
//===========================================================================
{
    glMatrixMode(GL_PROJECTION);
    glPushMatrix();
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    use();

    int viewport[4];
    double projection[16];
    double modelview[16];
    glGetIntegerv(GL_VIEWPORT, viewport);
    glGetDoublev(GL_PROJECTION_MATRIX, projection);
    glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
    Vector3D winpt;
    int success = gluProject(pt[0], pt[1], pt[2],
			       modelview, projection, viewport,
			       &winpt[0], &winpt[1], &winpt[2]);

    // It seems that the y value is referring to the opposite edge. @@sbr Fix this!
    winpt[1] = viewheight_ - winpt[1];

    glMatrixMode(GL_PROJECTION);
    glPopMatrix();
    glMatrixMode(GL_MODELVIEW);
    glPopMatrix();

    ALWAYS_ERROR_IF(!success, "gluProject() failed!");
    return winpt;
}
Exemplo n.º 3
0
 void intersectCurveSurf(SplineCurve *cv, SplineSurface *sf,
			 double epsge, 
			 vector<pair<double, Point> >& int_pts,
			 vector<int>& pretopology,
			 vector<pair<pair<double,Point>, 
			 pair<double,Point> > >& int_crvs)
 {
   SISLSurf* sislsf = GoSurf2SISL(*sf, false);
   SISLCurve* sislcv = Curve2SISL(*cv, false);
   int kntrack = 0;
   int trackflag = 0;  // Do not make tracks.
   SISLTrack **track =0;
   int knpt=0, kncrv=0;
   double *par1=0, *par2=0;
   int *pretop = 0;
   SISLIntcurve **vcrv = 0;
   int stat = 0;

   sh1858(sislsf, sislcv, 0.0, epsge, trackflag, &kntrack, &track,
	  &knpt, &par1, &par2, &pretop, &kncrv, &vcrv, &stat);
   ALWAYS_ERROR_IF(stat<0,"Error in intersection, code: " << stat);

   // Remember intersections points. 
   int ki;
   for (ki=0; ki<knpt; ki++)
     {
       int_pts.push_back(std::make_pair(par2[ki],
					Point(par1[2*ki],par1[2*ki+1])));
       pretopology.insert(pretopology.end(), pretop+4*ki+2, pretop+4*(ki+1));
       pretopology.insert(pretopology.end(), pretop+4*ki, pretop+4*ki+2);
     }

   // Remember intersection curves
   for (ki=0; ki<kncrv; ++ki)
     {
       int nmb_pt = vcrv[ki]->ipoint;
       Point par1 = Point(vcrv[ki]->epar1[0],vcrv[ki]->epar1[1]);
       Point par2 = Point(vcrv[ki]->epar1[2*(nmb_pt-1)],
			  vcrv[ki]->epar1[2*nmb_pt-1]);
       int_crvs.push_back(std::make_pair(std::make_pair(vcrv[ki]->epar2[0], 
							par1),
					 std::make_pair(vcrv[ki]->epar2[nmb_pt-1],
							par2)));
     }

   if (kncrv > 0)
     freeIntcrvlist(vcrv, kncrv);

   if (par1 != NULL) free(par1);
   if (par2 != NULL) free(par2);
   if (sislsf != NULL) freeSurf(sislsf);
   if (sislcv != NULL) freeCurve(sislcv);
   if (pretop != NULL) free(pretop);
 }
Exemplo n.º 4
0
void intersectcurves(SplineCurve* cv1, SplineCurve* cv2, double epsge,
		     vector<std::pair<double,double> >& intersections)
  //************************************************************************
  // 
  // Intersect two spline curves. Collect intersection parameters.
  //
  //***********************************************************************
{

  // Make sisl curves and call sisl.
  SISLCurve *pc1 = Curve2SISL(*cv1, false);
  SISLCurve *pc2 = Curve2SISL(*cv2, false);

  int kntrack = 0;
  int trackflag = 0;  // Do not make tracks.
  SISLTrack **track =0;
  int knpt=0, kncrv=0;
  double *par1=0, *par2=0;
  int *pretop = 0;
  SISLIntcurve **intcrvs = 0;
  int stat = 0;
  sh1857(pc1, pc2, 0.0, epsge, trackflag, &kntrack, &track,
	 &knpt, &par1, &par2, &pretop, &kncrv, &intcrvs, &stat);

  ALWAYS_ERROR_IF(stat<0,"Error in intersection, code: " << stat);


  // Remember intersections points. The intersection curves are
  // skipped.
  int ki;
  for (ki=0; ki<knpt; ki++)
    {
      intersections.push_back(std::make_pair(par1[ki],par2[ki]));
    }

  if (kncrv > 0)
    freeIntcrvlist(intcrvs, kncrv);

  if (par1 != 0) free(par1);
  if (par2 != 0) free(par2);
  if (pretop != 0) free(pretop);
  if (pc1 != 0) freeCurve(pc1);
  if (pc2 != 0) freeCurve(pc2);
}
Exemplo n.º 5
0
void intersectCurvePoint(const ParamCurve* crv, Point pnt, double epsge,
			 vector<double>& intersections, 
			 vector<pair<double, double> >& int_crvs)
  //************************************************************************
  // 
  // Intersect a curve with a point
  //
  //***********************************************************************
{
  // First make sure that the curve is a spline curve
    ParamCurve* tmpcrv = const_cast<ParamCurve*>(crv);
    SplineCurve* sc = tmpcrv->geometryCurve();
    if (sc == NULL)
        THROW("ParamCurve doesn't have a spline representation.");
    
  // Make sisl curve and call sisl.
  SISLCurve *pc = Curve2SISL(*sc, false);

  int knpt=0, kncrv=0;
  double *par=0;
  SISLIntcurve **vcrv = 0;
  int stat = 0;
  s1871(pc, pnt.begin(), pnt.size(), epsge, &knpt, &par, &kncrv, &vcrv, &stat);
  ALWAYS_ERROR_IF(stat<0,"Error in intersection, code: " << stat);


  // Remember intersections points. 
  if (knpt > 0)
    intersections.insert(intersections.end(), par, par+knpt);

  // Remember intersection curves
  for (int ki=0; ki<kncrv; ++ki)
    int_crvs.push_back(std::make_pair(vcrv[ki]->epar1[0], vcrv[ki]->epar1[vcrv[ki]->ipoint-1]));

  if (kncrv > 0)
    freeIntcrvlist(vcrv, kncrv);

  if (par != 0) free(par);
  if (pc) freeCurve(pc);

  delete sc;
}
Exemplo n.º 6
0
shared_ptr<SplineSurface>
GeometryTools::surfaceSum(const SplineSurface& sf1, double fac1,
                          const SplineSurface& sf2, double fac2, double num_tol)

//********************************************************************
// Addition of two signed SplineSurfaces, i.e. this function can
// also be used for subtraction. The surfaces is assumed to live on
// the same parameter domain, but may have different knot vectors.
//********************************************************************
{
    // Check input
    ALWAYS_ERROR_IF(fabs(sf1.startparam_u() - sf2.startparam_u()) > num_tol ||
                    fabs(sf1.endparam_u() - sf2.endparam_u()) > num_tol ||
                    fabs(sf1.startparam_v() - sf2.startparam_v()) > num_tol ||
                    fabs(sf1.endparam_v() - sf2.endparam_v()) > num_tol,
                    "Inconsistent parameter domain.");

    // For the time being
    if (sf1.rational() || sf2.rational()) {
        THROW("Sum of rational surfaces is not implemented");
    }

    // Make copy of surfaces
    vector<shared_ptr<SplineSurface> > surfaces;
    surfaces.reserve(2);
    shared_ptr<SplineSurface> sf;
// #ifdef _MSC_VER
//     sf = shared_ptr<SplineSurface>(dynamic_cast<SplineSurface*>(sf1.clone()));
// #else
    sf = shared_ptr<SplineSurface>(sf1.clone());
// #endif
    surfaces.push_back(sf);
// #ifdef _MSC_VER
//     sf = shared_ptr<SplineSurface>(dynamic_cast<SplineSurface*>(sf2.clone()));
// #else
    sf = shared_ptr<SplineSurface>(sf2.clone());
// #endif
    surfaces.push_back(sf);

    // Make sure that the surfaces live on the same knot vector
    GeometryTools::unifySurfaceSplineSpace(surfaces, num_tol);

    // Add signed coefficients
    vector<double> coefs;
    int nmb_coefs_u = surfaces[0]->numCoefs_u();
    int nmb_coefs_v = surfaces[0]->numCoefs_v();
    int dim = surfaces[0]->dimension();
    coefs.resize(dim*nmb_coefs_u*nmb_coefs_v);
    int ki;
    std::vector<double>::iterator s1 = surfaces[0]->coefs_begin();
    std::vector<double>::iterator s2 = surfaces[1]->coefs_begin();
    for (ki=0; ki<dim*nmb_coefs_u*nmb_coefs_v; ki++)
        coefs[ki] = fac1*s1[ki] + fac2*s2[ki];

    // Create output curve
    shared_ptr<SplineSurface>
    surfacesum(new SplineSurface(nmb_coefs_u, nmb_coefs_v,
                                 surfaces[0]->order_u(),
                                 surfaces[0]->order_v(),
                                 surfaces[0]->basis_u().begin(),
                                 surfaces[0]->basis_v().begin(),
                                 &coefs[0], dim, false));

    return surfacesum;
}
Exemplo n.º 7
0
//===========================================================================
void SplineCurve::appendCurve(ParamCurve* other_curve,
			      int continuity, double& dist, bool repar)
//===========================================================================
{
    SplineCurve* other_cv = dynamic_cast<SplineCurve*>(other_curve);
    ALWAYS_ERROR_IF(other_cv == 0,
		"Given an empty curve or not a SplineCurve.");
    ALWAYS_ERROR_IF(dim_ != other_cv->dimension(),
		    "The curves must lie in the same space.");

    ALWAYS_ERROR_IF(continuity < -1 || continuity + 1 > order(),
		    "Specified continuity not attainable.");

#ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of0("basis0.g2");
    writeStandardHeader(of0);
    write(of0);
    other_cv->writeStandardHeader(of0);
    other_cv->write(of0);
#endif

    // Making sure the curves have the same order. Raise if necessary.
    int diff_order = order() - other_cv->order();
    if (diff_order > 0)
      other_cv->raiseOrder(diff_order);
    else if (diff_order < 0)
      raiseOrder(abs(diff_order));

    // Make sure that we have k-regularity at meeting ends.
    makeKnotEndRegular();
    other_cv->makeKnotStartRegular();

    // Ensure that either none of the curves or both are rational 
    if (rational_ && !other_cv->rational())
      other_cv->representAsRational();
    if (!rational_ && other_cv->rational())
      representAsRational();

 #ifdef DEBUG
   // DEBUG OUTPUT
    std::ofstream of1("basis1.g2");
    writeStandardHeader(of1);
    write(of1);
    other_cv->writeStandardHeader(of1);
    other_cv->write(of1);
#endif

    if (rational_)
      {
	// Set end weight to 1
	setBdWeight(1.0, false);
	other_cv->setBdWeight(1.0, true);
      }

    // Reparametrization (translatation and mult.) of other_cv->basis().knots_ .
    if (repar && continuity > 0) {

      if (rational_)
	{
	  // The weights corresponding to the two coefficients close to the
	  // joints should be equal
	  equalBdWeights(false);
	  other_cv->equalBdWeights(true);
	}
    }

 #ifdef DEBUG
   // DEBUG OUTPUT
    std::ofstream of1_2("basis1_2.g2");
    writeStandardHeader(of1_2);
    write(of1_2);
    other_cv->writeStandardHeader(of1_2);
    other_cv->write(of1_2);
#endif

 #ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of2("basis2.dat");
    basis_.write(of2);
    of2 << std::endl;
    other_cv->basis_.write(of2);
    of2 << std::endl;
#endif

    if (continuity > -1 && rational_)
      {
	// Make sure that the rational curves have equal weights in the end
	int k2 = (numCoefs() - 1) * (dim_+1);
	double frac = rcoefs_[k2+dim_]/other_cv->rcoefs_[dim_];
	int kn = other_cv->numCoefs();
	for (int j=0; j<kn*(dim_+1); ++j)
	  other_cv->rcoefs_[j] *= frac;
      }

#ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of3("basis3.dat");
    basis_.write(of3);
    of3 << std::endl;
    other_cv->basis_.write(of3);
    of3 << std::endl;
#endif

    if (repar && continuity > 0) {

	double sum1 = 0;
	double sum2 = 0;
	if (rational_)
	  {
	    int k2 = (numCoefs() - 1) * (dim_+1);
	    int k1 = (numCoefs() - 2) * (dim_+1);
	    for (int j = 0; j < dim_; ++j)
	      {
		double t0 = (rcoefs_[k2 + j] - rcoefs_[k1 + j])*rcoefs_[k2 + dim_] -
		  rcoefs_[k2 + j]*(rcoefs_[k2 + dim_] - rcoefs_[k1 + dim_]);
		sum1 += t0*t0;
	      }
	    sum1 = sqrt(sum1)/(rcoefs_[k2+dim_]*rcoefs_[k2+dim_]);

	    k2 = dim_+1;
	    k1 = 0;
	    for (int j = 0; j < dim_; ++j)
	      {
		double t0 = (other_cv->rcoefs_[k2 + j] - 
			     other_cv->rcoefs_[k1 + j])*other_cv->rcoefs_[k1 + dim_] -
		  other_cv->rcoefs_[k1 + j]*(other_cv->rcoefs_[k2 + dim_] - 
					     other_cv->rcoefs_[k1 + dim_]);
		sum2 += t0*t0;
	      }
	    sum2 = sqrt(sum2)/(other_cv->rcoefs_[k1+dim_]*other_cv->rcoefs_[k1+dim_]);
	  }
	else
	  {
	    for (int j = 0; j < dim_; ++j) {
	      sum1 += (coefs_[(numCoefs() - 1) * dim_ + j] -
		       coefs_[(numCoefs() - 2) * dim_ + j]) *
		(coefs_[(numCoefs() - 1) * dim_ + j] -
		 coefs_[(numCoefs() - 2) * dim_ + j]);
	      sum2 += (other_cv->coefs_[dim_ + j] - other_cv->coefs_[j]) *
		(other_cv->coefs_[dim_ + j] - other_cv->coefs_[j]);
	    }
	    sum1 = sqrt(sum1);
	    sum2 = sqrt(sum2);
	  }

#ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of4("basis4.dat");
    basis_.write(of4);
    of4 << std::endl;
    other_cv->basis_.write(of4);
    of4 << std::endl;
#endif

	if (sum1 > 1.0e-14) { // @@sbr We should have a universal noise-tolerance.
	  double del1 = basis_.begin()[numCoefs()] - basis_.begin()[numCoefs() - 1];
	  double del2 = other_cv->basis_.begin()[order()] -
	    other_cv->basis_.begin()[order() - 1];
	  double k = sum2*del1/(sum1*del2);
	    other_cv->basis_.rescale(endparam(), endparam() +
				     k * (other_cv->basis_.begin()
					  [other_cv->numCoefs() + order() - 1] -
					  other_cv->basis_.startparam()));
	} else {
	    MESSAGE("Curve seems to be degenerated in end pt!");
	}
    } else {
        other_cv->basis_.rescale(endparam(),
				 endparam() +
				 (other_cv->basis_.begin()
				  [other_cv->numCoefs() + order() - 1] -
				  other_cv->basis_.startparam()));
    }

    // Join the curve-segments (i.e. set endpoints equal), given that...
    if (continuity != -1) {
	for (int j = 0; j < dim_; ++j) {
	    other_cv->coefs_[j] = 
		coefs_[(numCoefs() - 1)*dim_ + j] =
		(coefs_[(numCoefs() - 1)*dim_ + j] + other_cv->coefs_[j])/2;
	    }
    }

    double tpar = basis_.endparam();
    int ti = numCoefs() + order() - 1; // Index of last occurence of tpar.

#ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of5("basis5.dat");
    basis_.write(of5);
    of5 << std::endl;
    other_cv->basis_.write(of5);
    of5 << std::endl;
#endif

    // Add other_cv's coefs.
    if (rational_)
      {
	// Ensure identity of the weight in the joint
	other_cv->setBdWeight(rcoefs_[rcoefs_.size()-1], true);
      
	rcoefs_.insert(rcoefs_end(), other_cv->rcoefs_begin(), 
		       other_cv->rcoefs_end());
      }
    else
      coefs_.insert(coefs_end(), other_cv->coefs_begin(), other_cv->coefs_end());

#ifdef DEBUG
    // DEBUG OUTPUT
    std::ofstream of("basis.dat");
    basis_.write(of);
    of << std::endl;
    other_cv->basis_.write(of);
    of << std::endl;
#endif

    // Make an updated basis_ .
    std::vector<double> new_knotvector;
    std::copy(basis_.begin(), basis_.end(), std::back_inserter(new_knotvector));
    std::copy(other_cv->basis_.begin() + order(), other_cv->basis_.end(),
	 std::back_inserter(new_knotvector));
    basis_ = BsplineBasis(order(), new_knotvector.begin(), new_knotvector.end());

    if (rational_)
      updateCoefsFromRcoefs();

    SplineCurve orig_curve = *this; // Save curve for later estimates.

    // Obtain wanted smoothness.
    int i;
    try {
    for (i = 0; i < continuity + 1; ++i)
	removeKnot(tpar);
    }
    catch (...)
    {
	// Leave the knots
    }

    // Estimate distance between curve and smoothed curve: 
    // Raise (copy of) smoothed curve to original spline space 
    // and calculate max distance between corresponding spline-coefs.
    SplineCurve raised_smooth_curve = *this;
    std::vector<double> knots;
    for (i = 0; i < continuity + 1; ++i) knots.push_back(tpar);
    raised_smooth_curve.insertKnot(knots);
    double sum, root_sum;
    dist = 0;
    for (i = std::max(0, ti - (continuity + 1) - order()); 
	 i < ti - order() + continuity + 1; ++i) {
	sum = 0;
	for (int j = 0; j < dim_; ++j)
	    sum += (orig_curve.coefs_[i * dim_ + j] - 
		    raised_smooth_curve.coefs_[i * dim_ + j])
		    * (orig_curve.coefs_[i * dim_ + j] - 
		       raised_smooth_curve.coefs_[i * dim_ + j]);
	// to avoid use of the max function, which is likely to cause
	// trouble with the Microsoft Visual C++ Compiler, the following 
	// two lines are added, and the third one is commented out.
	root_sum = sqrt(sum);
	dist = dist > root_sum ? dist : root_sum;
	//dist = std::max(dist, sqrt(sum));
    }
}
Exemplo n.º 8
0
Point ftPoint::normal() const
{
    ALWAYS_ERROR_IF(surface_ == 0, "There is no underlying surface!");

    return surface_->normal(u_, v_);
}
Exemplo n.º 9
0
//===========================================================================
void SplineInterpolator::interpolate(int num_points,
				       int dimension,
				       const double* param_start,
				       const double* data_start,
				       std::vector<double>& coefs)
//===========================================================================
{
    // Check that we have reasonable conditions set and a good param sequence
    ALWAYS_ERROR_IF(ctype_ == None, "No end conditions set.");

    for (int i = 1; i < num_points; ++i) {
	ALWAYS_ERROR_IF(param_start[i] <= param_start[i-1],
		    "Parameter sequence must be strictly increasing.");
    }
    ALWAYS_ERROR_IF(ctype_ == Hermite && (dimension != start_tangent_->dimension() ||
				      dimension != end_tangent_->dimension()),
		    "In Hermite interpolation, the end tangents must have the "
		    "same dimension as the interpolation data.");

    
    // First we make a knot vector and define the spline space
    int additional_coefs = (ctype_ == Free) ? 0 :
      (((ctype_ == NaturalAtStart && end_tangent_.get() == 0)
	|| (ctype_ == NaturalAtEnd && start_tangent_.get() == 0)) ? 1 : 2);
    int num_coefs = num_points + additional_coefs;
    int order = std::min(4, num_coefs);
    ALWAYS_ERROR_IF(num_coefs < 2,"Insufficient number of points.");
    std::vector<double> knots;
    knots.reserve(num_coefs + order);
    knots.insert(knots.end(), order, param_start[0]);
    if (ctype_ == Free) {
	knots.insert(knots.end(),
		     param_start + 2,
		     param_start + num_points - 2);
    } 
    else if (ctype_ == NaturalAtStart) {
	if (end_tangent_.get() != 0)
	    knots.insert(knots.end(), param_start + 1,
			 param_start + num_points - 1);
	else
	    knots.insert(knots.end(), param_start + 1,
			 param_start + num_points - 2);
    }
    else if (ctype_ == NaturalAtEnd) {
	if (start_tangent_.get() != 0)
	    knots.insert(knots.end(), param_start + 1,
			 param_start + num_points - 1);
	else
	    knots.insert(knots.end(), param_start + 2,
			 param_start + num_points - 1);
    }
    else { // ctype_ == Natural or Hermite
	knots.insert(knots.end(),
		     param_start + 1,
		     param_start + num_points - 1);
    }
    knots.insert(knots.end(), order, param_start[num_points-1]);
    basis_ = BsplineBasis(num_coefs, order, &knots[0]);

    // Create the interpolation matrix.
    // The first and last row (equation) depends on the boundary
    // conditions (for Hermite and Natural conditions) or are
    // nonexisting (for Free conditions, the matrix has two fewer
    // rows/equations).
    // The interpolation matrix is a tridiagonal matrix in the Free
    // and Hermite cases, and a tridiagonal matrix plus two elements
    // in the Natural case.

// This code dates from the time when this code was dependent on the NEWMAT
// library.  This is no longer the case, and the code has been substituted with
// the code below.  However, it is kept here for reference reasons.
//---------------------NEWMAT dependent-----------------------------
// #if 0
//     cerr << "NEWMAT DEPENDENT" << endl;
//     BandMatrix A(num_coefs, 2, 2);
//     A = 0;
//     ColumnVector c(num_coefs);
//     ColumnVector b(num_coefs);

//     // Boundary conditions
//     if (ctype_ == Hermite) {
// 	// Derivative conditions
// 	double tmp[8];
// 	basis_.computeBasisValues(param_start[0], tmp, 1);
// 	A.element(0, 0) = tmp[1]; // derivative of first B-spline
// 	A.element(0, 1) = tmp[3]; // derivative of second B-spline
// 	basis_.computeBasisValues(param_start[num_points-1], tmp, 1);
// 	A.element(num_coefs - 1, num_coefs - 2) = tmp[5];
// 	A.element(num_coefs - 1, num_coefs - 1) = tmp[7];
// 	// Boundary element conditions
// 	A.element(1, 0) = 1.0;
// 	A.element(num_coefs - 2, num_coefs - 1) = 1.0;
//     } else if (ctype_ == Natural) {
// 	// Derivative conditions
// 	double tmp[12];
// 	basis_.computeBasisValues(param_start[0], tmp, 2);
// 	A.element(0, 0) = tmp[2]; // second derivative of first B-spline
// 	A.element(0, 1) = tmp[5];
// 	A.element(0, 2) = tmp[8];
// 	basis_.computeBasisValues(param_start[num_points-1], tmp, 2);
// 	A.element(num_coefs - 1, num_coefs - 3) = tmp[5];
// 	A.element(num_coefs - 1, num_coefs - 2) = tmp[8];
// 	A.element(num_coefs - 1, num_coefs - 1) = tmp[11];
// 	// Boundary element conditions
// 	A.element(1, 0) = 1.0;
// 	A.element(num_coefs - 2, num_coefs - 1) = 1.0;
//     } else if (ctype_ == NaturalAtStart) {
// 	// Derivative condition
// 	double tmp[12];
// 	basis_.computeBasisValues(param_start[0], tmp, 2);
// 	A.element(0, 0) = tmp[2]; // second derivative of first B-spline
// 	A.element(0, 1) = tmp[5];
// 	A.element(0, 2) = tmp[8];
// 	if (end_tangent_.get() != 0) {
// 	    double tmp[8];
// 	    basis_.computeBasisValues(param_start[num_points-1], tmp, 1);
// 	    A.element(num_coefs - 1, num_coefs - 2) = tmp[5];
// 	    A.element(num_coefs - 1, num_coefs - 1) = tmp[7];

// 	    A.element(num_coefs - 2, num_coefs - 1) = 1.0;
// 	} else {
// 	    A.element(num_coefs - 1, num_coefs - 1) = 1.0;
// 	}
// 	// Boundary element conditions
// 	A.element(1, 0) = 1.0;
//     } else if (ctype_ == NaturalAtEnd) {
// 	// Derivative condition
// 	double tmp[12];
// 	basis_.computeBasisValues(param_start[num_points-1], tmp, 2);
// 	A.element(num_coefs - 1, num_coefs - 3) = tmp[5];
// 	A.element(num_coefs - 1, num_coefs - 2) = tmp[8];
// 	A.element(num_coefs - 1, num_coefs - 1) = tmp[11];
// 	if (start_tangent_.get() != 0) {
// 	    basis_.computeBasisValues(param_start[0], tmp, 1);
// 	    A.element(0, 0) = tmp[1]; // derivative of first B-spline
// 	    A.element(0, 1) = tmp[3]; // derivative of second B-spline

// 	    A.element(1, 0) = 1.0;
// 	} else {
// 	    A.element(0, 0) = 1.0;
// 	}
// 	// Boundary element conditions
// 	A.element(num_coefs - 2, num_coefs - 1) = 1.0;
//     } else if (ctype_ == Free) {
// 	// Boundary element conditions
// 	A.element(0, 0) = 1.0;
// 	A.element(num_coefs - 1, num_coefs - 1) = 1.0;
//     } else {
// 	THROW("Unknown boundary condition type: " << ctype_);
//     }

//     // Interior conditions
//     int rowoffset = ((ctype_ == Free) ||
// 		     ((ctype_ == NaturalAtEnd) && (start_tangent_.get() == 0)) ? 1 : 2);
//     int j;
//     for (j = 0; j < num_points-2; ++j) {
// 	double tmp[4];
// 	basis_.computeBasisValues(param_start[j+1], tmp, 0);
// 	int column = 1 + (basis_.lastKnotInterval() - 4);
// 	A.element(j + rowoffset, column) = tmp[0];
// 	A.element(j + rowoffset, column + 1) = tmp[1];
// 	A.element(j + rowoffset, column + 2) = tmp[2];
// 	A.element(j + rowoffset, column + 3) = tmp[3];
//     }

//     // Now we are ready to repeatedly solve Ac = b for # = dimension different
//     // right-hand-sides b.
//     BandLUMatrix ALUfact = A; // Computes LU factorization
//     ALWAYS_ERROR_IF(ALUfact.IsSingular(), 
// 		    "Matrix is singular! This should never happen!");

//     coefs.resize(dimension*num_coefs);

//     for (int dd = 0; dd < dimension; ++dd) {
// 	// Make the b vector
// 	int offset = (ctype_ == Free ||
// 		      ((ctype_ == NaturalAtEnd) && start_tangent_.get() == 0) ? 0 : 1);
// 	if (ctype_ == Hermite) {
// 	    b.element(0) = (*start_tangent_)[dd];
// 	    b.element(num_coefs - 1) = (*end_tangent_)[dd];
// 	} else if (ctype_ == Natural) {
// 	    b.element(0) = 0;
// 	    b.element(num_coefs - 1) = 0;
// 	} else if (ctype_ == NaturalAtStart) {
// 	    b.element(0) = 0;
// 	    if (end_tangent_.get() != 0)
// 		b.element(num_coefs - 1) = (*end_tangent_)[dd];
// 	} else if (ctype_ == NaturalAtEnd) {
// 	    b.element(num_coefs - 1) = 0;
// 	    if (start_tangent_.get() != 0)
// 		b.element(0) = (*start_tangent_)[dd];
// 	}
// 	for (j = 0; j < num_points; ++j) {
// 	    b.element(j+offset) = data_start[j*dimension + dd];
// 	}
// 	// Solve
// 	c = ALUfact.i() * b;
// 	// Copy results
// 	for (j = 0; j < num_coefs; ++j) {
// 	    coefs[j*dimension + dd] = c.element(j);
// 	}
//     }
// -------------------NEWMAT INDEPENDENT------------------------------
//#else
    vector<vector<double> > A(num_coefs, vector<double>(num_coefs, 0));
    vector<vector<double> > b(num_coefs, vector<double>(dimension));
    
    double tmp[12];
    // boundary conditions
    switch (ctype_) {
	case Hermite:
	    basis_.computeBasisValues(param_start[0], tmp, 1);
	    A[0][0] = tmp[1]; // derivative of first B-spline
	    A[0][1] = tmp[3]; // derivative of second B-spline
	    basis_.computeBasisValues(param_start[num_points-1], tmp, 1);
	    A[num_coefs - 1][num_coefs - 2] = tmp[5];
	    A[num_coefs - 1][num_coefs - 1] = tmp[7];
	    // Boundary element conditions
	    A[1][0] = 1.0;
	    A[num_coefs - 2][num_coefs - 1] = 1.0;
	    break;
	case Natural:
	    // Derivative conditions
	    basis_.computeBasisValues(param_start[0], tmp, 2);
	    A[0][0] = tmp[2]; // second derivative of first B-spline
	    A[0][1] = tmp[5];
	    A[0][2] = tmp[8];
	    basis_.computeBasisValues(param_start[num_points-1], tmp, 2);
	    A[num_coefs - 1][num_coefs - 3] = tmp[5];
	    A[num_coefs - 1][num_coefs - 2] = tmp[8];
	    A[num_coefs - 1][num_coefs - 1] = tmp[11];
	    // Boundary element conditions
	    A[1][0] = 1.0;
	    A[num_coefs - 2][num_coefs - 1] = 1.0;
	    break;
	case NaturalAtStart:
	    basis_.computeBasisValues(param_start[0], tmp, 2);
	    A[0][0] = tmp[2]; // second derivative of first B-spline
	    A[0][1] = tmp[5];
	    A[0][2] = tmp[8];
	    if (end_tangent_.get() != 0) {
		double tmp[8];
		basis_.computeBasisValues(param_start[num_points-1], tmp, 1);
		A[num_coefs - 1][num_coefs - 2] = tmp[5];
		A[num_coefs - 1][num_coefs - 1] = tmp[7];
		A[num_coefs - 2][num_coefs - 1] = 1.0;
	    } else {
		A[num_coefs - 1][num_coefs - 1] = 1.0;
	    }
	    // Boundary element conditions
	    A[1][0] = 1.0;
	    break;
	case NaturalAtEnd:
	    basis_.computeBasisValues(param_start[num_points-1], tmp, 2);
	    A[num_coefs - 1][num_coefs - 3] = tmp[5];
	    A[num_coefs - 1][num_coefs - 2] = tmp[8];
	    A[num_coefs - 1][num_coefs - 1] = tmp[11];
	    if (start_tangent_.get() != 0) {
		basis_.computeBasisValues(param_start[0], tmp, 1);
		A[0][0] = tmp[1]; // derivative of first B-spline
		A[0][1] = tmp[3]; // derivative of second B-spline
		A[1][0] = 1.0;
	    } else {
		A[0][0] = 1.0;
	    }
	    // Boundary element conditions
	    A[num_coefs - 2][num_coefs - 1] = 1.0;
	    break;
	case Free:
	    // Boundary element conditions
	    A[0][0] = 1.0;
	    A[num_coefs - 1][num_coefs - 1] = 1.0;
	    break;
	default:
	    THROW("Unknown boundary condition type." << ctype_);
    }
    
    // interior conditions
    int rowoffset = ((ctype_ == Free) ||
		     ((ctype_ == NaturalAtEnd) && (start_tangent_.get() == 0)) ? 1 : 2);
    int j;
    for (j = 0; j < num_points-2; ++j) {
	basis_.computeBasisValues(param_start[j+1], tmp, 0);
	int column = 1 + (basis_.lastKnotInterval() - 4);
	A[j + rowoffset][column] = tmp[0];
	A[j + rowoffset][column + 1] = tmp[1];
	A[j + rowoffset][column + 2] = tmp[2];
	A[j + rowoffset][column + 3] = tmp[3];
    }

    // make the b vectors boundary condition
    int offset = (ctype_ == Free ||
		  ((ctype_ == NaturalAtEnd) && start_tangent_.get() == 0) ? 0 : 1);
    switch(ctype_) {
	case Hermite:
	    copy(start_tangent_->begin(), start_tangent_->end(), b[0].begin());
	    copy(end_tangent_->begin(), end_tangent_->end(), b[num_coefs-1].begin());
	    break;
	case Natural:
	    b[0] = b[num_coefs-1] = vector<double>(dimension, 0);
	    break;
	case NaturalAtStart:
	    b[0] = vector<double>(dimension, 0);
	    if (end_tangent_.get() != 0)
		copy(end_tangent_->begin(), end_tangent_->end(), b[num_coefs-1].begin());
	    break;
	case NaturalAtEnd:
	    b[num_coefs-1] = vector<double>(dimension, 0);
	    if (start_tangent_.get() != 0)
		copy(start_tangent_->begin(), start_tangent_->end(), b[0].begin());
	    break;
	default:
	    // do nothing
	    break;
    }
    // fill in interior of the b vectors
    for (j = 0; j < num_points; ++j) {
	copy(&(data_start[j * dimension]),
	     &(data_start[(j+1) * dimension]),
	     b[j + offset].begin());
    }

    // computing the unknown vector A c = b.  b is overwritten by this unknown vector
    LUsolveSystem(A, num_coefs, &b[0]);

    // writing result to coefficients
    coefs.resize(dimension*num_coefs);
    for (int j = 0; j < num_coefs; ++j) {
	copy(b[j].begin(), b[j].end(), &coefs[j*dimension]);
    }

    //#endif
}
Exemplo n.º 10
0
// @@@ So far we're assuming that the user input fulfills demands wrt.
// degrees of freedom.
//===========================================================================
void SplineInterpolator::interpolate(const std::vector<double>& params,
				     const std::vector<double>& points,
				     const std::vector<int>& tangent_index,
				     const std::vector<double>& tangent_points,
				     std::vector<double>& coefs)
//===========================================================================
{
    ALWAYS_ERROR_IF(basis_set_ == false,
		"When using routine the basis_ must first be set/made.");

    int num_points = (int)params.size();
    int dimension = (int)points.size() / num_points;
    int num_coefs = basis_.numCoefs();
    int order = basis_.order();
    int tsize = (int)tangent_index.size();
    DEBUG_ERROR_IF(num_coefs != num_points + tsize,
	     "Inconsistency between size of basis and interpolation conditions.");
    DEBUG_ERROR_IF(num_coefs < order,
	     "Insufficient number of points.");

    coefs.resize(dimension*num_coefs);

    int i, j;
    // In the future there may be reason to want higher derivative information
    // in the points. Should present no problem; to be implemented when needed.



// This code dates from the time when this code was dependent on the NEWMAT
// library.  This is no longer the case, and the code has been substituted with
// the code below.  However, it is kept here for reference reasons.
//
// ---------------------newmat dependent ----------------------------
// #if 0
//     // @@@ sbr There should be performed an analysis regarding size of band matrix.
//     //    BandMatrix A(num_coefs, (order+1)/2, (order+1)/2);
//     // Ought to run through parameters (and tangents), checking against basis;
//     // then set up band matrix. This may fail. But then system should be singular.
//     // The failsafe solution would be to implement A as a full matrix...
//     BandMatrix A(num_coefs, order, order);
//     A = 0;
//     ColumnVector c(num_coefs);
//     ColumnVector b(num_coefs);

//     // Setting up the interpolation matrix A.
//     int ti = 0; // Index to first unused element of tangent_points.
//     for (i = 0; i < num_points; ++i) {
// 	bool der = ((tsize > ti) && (tangent_index[ti] == i)) ?
// 	    true : false; // true = using derivative info.
// 	std::vector<double> tmp(2*order);
// 	basis_.computeBasisValues(params[i], &tmp[0], 1);
// 	int ki = basis_.knotInterval(params[i]); // knot-interval of param.
// 	//	int column = 1 + (basis.lastKnotInterval() - 4);
// 	for (j = 0; j < order; ++j)
// 	    if ((ki-order+1+j>=0) && (ki-order+1+j<=num_coefs)) {
// 		A.element(i+ti, ki-order+1+j) = tmp[2*j];
// 		if (der)
// 		    A.element(i+ti+1, ki-order+1+j) = tmp[2*j+1];
// 	    }
// 	if (der)
// 	    ++ti;
//     }

//     // Now we are ready to repeatedly solve Ac = b for # = dimension different
//     // right-hand-sides b.
//     BandLUMatrix ALUfact = A; // Computes LU factorization
//     ALWAYS_ERROR_IF(ALUfact.IsSingular(), 
// 		    "Matrix is singular! This should never happen!");

//     coefs.resize(dimension*num_coefs);

//     for (int dd = 0; dd < dimension; ++dd) {
// 	// Make the b vector
// 	ti = 0;
// 	for (i = 0; i < num_points; ++i) {
// 	    bool der = ((tsize > ti) && (tangent_index[ti] == i)) ?
// 			true : false;
// 	    b.element(i+ti) = points[i*dimension + dd];
// 	    if (der) {
// 		b.element(i+ti+1) = tangent_points[ti*dimension + dd];
// 		++ti;
// 	    }
// 	}
// 	// Solve
// 	c = ALUfact.i() * b;
// 	// Copy results
// 	for (i = 0; i < num_coefs; ++i) {
// 	    coefs[i*dimension + dd] = c.element(i);
// 	}
//     }
//     //#else
//--------------------------- newmat independent ---------------------
    vector<vector<double> > A(num_coefs, vector<double>(num_coefs, 0));
    vector<vector<double> > b(num_coefs, vector<double>(dimension, 0));
    
    // setting up interpolation matrix A
    int ti = 0; // index to first unused element of tangent_points
    std::vector<double> tmp(2*order);
    for (i = 0; i < num_points; ++i) {
	bool der = ((tsize > ti) && (tangent_index[ti] == i)) ?
	    true : false; // true = using derivative info.
	double par = params[i];
	int ki = basis_.knotIntervalFuzzy(par); // knot-interval of param.
	basis_.computeBasisValues(params[i], &tmp[0], 1);
	//int ki = basis_.knotInterval(params[i]); // knot-interval of param.
	//	int column = 1 + (basis.lastKnotInterval() - 4);
	for (j = 0; j < order; ++j)
	    if ((ki-order+1+j>=0) && (ki-order+1+j<=num_coefs)) {
		A[i+ti][ki-order+1+j] = tmp[2*j];
		if (der)
		    A[i+ti+1][ki-order+1+j] = tmp[2*j+1];
	    }
	if (der)
	    ++ti;
    }

    // generating right-hand side
    ti = 0;
    for (i = 0; i < num_points; ++i) {
	bool der = ((tsize > ti) && (tangent_index[ti] == i)) ?
	    true : false;
	vector<double>::const_iterator pointit 
	    = points.begin() + i * dimension;
	copy(pointit, pointit + dimension, b[i+ti].begin());
	if (der) {
	    vector<double>::const_iterator tanptsit
		= tangent_points.begin() + ti * dimension;
	    copy(tanptsit, tanptsit + dimension, b[i+ti+1].begin());
	    ++ti;
	}
    }

    // Now we are ready to solve Ac = b.  b will be overwritten by solution
    LUsolveSystem(A, num_coefs, &b[0]);
    // copy results
    for (i = 0; i < num_coefs; ++i) {
	copy(b[i].begin(), b[i].end(), &coefs[i * dimension]);
    }
    //#endif
}
Exemplo n.º 11
0
void intersect2Dcurves(const ParamCurve* cv1, const ParamCurve* cv2, double epsge,
		       vector<pair<double,double> >& intersections,
		       vector<int>& pretopology,
		       vector<pair<pair<double,double>, pair<double,double> > >& int_crvs)
  //************************************************************************
  // 
  // Intersect two 2D spline curves. Collect intersection parameters
  // and pretopology information.
  //
  //***********************************************************************
{

  // First make sure that the curves are spline curves.
    ParamCurve* tmpcv1 = const_cast<ParamCurve*>(cv1);
    ParamCurve* tmpcv2 = const_cast<ParamCurve*>(cv2);
    SplineCurve* sc1 = tmpcv1->geometryCurve();
    SplineCurve* sc2 = tmpcv2->geometryCurve();
    if (sc1 == NULL || sc2 == NULL)
        THROW("ParamCurves doesn't have a spline representation.");

    MESSAGE_IF(cv1->dimension() != 2,
		"Dimension different from 2, pretopology not reliable.");

  // Make sisl curves and call sisl.
  SISLCurve *pc1 = Curve2SISL(*sc1, false);
  SISLCurve *pc2 = Curve2SISL(*sc2, false);

  int kntrack = 0;
  int trackflag = 0;  // Do not make tracks.
  SISLTrack **track =0;
  int knpt=0, kncrv=0;
  double *par1=0, *par2=0;
  int *pretop = 0;
  SISLIntcurve **vcrv = 0;
  int stat = 0;
  sh1857(pc1, pc2, 0.0, epsge, trackflag, &kntrack, &track,
	 &knpt, &par1, &par2, &pretop, &kncrv, &vcrv, &stat);

  ALWAYS_ERROR_IF(stat<0,"Error in intersection, code: " << stat);


  // Remember intersections points. 
  int ki;
  for (ki=0; ki<knpt; ki++)
    {
      intersections.push_back(std::make_pair(par1[ki],par2[ki]));
      pretopology.insert(pretopology.end(), pretop+4*ki, pretop+4*(ki+1));
    }

  // Remember intersection curves
  for (ki=0; ki<kncrv; ++ki)
    int_crvs.push_back(std::make_pair(std::make_pair(vcrv[ki]->epar1[0], vcrv[ki]->epar2[0]), 
				      std::make_pair(vcrv[ki]->epar1[vcrv[ki]->ipoint-1],
						     vcrv[ki]->epar2[vcrv[ki]->ipoint-1])));

  if (kncrv > 0)
    freeIntcrvlist(vcrv, kncrv);

  if (par1 != 0) free(par1);
  if (par2 != 0) free(par2);
  if (pc1 != 0) freeCurve(pc1);
  if (pc2 != 0) freeCurve(pc2);
  if (pretop != 0) free(pretop);

  delete sc1;
  delete sc2;
}