GLOBAL void UMF_2by2 ( /* input, not modified: */ Int n, /* A is n-by-n */ const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ const double Ax [ ], /* size nz if present */ #ifdef COMPLEX const double Az [ ], /* size nz if present */ #endif double tol, /* tolerance for determining whether or not an * entry is numerically acceptable. If tol <= 0 * then all numerical values ignored. */ Int scale, /* scaling to perform (none, sum, or max) */ Int Cperm1 [ ], /* singleton permutations */ #ifndef NDEBUG Int Rperm1 [ ], /* not needed, since Rperm1 = Cperm1 for submatrix S */ #endif Int InvRperm1 [ ], /* inverse of Rperm1 */ Int n1, /* number of singletons */ Int nempty, /* number of empty rows/cols */ /* input, contents undefined on output: */ Int Degree [ ], /* Degree [j] is the number of off-diagonal * entries in row/column j of S+S', where * where S = A (Cperm1 [n1..], Rperm1 [n1..]). * Note that S is not used, nor formed. */ /* output: */ Int P [ ], /* P [k] = i means original row i is kth row in S(P,:) * where S = A (Cperm1 [n1..], Rperm1 [n1..]) */ Int *p_nweak, Int *p_unmatched, /* workspace (not defined on input or output): */ Int Ri [ ], /* of size >= max (nz, n) */ Int Rp [ ], /* of size n+1 */ double Rs [ ], /* of size n if present. Rs = sum (abs (A),2) or * max (abs (A),2), the sum or max of each row. Unused * if scale is equal to UMFPACK_SCALE_NONE. */ Int Head [ ], /* of size n. Head pointers for bucket sort */ Int Next [ ], /* of size n. Next pointers for bucket sort */ Int Ci [ ], /* size nz */ Int Cp [ ] /* size n+1 */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry aij ; double cmax, value, rs, ctol, dvalue ; Int k, p, row, col, do_values, do_sum, do_max, do_scale, nweak, weak, p1, p2, dfound, unmatched, n2, oldrow, newrow, oldcol, newcol, pp ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif #ifndef NRECIPROCAL Int do_recip = FALSE ; #endif #ifndef NDEBUG /* UMF_debug += 99 ; */ DEBUGm3 (("\n ==================================UMF_2by2: tol %g\n", tol)) ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; for (k = n1 ; k < n - nempty ; k++) { ASSERT (Cperm1 [k] == Rperm1 [k]) ; } #endif /* ---------------------------------------------------------------------- */ /* determine scaling options */ /* ---------------------------------------------------------------------- */ /* use the values, but only if they are present */ /* ignore the values if tol <= 0 */ do_values = (tol > 0) && (Ax != (double *) NULL) ; if (do_values && (Rs != (double *) NULL)) { do_sum = (scale == UMFPACK_SCALE_SUM) ; do_max = (scale == UMFPACK_SCALE_MAX) ; } else { /* no scaling */ do_sum = FALSE ; do_max = FALSE ; } do_scale = do_max || do_sum ; DEBUGm3 (("do_values "ID" do_sum "ID" do_max "ID" do_scale "ID"\n", do_values, do_sum, do_max, do_scale)) ; /* ---------------------------------------------------------------------- */ /* compute the row scaling, if requested */ /* ---------------------------------------------------------------------- */ /* see also umf_kernel_init */ if (do_scale) { #ifndef NRECIPROCAL double rsmin ; #endif for (row = 0 ; row < n ; row++) { Rs [row] = 0.0 ; } for (col = 0 ; col < n ; col++) { p2 = Ap [col+1] ; for (p = Ap [col] ; p < p2 ; p++) { row = Ai [p] ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; rs = Rs [row] ; if (!SCALAR_IS_NAN (rs)) { if (SCALAR_IS_NAN (value)) { /* if any entry in a row is NaN, then the scale factor * for the row is NaN. It will be set to 1 later. */ Rs [row] = value ; } else if (do_max) { Rs [row] = MAX (rs, value) ; } else { Rs [row] += value ; } } } } #ifndef NRECIPROCAL rsmin = Rs [0] ; if (SCALAR_IS_ZERO (rsmin) || SCALAR_IS_NAN (rsmin)) { rsmin = 1.0 ; } #endif for (row = 0 ; row < n ; row++) { /* do not scale an empty row, or a row with a NaN */ rs = Rs [row] ; if (SCALAR_IS_ZERO (rs) || SCALAR_IS_NAN (rs)) { Rs [row] = 1.0 ; } #ifndef NRECIPROCAL rsmin = MIN (rsmin, Rs [row]) ; #endif } #ifndef NRECIPROCAL /* multiply by the reciprocal if Rs is not too small */ do_recip = (rsmin >= RECIPROCAL_TOLERANCE) ; if (do_recip) { /* invert the scale factors */ for (row = 0 ; row < n ; row++) { Rs [row] = 1.0 / Rs [row] ; } } #endif } /* ---------------------------------------------------------------------- */ /* compute the max in each column and find diagonal */ /* ---------------------------------------------------------------------- */ nweak = 0 ; #ifndef NDEBUG for (k = 0 ; k < n ; k++) { ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n) ; ASSERT (InvRperm1 [Rperm1 [k]] == k) ; } #endif n2 = n - n1 - nempty ; /* use Ri to count the number of strong entries in each row */ for (row = 0 ; row < n2 ; row++) { Ri [row] = 0 ; } pp = 0 ; ctol = 0 ; dvalue = 1 ; /* construct C = pruned submatrix, strong values only, column form */ for (k = n1 ; k < n - nempty ; k++) { oldcol = Cperm1 [k] ; newcol = k - n1 ; Next [newcol] = EMPTY ; DEBUGm1 (("Column "ID" newcol "ID" oldcol "ID"\n", k, newcol, oldcol)) ; Cp [newcol] = pp ; dfound = FALSE ; p1 = Ap [oldcol] ; p2 = Ap [oldcol+1] ; if (do_values) { cmax = 0 ; dvalue = 0 ; if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } ctol = tol * cmax ; DEBUGm1 ((" cmax col "ID" %g ctol %g\n", oldcol, cmax, ctol)) ; } else { for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; Ci [pp++] = newrow ; if (oldrow == oldcol) { /* we found the diagonal entry in this column */ ASSERT (newrow == newcol) ; dfound = TRUE ; } /* count the entries in each column */ Ri [newrow]++ ; } } /* ------------------------------------------------------------------ */ /* flag the weak diagonals */ /* ------------------------------------------------------------------ */ if (!dfound) { /* no diagonal entry present */ weak = TRUE ; } else { /* diagonal entry is present, check its value */ weak = (do_values) ? WEAK (dvalue, ctol) : FALSE ; } if (weak) { /* flag this column as weak */ DEBUG0 (("Weak!\n")) ; Next [newcol] = IS_WEAK ; nweak++ ; } /* ------------------------------------------------------------------ */ /* count entries in each row that are not numerically weak */ /* ------------------------------------------------------------------ */ if (do_values) { if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g\n", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } } } Cp [n2] = pp ; ASSERT (AMD_valid (n2, n2, Cp, Ci) == AMD_OK) ; if (nweak == 0) { /* nothing to do, quick return */ DEBUGm2 (("\n =============================UMF_2by2: quick return\n")) ; for (k = 0 ; k < n ; k++) { P [k] = k ; } *p_nweak = 0 ; *p_unmatched = 0 ; return ; } #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { P [k] = EMPTY ; } for (k = 0 ; k < n2 ; k++) { ASSERT (Degree [k] >= 0 && Degree [k] < n2) ; } #endif /* ---------------------------------------------------------------------- */ /* find the 2-by-2 permutation */ /* ---------------------------------------------------------------------- */ /* The matrix S is now mapped to the index range 0 to n2-1. We have * S = A (Rperm [n1 .. n-nempty-1], Cperm [n1 .. n-nempty-1]), and then * C = pattern of strong entries in S. A weak diagonal k in S is marked * with Next [k] = IS_WEAK. */ unmatched = two_by_two (n2, Cp, Ci, Degree, Next, Ri, P, Rp, Head) ; /* ---------------------------------------------------------------------- */ *p_nweak = nweak ; *p_unmatched = unmatched ; #ifndef NDEBUG DEBUGm4 (("UMF_2by2: weak "ID" unmatched "ID"\n", nweak, unmatched)) ; for (row = 0 ; row < n ; row++) { DEBUGm2 (("P ["ID"] = "ID"\n", row, P [row])) ; } DEBUGm2 (("\n =============================UMF_2by2: done\n\n")) ; #endif }
GLOBAL Int UMF_row_search ( NumericType *Numeric, WorkType *Work, SymbolicType *Symbolic, Int cdeg0, /* length of column in Front */ Int cdeg1, /* length of column outside Front */ const Int Pattern [ ], /* pattern of column, Pattern [0..cdeg1 -1] */ const Int Pos [ ], /* Pos [Pattern [0..cdeg1 -1]] = 0..cdeg1 -1 */ Int pivrow [2], /* pivrow [IN] and pivrow [OUT] */ Int rdeg [2], /* rdeg [IN] and rdeg [OUT] */ Int W_i [ ], /* pattern of pivrow [IN], */ /* either Fcols or Woi */ Int W_o [ ], /* pattern of pivrow [OUT], */ /* either Wio or Woo */ Int prior_pivrow [2], /* the two other rows just scanned, if any */ const Entry Wxy [ ], /* numerical values Wxy [0..cdeg1-1], either Wx or Wy */ Int pivcol, /* the candidate column being searched */ Int freebie [ ] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double maxval, toler, toler2, value, pivot [2] ; Int i, row, deg, col, *Frpos, fnrows, *E, j, ncols, *Cols, *Rows, e, f, Wrpflag, *Fcpos, fncols, tpi, max_rdeg, nans_in_col, was_offdiag, diag_row, prefer_diagonal, *Wrp, found, *Diagonal_map ; Tuple *tp, *tpend, *tp1, *tp2 ; Unit *Memory, *p ; Element *ep ; Int *Row_tuples, *Row_degree, *Row_tlen ; #ifndef NDEBUG Int *Col_degree ; DEBUG2 (("Row_search:\n")) ; for (i = 0 ; i < cdeg1 ; i++) { row = Pattern [i] ; DEBUG4 ((" row: "ID"\n", row)) ; ASSERT (row >= 0 && row < Numeric->n_row) ; ASSERT (i == Pos [row]) ; } /* If row is not in Pattern [0..cdeg1-1], then Pos [row] == EMPTY */ if (UMF_debug > 0 || Numeric->n_row < 1000) { Int cnt = cdeg1 ; DEBUG4 (("Scan all rows:\n")) ; for (row = 0 ; row < Numeric->n_row ; row++) { if (Pos [row] < 0) { cnt++ ; } else { DEBUG4 ((" row: "ID" pos "ID"\n", row, Pos [row])) ; } } ASSERT (cnt == Numeric->n_row) ; } Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro only */ ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; ASSERT (NON_PIVOTAL_COL (pivcol)) ; #endif pivot [IN] = 0. ; pivot [OUT] = 0. ; /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ Row_degree = Numeric->Rperm ; Row_tuples = Numeric->Uip ; Row_tlen = Numeric->Uilen ; Wrp = Work->Wrp ; Frpos = Work->Frpos ; E = Work->E ; Memory = Numeric->Memory ; fnrows = Work->fnrows ; prefer_diagonal = Symbolic->prefer_diagonal ; Diagonal_map = Work->Diagonal_map ; if (Diagonal_map) { diag_row = Diagonal_map [pivcol] ; was_offdiag = diag_row < 0 ; if (was_offdiag) { /* the "diagonal" entry in this column was permuted here by an * earlier pivot choice. The tighter off-diagonal tolerance will * be used instead of the symmetric tolerance. */ diag_row = FLIP (diag_row) ; } ASSERT (diag_row >= 0 && diag_row < Numeric->n_row) ; } else { diag_row = EMPTY ; /* unused */ was_offdiag = EMPTY ; /* unused */ } /* pivot row degree cannot exceed max_rdeg */ max_rdeg = Work->fncols_max ; /* ---------------------------------------------------------------------- */ /* scan pivot column for candidate rows */ /* ---------------------------------------------------------------------- */ maxval = 0.0 ; nans_in_col = FALSE ; for (i = 0 ; i < cdeg1 ; i++) { APPROX_ABS (value, Wxy [i]) ; if (SCALAR_IS_NAN (value)) { nans_in_col = TRUE ; maxval = value ; break ; } /* This test can now ignore the NaN case: */ maxval = MAX (maxval, value) ; } /* if maxval is zero, the matrix is numerically singular */ toler = Numeric->relpt * maxval ; toler2 = Numeric->relpt2 * maxval ; toler2 = was_offdiag ? toler : toler2 ; DEBUG5 (("Row_search begins [ maxval %g toler %g %g\n", maxval, toler, toler2)) ; if (SCALAR_IS_NAN (toler) || SCALAR_IS_NAN (toler2)) { nans_in_col = TRUE ; } if (!nans_in_col) { /* look for the diagonal entry, if it exists */ found = FALSE ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (prefer_diagonal) { ASSERT (diag_row != EMPTY) ; i = Pos [diag_row] ; if (i >= 0) { double a ; ASSERT (i < cdeg1) ; ASSERT (diag_row == Pattern [i]) ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler2)) ; if (SCALAR_IS_NONZERO (a) && a >= toler2) { /* found it! */ DEBUG3 (("Symmetric pivot: "ID" "ID"\n", pivcol, diag_row)); found = TRUE ; if (Frpos [diag_row] >= 0 && Frpos [diag_row] < fnrows) { pivrow [IN] = diag_row ; pivrow [OUT] = EMPTY ; } else { pivrow [IN] = EMPTY ; pivrow [OUT] = diag_row ; } } } } /* either no diagonal found, or we didn't look for it */ if (!found) { if (cdeg0 > 0) { /* this is a column in the front */ for (i = 0 ; i < cdeg0 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif ASSERT (Frpos [row] >= 0 && Frpos [row] < fnrows) ; ASSERT (Frpos [row] == i) ; /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] /* break ties by picking the largest entry: */ || (deg == rdeg [IN] && a > pivot [IN]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [IN] && row == diag_row) */ ) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; pivot [IN] = a ; } } } for ( ; i < cdeg1 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif ASSERT (Frpos [row] == i) ; /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] /* break ties by picking the largest entry: */ || (deg == rdeg [OUT] && a > pivot [OUT]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [OUT] && row == diag_row) */ ) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; pivot [OUT] = a ; } } } } else { /* this column is not in the front */ for (i = 0 ; i < cdeg1 ; i++) { double a ; APPROX_ABS (a, Wxy [i]) ; ASSERT (!SCALAR_IS_NAN (a)) ; ASSERT (!SCALAR_IS_NAN (toler)) ; if (SCALAR_IS_NONZERO (a) && a >= toler) { row = Pattern [i] ; deg = Row_degree [row] ; #ifndef NDEBUG DEBUG6 ((ID" candidate row "ID" deg "ID" absval %g\n", i, row, deg, a)) ; UMF_dump_rowcol (0, Numeric, Work, row, TRUE) ; #endif if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] /* break ties by picking the largest entry: */ || (deg == rdeg [IN] && a > pivot [IN]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg [IN] && row == diag_row) */ ) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; pivot [IN] = a ; } } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] /* break ties by picking the largest entry: */ || (deg == rdeg[OUT] && a > pivot [OUT]) /* break ties by picking the diagonal entry: */ /* || (deg == rdeg[OUT] && row == diag_row) */ ) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; pivot [OUT] = a ; } } } } } } } /* ---------------------------------------------------------------------- */ /* NaN handling */ /* ---------------------------------------------------------------------- */ /* if cdeg1 > 0 then we must have found a pivot row ... unless NaN's */ /* exist. Try with no numerical tests if no pivot found. */ if (cdeg1 > 0 && pivrow [IN] == EMPTY && pivrow [OUT] == EMPTY) { /* cleanup for the NaN case */ DEBUG0 (("Found a NaN in pivot column!\n")) ; /* grab the first entry in the pivot column, ignoring degree, */ /* numerical stability, and symmetric preference */ row = Pattern [0] ; deg = Row_degree [row] ; if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; pivrow [IN] = row ; rdeg [IN] = deg ; } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; pivrow [OUT] = row ; rdeg [OUT] = deg ; } /* We are now guaranteed to have a pivot, no matter how broken */ /* (non-IEEE compliant) the underlying numerical operators are. */ /* This is particularly a problem for Microsoft compilers (they do */ /* not handle NaN's properly). Now try to find a sparser pivot, if */ /* possible. */ for (i = 1 ; i < cdeg1 ; i++) { row = Pattern [i] ; deg = Row_degree [row] ; if (Frpos [row] >= 0 && Frpos [row] < fnrows) { /* row is in the current front */ DEBUG4 ((" in front\n")) ; if (deg < rdeg [IN] || (deg == rdeg [IN] && row == diag_row)) { /* best row in front, so far */ pivrow [IN] = row ; rdeg [IN] = deg ; } } else { /* row is not in the current front */ DEBUG4 ((" NOT in front\n")) ; if (deg < rdeg [OUT] || (deg == rdeg [OUT] && row == diag_row)) { /* best row not in front, so far */ pivrow [OUT] = row ; rdeg [OUT] = deg ; } } } } /* We found a pivot if there are entries (even zero ones) in pivot col */ ASSERT (IMPLIES (cdeg1 > 0, pivrow[IN] != EMPTY || pivrow[OUT] != EMPTY)) ; /* If there are no entries in the pivot column, then no pivot is found */ ASSERT (IMPLIES (cdeg1 == 0, pivrow[IN] == EMPTY && pivrow[OUT] == EMPTY)) ; /* ---------------------------------------------------------------------- */ /* check for singular matrix */ /* ---------------------------------------------------------------------- */ if (cdeg1 == 0) { if (fnrows > 0) { /* Get the pivrow [OUT][IN] from the current front. The frontal matrix looks like this: pivcol[OUT] | v x x x x 0 <- so grab this row as the pivrow [OUT][IN]. x x x x 0 x x x x 0 0 0 0 0 0 The current frontal matrix has some rows in it. The degree of the pivcol[OUT] is zero. The column is empty, and the current front does not contribute to it. */ pivrow [IN] = Work->Frows [0] ; DEBUGm4 (("Got zero pivrow[OUT][IN] "ID" from current front\n", pivrow [IN])) ; } else { /* Get a pivot row from the row-merge tree, use as pivrow [OUT][OUT]. pivrow [IN] remains EMPTY. This can only happen if the current front is 0-by-0. */ Int *Front_leftmostdesc, *Front_1strow, *Front_new1strow, row1, row2, fleftmost, nfr, n_row, frontid ; ASSERT (Work->fncols == 0) ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Front_1strow = Symbolic->Front_1strow ; Front_new1strow = Work->Front_new1strow ; nfr = Symbolic->nfr ; n_row = Numeric->n_row ; frontid = Work->frontid ; DEBUGm4 (("Note: pivcol: "ID" is empty front "ID"\n", pivcol, frontid)) ; #ifndef NDEBUG DEBUG1 (("Calling dump rowmerge\n")) ; UMF_dump_rowmerge (Numeric, Symbolic, Work) ; #endif /* Row-merge set is the non-pivotal rows in the range */ /* Front_new1strow [Front_leftmostdesc [frontid]] to */ /* Front_1strow [frontid+1] - 1. */ /* If this is empty, then use the empty rows, in the range */ /* Front_new1strow [nfr] to n_row-1. */ /* If this too is empty, then pivrow [OUT] will be empty. */ /* In both cases, update Front_new1strow [...]. */ fleftmost = Front_leftmostdesc [frontid] ; row1 = Front_new1strow [fleftmost] ; row2 = Front_1strow [frontid+1] - 1 ; DEBUG1 (("Leftmost: "ID" Rows ["ID" to "ID"] srch ["ID" to "ID"]\n", fleftmost, Front_1strow [frontid], row2, row1, row2)) ; /* look in the range row1 ... row2 */ for (row = row1 ; row <= row2 ; row++) { DEBUG3 ((" Row: "ID"\n", row)) ; if (NON_PIVOTAL_ROW (row)) { /* found it */ DEBUG3 ((" Row: "ID" found\n", row)) ; ASSERT (Frpos [row] == EMPTY) ; pivrow [OUT] = row ; DEBUGm4 (("got row merge pivrow %d\n", pivrow [OUT])) ; break ; } } Front_new1strow [fleftmost] = row ; if (pivrow [OUT] == EMPTY) { /* not found, look in empty row set in "dummy" front */ row1 = Front_new1strow [nfr] ; row2 = n_row-1 ; DEBUG3 (("Empty: "ID" Rows ["ID" to "ID"] srch["ID" to "ID"]\n", nfr, Front_1strow [nfr], row2, row1, row2)) ; /* look in the range row1 ... row2 */ for (row = row1 ; row <= row2 ; row++) { DEBUG3 ((" Empty Row: "ID"\n", row)) ; if (NON_PIVOTAL_ROW (row)) { /* found it */ DEBUG3 ((" Empty Row: "ID" found\n", row)) ; ASSERT (Frpos [row] == EMPTY) ; pivrow [OUT] = row ; DEBUGm4 (("got dummy row pivrow %d\n", pivrow [OUT])) ; break ; } } Front_new1strow [nfr] = row ; } if (pivrow [OUT] == EMPTY) { /* Row-merge set is empty. We can just discard */ /* the candidate pivot column. */ DEBUG0 (("Note: row-merge set empty\n")) ; DEBUGm4 (("got no pivrow \n")) ; return (UMFPACK_WARNING_singular_matrix) ; } } } /* ---------------------------------------------------------------------- */ /* construct the candidate row in the front, if any */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG /* check Wrp */ ASSERT (Work->Wrpflag > 0) ; if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif #ifndef NDEBUG DEBUG4 (("pivrow [IN]: "ID"\n", pivrow [IN])) ; UMF_dump_rowcol (0, Numeric, Work, pivrow [IN], TRUE) ; #endif if (pivrow [IN] != EMPTY) { /* the row merge candidate row is not pivrow [IN] */ freebie [IN] = (pivrow [IN] == prior_pivrow [IN]) && (cdeg1 > 0) ; ASSERT (cdeg1 >= 0) ; if (!freebie [IN]) { /* include current front in the degree of this row */ Fcpos = Work->Fcpos ; fncols = Work->fncols ; Wrpflag = Work->Wrpflag ; /* -------------------------------------------------------------- */ /* construct the pattern of the IN row */ /* -------------------------------------------------------------- */ #ifndef NDEBUG /* check Fcols */ DEBUG5 (("ROW ASSEMBLE: rdeg "ID"\nREDUCE ROW "ID"\n", fncols, pivrow [IN])) ; for (j = 0 ; j < fncols ; j++) { col = Work->Fcols [j] ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (Fcpos [col] >= 0) ; } if (UMF_debug > 0 || Work->n_col < 1000) { Int cnt = fncols ; for (col = 0 ; col < Work->n_col ; col++) { if (Fcpos [col] < 0) cnt++ ; } ASSERT (cnt == Work->n_col) ; } #endif rdeg [IN] = fncols ; ASSERT (pivrow [IN] >= 0 && pivrow [IN] < Work->n_row) ; ASSERT (NON_PIVOTAL_ROW (pivrow [IN])) ; /* add the pivot column itself */ ASSERT (Wrp [pivcol] != Wrpflag) ; if (Fcpos [pivcol] < 0) { DEBUG3 (("Adding pivot col to pivrow [IN] pattern\n")) ; if (rdeg [IN] >= max_rdeg) { /* :: pattern change (in) :: */ return (UMFPACK_ERROR_different_pattern) ; } Wrp [pivcol] = Wrpflag ; W_i [rdeg [IN]++] = pivcol ; } tpi = Row_tuples [pivrow [IN]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [pivrow [IN]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ncols = ep->ncols ; Rows = Cols + ncols ; if (Rows [f] == EMPTY) { continue ; /* row already assembled */ } ASSERT (pivrow [IN] == Rows [f]) ; for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= EMPTY && col < Work->n_col) ; if ((col >= 0) && (Wrp [col] != Wrpflag) && Fcpos [col] <0) { ASSERT (NON_PIVOTAL_COL (col)) ; if (rdeg [IN] >= max_rdeg) { /* :: pattern change (rdeg in failure) :: */ DEBUGm4 (("rdeg [IN] >= max_rdeg failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Wrp [col] = Wrpflag ; W_i [rdeg [IN]++] = col ; } } *tp2++ = *tp ; /* leave the tuple in the list */ } Row_tlen [pivrow [IN]] = tp2 - tp1 ; } #ifndef NDEBUG DEBUG4 (("Reduced IN row:\n")) ; for (j = 0 ; j < fncols ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, Work->Fcols [j], Fcpos [Work->Fcols [j]])) ; ASSERT (Fcpos [Work->Fcols [j]] >= 0) ; } for (j = fncols ; j < rdeg [IN] ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, W_i [j], Wrp [W_i [j]])); ASSERT (W_i [j] >= 0 && W_i [j] < Work->n_col) ; ASSERT (Wrp [W_i [j]] == Wrpflag) ; } /* mark the end of the pattern in case we scan it by mistake */ /* Note that this means W_i must be of size >= fncols_max + 1 */ W_i [rdeg [IN]] = EMPTY ; #endif /* rdeg [IN] is now the exact degree of the IN row */ /* clear Work->Wrp. */ Work->Wrpflag++ ; /* All Wrp [0..n_col] is now < Wrpflag */ } } #ifndef NDEBUG /* check Wrp */ if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif /* ---------------------------------------------------------------------- */ /* construct the candidate row not in the front, if any */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG4 (("pivrow [OUT]: "ID"\n", pivrow [OUT])) ; UMF_dump_rowcol (0, Numeric, Work, pivrow [OUT], TRUE) ; #endif /* If this is a candidate row from the row merge set, force it to be */ /* scanned (ignore prior_pivrow [OUT]). */ if (pivrow [OUT] != EMPTY) { freebie [OUT] = (pivrow [OUT] == prior_pivrow [OUT]) && cdeg1 > 0 ; ASSERT (cdeg1 >= 0) ; if (!freebie [OUT]) { Wrpflag = Work->Wrpflag ; /* -------------------------------------------------------------- */ /* construct the pattern of the row */ /* -------------------------------------------------------------- */ rdeg [OUT] = 0 ; ASSERT (pivrow [OUT] >= 0 && pivrow [OUT] < Work->n_row) ; ASSERT (NON_PIVOTAL_ROW (pivrow [OUT])) ; /* add the pivot column itself */ ASSERT (Wrp [pivcol] != Wrpflag) ; DEBUG3 (("Adding pivot col to pivrow [OUT] pattern\n")) ; if (rdeg [OUT] >= max_rdeg) { /* :: pattern change (out) :: */ return (UMFPACK_ERROR_different_pattern) ; } Wrp [pivcol] = Wrpflag ; W_o [rdeg [OUT]++] = pivcol ; tpi = Row_tuples [pivrow [OUT]] ; if (tpi) { tp = (Tuple *) (Memory + tpi) ; tp1 = tp ; tp2 = tp ; tpend = tp + Row_tlen [pivrow [OUT]] ; for ( ; tp < tpend ; tp++) { e = tp->e ; ASSERT (e > 0 && e <= Work->nel) ; if (!E [e]) { continue ; /* element already deallocated */ } f = tp->f ; p = Memory + E [e] ; ep = (Element *) p ; p += UNITS (Element, 1) ; Cols = (Int *) p ; ncols = ep->ncols ; Rows = Cols + ncols ; if (Rows [f] == EMPTY) { continue ; /* row already assembled */ } ASSERT (pivrow [OUT] == Rows [f]) ; for (j = 0 ; j < ncols ; j++) { col = Cols [j] ; ASSERT (col >= EMPTY && col < Work->n_col) ; if ((col >= 0) && (Wrp [col] != Wrpflag)) { ASSERT (NON_PIVOTAL_COL (col)) ; if (rdeg [OUT] >= max_rdeg) { /* :: pattern change (rdeg out failure) :: */ DEBUGm4 (("rdeg [OUT] failure\n")) ; return (UMFPACK_ERROR_different_pattern) ; } Wrp [col] = Wrpflag ; W_o [rdeg [OUT]++] = col ; } } *tp2++ = *tp ; /* leave the tuple in the list */ } Row_tlen [pivrow [OUT]] = tp2 - tp1 ; } #ifndef NDEBUG DEBUG4 (("Reduced row OUT:\n")) ; for (j = 0 ; j < rdeg [OUT] ; j++) { DEBUG6 ((" "ID" "ID" "ID"\n", j, W_o [j], Wrp [W_o [j]])) ; ASSERT (W_o [j] >= 0 && W_o [j] < Work->n_col) ; ASSERT (Wrp [W_o [j]] == Wrpflag) ; } /* mark the end of the pattern in case we scan it by mistake */ /* Note that this means W_o must be of size >= fncols_max + 1 */ W_o [rdeg [OUT]] = EMPTY ; #endif /* rdeg [OUT] is now the exact degree of the row */ /* clear Work->Wrp. */ Work->Wrpflag++ ; /* All Wrp [0..n] is now < Wrpflag */ } } DEBUG5 (("Row_search end ] \n")) ; #ifndef NDEBUG /* check Wrp */ if (UMF_debug > 0 || Work->n_col < 1000) { for (i = 0 ; i < Work->n_col ; i++) { ASSERT (Wrp [i] < Work->Wrpflag) ; } } #endif return (UMFPACK_OK) ; }
GLOBAL Int UMF_store_lu_drop #else GLOBAL Int UMF_store_lu #endif ( NumericType *Numeric, WorkType *Work ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry pivot_value ; #ifdef DROP double droptol ; #endif Entry *D, *Lval, *Uval, *Fl1, *Fl2, *Fu1, *Fu2, *Flublock, *Flblock, *Fublock ; Int i, k, fnr_curr, fnrows, fncols, row, col, pivrow, pivcol, *Frows, *Fcols, *Lpattern, *Upattern, *Lpos, *Upos, llen, ulen, fnc_curr, fnpiv, uilen, lnz, unz, nb, *Lilen, *Uilen, *Lip, *Uip, *Li, *Ui, pivcol_position, newLchain, newUchain, pivrow_position, p, size, lip, uip, lnzi, lnzx, unzx, lnz2i, lnz2x, unz2i, unz2x, zero_pivot, *Pivrow, *Pivcol, kk, Lnz [MAXNB] ; #ifndef NDEBUG Int *Col_degree, *Row_degree ; #endif #ifdef DROP Int all_lnz, all_unz ; droptol = Numeric->droptol ; #endif /* ---------------------------------------------------------------------- */ /* get parameters */ /* ---------------------------------------------------------------------- */ fnrows = Work->fnrows ; fncols = Work->fncols ; fnpiv = Work->fnpiv ; Lpos = Numeric->Lpos ; Upos = Numeric->Upos ; Lilen = Numeric->Lilen ; Uilen = Numeric->Uilen ; Lip = Numeric->Lip ; Uip = Numeric->Uip ; D = Numeric->D ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; fnr_curr = Work->fnr_curr ; fnc_curr = Work->fnc_curr ; Frows = Work->Frows ; Fcols = Work->Fcols ; #ifndef NDEBUG Col_degree = Numeric->Cperm ; /* for NON_PIVOTAL_COL macro */ Row_degree = Numeric->Rperm ; /* for NON_PIVOTAL_ROW macro */ #endif Lpattern = Work->Lpattern ; llen = Work->llen ; Upattern = Work->Upattern ; ulen = Work->ulen ; nb = Work->nb ; #ifndef NDEBUG DEBUG1 (("\nSTORE LU: fnrows "ID " fncols "ID"\n", fnrows, fncols)) ; DEBUG2 (("\nFrontal matrix, including all space:\n" "fnr_curr "ID" fnc_curr "ID" nb "ID"\n" "fnrows "ID" fncols "ID" fnpiv "ID"\n", fnr_curr, fnc_curr, nb, fnrows, fncols, fnpiv)) ; DEBUG2 (("\nJust the active part:\n")) ; DEBUG7 (("C block: ")) ; UMF_dump_dense (Work->Fcblock, fnr_curr, fnrows, fncols) ; DEBUG7 (("L block: ")) ; UMF_dump_dense (Work->Flblock, fnr_curr, fnrows, fnpiv); DEBUG7 (("U' block: ")) ; UMF_dump_dense (Work->Fublock, fnc_curr, fncols, fnpiv) ; DEBUG7 (("LU block: ")) ; UMF_dump_dense (Work->Flublock, nb, fnpiv, fnpiv) ; DEBUG7 (("Current frontal matrix: (prior to store LU)\n")) ; UMF_dump_current_front (Numeric, Work, TRUE) ; #endif Pivrow = Work->Pivrow ; Pivcol = Work->Pivcol ; /* ---------------------------------------------------------------------- */ /* store the columns of L */ /* ---------------------------------------------------------------------- */ for (kk = 0 ; kk < fnpiv ; kk++) { /* ------------------------------------------------------------------ */ /* one more pivot row and column is being stored into L and U */ /* ------------------------------------------------------------------ */ k = Work->npiv + kk ; /* ------------------------------------------------------------------ */ /* find the kth pivot row and pivot column */ /* ------------------------------------------------------------------ */ pivrow = Pivrow [kk] ; pivcol = Pivcol [kk] ; #ifndef NDEBUG ASSERT (pivrow >= 0 && pivrow < Work->n_row) ; ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; DEBUGm4 (( "\n -------------------------------------------------------------" "Store LU: step " ID"\n", k)) ; ASSERT (k < MIN (Work->n_row, Work->n_col)) ; DEBUG2 (("Store column of L, k = "ID", llen "ID"\n", k, llen)) ; for (i = 0 ; i < llen ; i++) { row = Lpattern [i] ; ASSERT (row >= 0 && row < Work->n_row) ; DEBUG2 ((" Lpattern["ID"] "ID" Lpos "ID, i, row, Lpos [row])) ; if (row == pivrow) DEBUG2 ((" <- pivot row")) ; DEBUG2 (("\n")) ; ASSERT (i == Lpos [row]) ; } #endif /* ------------------------------------------------------------------ */ /* remove pivot row from L */ /* ------------------------------------------------------------------ */ /* remove pivot row index from current column of L */ /* if a new Lchain starts, then all entries are removed later */ DEBUG2 (("Removing pivrow from Lpattern, k = "ID"\n", k)) ; ASSERT (!NON_PIVOTAL_ROW (pivrow)) ; pivrow_position = Lpos [pivrow] ; if (pivrow_position != EMPTY) { /* place the last entry in the column in the */ /* position of the pivot row index */ ASSERT (pivrow == Lpattern [pivrow_position]) ; row = Lpattern [--llen] ; /* ASSERT (NON_PIVOTAL_ROW (row)) ; */ Lpattern [pivrow_position] = row ; Lpos [row] = pivrow_position ; Lpos [pivrow] = EMPTY ; } /* ------------------------------------------------------------------ */ /* store the pivot value, for the diagonal matrix D */ /* ------------------------------------------------------------------ */ /* kk-th column of LU block */ Fl1 = Flublock + kk * nb ; /* kk-th column of L in the L block */ Fl2 = Flblock + kk * fnr_curr ; /* kk-th pivot in frontal matrix located in Flublock [kk, kk] */ pivot_value = Fl1 [kk] ; D [k] = pivot_value ; zero_pivot = IS_ZERO (pivot_value) ; DEBUG4 (("Pivot D["ID"]=", k)) ; EDEBUG4 (pivot_value) ; DEBUG4 (("\n")) ; /* ------------------------------------------------------------------ */ /* count nonzeros in kth column of L */ /* ------------------------------------------------------------------ */ lnz = 0 ; lnz2i = 0 ; lnz2x = llen ; #ifdef DROP all_lnz = 0 ; for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; all_lnz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; lnz++ ; if (Lpos [Pivrow [i]] == EMPTY) lnz2i++ ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; all_lnz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; lnz++ ; if (Lpos [Frows [i]] == EMPTY) lnz2i++ ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { if (IS_ZERO (Fl1 [i])) continue ; lnz++ ; if (Lpos [Pivrow [i]] == EMPTY) lnz2i++ ; } for (i = 0 ; i < fnrows ; i++) { if (IS_ZERO (Fl2 [i])) continue ; lnz++ ; if (Lpos [Frows [i]] == EMPTY) lnz2i++ ; } #endif lnz2x += lnz2i ; /* determine if we start a new Lchain or continue the old one */ if (llen == 0 || zero_pivot) { /* llen == 0 means there is no prior Lchain */ /* D [k] == 0 means the pivot column is empty */ newLchain = TRUE ; } else { newLchain = /* storage for starting a new Lchain */ UNITS (Entry, lnz) + UNITS (Int, lnz) <= /* storage for continuing a prior Lchain */ UNITS (Entry, lnz2x) + UNITS (Int, lnz2i) ; } if (newLchain) { /* start a new chain for column k of L */ DEBUG2 (("Start new Lchain, k = "ID"\n", k)) ; pivrow_position = EMPTY ; /* clear the prior Lpattern */ for (i = 0 ; i < llen ; i++) { row = Lpattern [i] ; Lpos [row] = EMPTY ; } llen = 0 ; lnzi = lnz ; lnzx = lnz ; } else { /* continue the prior Lchain */ DEBUG2 (("Continue Lchain, k = "ID"\n", k)) ; lnzi = lnz2i ; lnzx = lnz2x ; } /* ------------------------------------------------------------------ */ /* allocate space for the column of L */ /* ------------------------------------------------------------------ */ size = UNITS (Int, lnzi) + UNITS (Entry, lnzx) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage coll. (store LU)\n")); } #endif p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { Int r2, c2 ; /* Do garbage collection, realloc, and try again. */ /* Note that there are pivot rows/columns in current front. */ if (Work->do_grow) { /* full compaction of current frontal matrix, since * UMF_grow_front will be called next anyway. */ r2 = fnrows ; c2 = fncols ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; } DEBUGm3 (("get_memory from umf_store_lu:\n")) ; if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) { DEBUGm4 (("out of memory: store LU (1)\n")) ; return (FALSE) ; /* out of memory */ } p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { DEBUGm4 (("out of memory: store LU (2)\n")) ; return (FALSE) ; /* out of memory */ } /* garbage collection may have moved the current front */ fnc_curr = Work->fnc_curr ; fnr_curr = Work->fnr_curr ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fl1 = Flublock + kk * nb ; Fl2 = Flblock + kk * fnr_curr ; } /* ------------------------------------------------------------------ */ /* store the column of L */ /* ------------------------------------------------------------------ */ lip = p ; Li = (Int *) (Numeric->Memory + p) ; p += UNITS (Int, lnzi) ; Lval = (Entry *) (Numeric->Memory + p) ; p += UNITS (Entry, lnzx) ; for (i = 0 ; i < lnzx ; i++) { CLEAR (Lval [i]) ; } /* store the numerical entries */ if (newLchain) { /* flag the first column in the Lchain by negating Lip [k] */ lip = -lip ; ASSERT (llen == 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl1 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Pivrow [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Frows [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int row2, pos ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; row2 = Pivrow [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; Int row2, pos ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; row2 = Frows [i] ; pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; Li [pos] = row2 ; Lval [pos] = x ; } #endif } else { ASSERT (llen > 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl1 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Pivrow [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; double s ; Int row2, pos ; x = Fl2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; row2 = Frows [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int row2, pos ; x = Fl1 [i] ; if (IS_ZERO (x)) continue ; row2 = Pivrow [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } for (i = 0 ; i < fnrows ; i++) { Entry x ; Int row2, pos ; x = Fl2 [i] ; if (IS_ZERO (x)) continue ; row2 = Frows [i] ; pos = Lpos [row2] ; if (pos == EMPTY) { pos = llen++ ; Lpattern [pos] = row2 ; Lpos [row2] = pos ; *Li++ = row2 ; } Lval [pos] = x ; } #endif } DEBUG4 (("llen "ID" lnzx "ID"\n", llen, lnzx)) ; ASSERT (llen == lnzx) ; ASSERT (lnz <= llen) ; DEBUG4 (("lnz "ID" \n", lnz)) ; #ifdef DROP DEBUG4 (("all_lnz "ID" \n", all_lnz)) ; ASSERT (lnz <= all_lnz) ; Numeric->lnz += lnz ; Numeric->all_lnz += all_lnz ; Lnz [kk] = all_lnz ; #else Numeric->lnz += lnz ; Numeric->all_lnz += lnz ; Lnz [kk] = lnz ; #endif Numeric->nLentries += lnzx ; Work->llen = llen ; Numeric->isize += lnzi ; /* ------------------------------------------------------------------ */ /* the pivot column is fully assembled and scaled, and is now the */ /* k-th column of L */ /* ------------------------------------------------------------------ */ Lpos [pivrow] = pivrow_position ; /* not aliased */ Lip [pivcol] = lip ; /* aliased with Col_tuples */ Lilen [pivcol] = lnzi ; /* aliased with Col_tlen */ } /* ---------------------------------------------------------------------- */ /* store the rows of U */ /* ---------------------------------------------------------------------- */ for (kk = 0 ; kk < fnpiv ; kk++) { /* ------------------------------------------------------------------ */ /* one more pivot row and column is being stored into L and U */ /* ------------------------------------------------------------------ */ k = Work->npiv + kk ; /* ------------------------------------------------------------------ */ /* find the kth pivot row and pivot column */ /* ------------------------------------------------------------------ */ pivrow = Pivrow [kk] ; pivcol = Pivcol [kk] ; #ifndef NDEBUG ASSERT (pivrow >= 0 && pivrow < Work->n_row) ; ASSERT (pivcol >= 0 && pivcol < Work->n_col) ; DEBUG2 (("Store row of U, k = "ID", ulen "ID"\n", k, ulen)) ; for (i = 0 ; i < ulen ; i++) { col = Upattern [i] ; DEBUG2 ((" Upattern["ID"] "ID, i, col)) ; if (col == pivcol) DEBUG2 ((" <- pivot col")) ; DEBUG2 (("\n")) ; ASSERT (col >= 0 && col < Work->n_col) ; ASSERT (i == Upos [col]) ; } #endif /* ------------------------------------------------------------------ */ /* get the pivot value, for the diagonal matrix D */ /* ------------------------------------------------------------------ */ zero_pivot = IS_ZERO (D [k]) ; /* ------------------------------------------------------------------ */ /* count the nonzeros in the row of U */ /* ------------------------------------------------------------------ */ /* kk-th row of U in the LU block */ Fu1 = Flublock + kk ; /* kk-th row of U in the U block */ Fu2 = Fublock + kk * fnc_curr ; unz = 0 ; unz2i = 0 ; unz2x = ulen ; DEBUG2 (("unz2x is "ID", lnzx "ID"\n", unz2x, lnzx)) ; /* if row k does not end a Uchain, pivcol not included in ulen */ ASSERT (!NON_PIVOTAL_COL (pivcol)) ; pivcol_position = Upos [pivcol] ; if (pivcol_position != EMPTY) { unz2x-- ; DEBUG2 (("(exclude pivcol) unz2x is now "ID"\n", unz2x)) ; } ASSERT (unz2x >= 0) ; #ifdef DROP all_unz = 0 ; for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; all_unz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; unz++ ; if (Upos [Pivcol [i]] == EMPTY) unz2i++ ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; all_unz++ ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; unz++ ; if (Upos [Fcols [i]] == EMPTY) unz2i++ ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { if (IS_ZERO (Fu1 [i*nb])) continue ; unz++ ; if (Upos [Pivcol [i]] == EMPTY) unz2i++ ; } for (i = 0 ; i < fncols ; i++) { if (IS_ZERO (Fu2 [i])) continue ; unz++ ; if (Upos [Fcols [i]] == EMPTY) unz2i++ ; } #endif unz2x += unz2i ; ASSERT (IMPLIES (k == 0, ulen == 0)) ; /* determine if we start a new Uchain or continue the old one */ if (ulen == 0 || zero_pivot) { /* ulen == 0 means there is no prior Uchain */ /* D [k] == 0 means the matrix is singular (pivot row might */ /* not be empty, however, but start a new Uchain to prune zero */ /* entries for the deg > 0 test in UMF_u*solve) */ newUchain = TRUE ; } else { newUchain = /* approximate storage for starting a new Uchain */ UNITS (Entry, unz) + UNITS (Int, unz) <= /* approximate storage for continuing a prior Uchain */ UNITS (Entry, unz2x) + UNITS (Int, unz2i) ; /* this would be exact, except for the Int to Unit rounding, */ /* because the Upattern is stored only at the end of the Uchain */ } /* ------------------------------------------------------------------ */ /* allocate space for the row of U */ /* ------------------------------------------------------------------ */ size = 0 ; if (newUchain) { /* store the pattern of the last row in the prior Uchain */ size += UNITS (Int, ulen) ; unzx = unz ; } else { unzx = unz2x ; } size += UNITS (Entry, unzx) ; #ifndef NDEBUG UMF_allocfail = FALSE ; if (UMF_gprob > 0) { double rrr = ((double) (rand ( ))) / (((double) RAND_MAX) + 1) ; DEBUG4 (("Check random %e %e\n", rrr, UMF_gprob)) ; UMF_allocfail = rrr < UMF_gprob ; if (UMF_allocfail) DEBUGm2 (("Random garbage coll. (store LU)\n")); } #endif p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { Int r2, c2 ; /* Do garbage collection, realloc, and try again. */ /* Note that there are pivot rows/columns in current front. */ if (Work->do_grow) { /* full compaction of current frontal matrix, since * UMF_grow_front will be called next anyway. */ r2 = fnrows ; c2 = fncols ; } else { /* partial compaction. */ r2 = MAX (fnrows, Work->fnrows_new + 1) ; c2 = MAX (fncols, Work->fncols_new + 1) ; } DEBUGm3 (("get_memory from umf_store_lu:\n")) ; if (!UMF_get_memory (Numeric, Work, size, r2, c2, TRUE)) { /* :: get memory, column of L :: */ DEBUGm4 (("out of memory: store LU (1)\n")) ; return (FALSE) ; /* out of memory */ } p = UMF_mem_alloc_head_block (Numeric, size) ; if (!p) { /* :: out of memory, column of U :: */ DEBUGm4 (("out of memory: store LU (2)\n")) ; return (FALSE) ; /* out of memory */ } /* garbage collection may have moved the current front */ fnc_curr = Work->fnc_curr ; fnr_curr = Work->fnr_curr ; Flublock = Work->Flublock ; Flblock = Work->Flblock ; Fublock = Work->Fublock ; Fu1 = Flublock + kk ; Fu2 = Fublock + kk * fnc_curr ; } /* ------------------------------------------------------------------ */ /* store the row of U */ /* ------------------------------------------------------------------ */ uip = p ; if (newUchain) { /* starting a new Uchain - flag this by negating Uip [k] */ uip = -uip ; DEBUG2 (("Start new Uchain, k = "ID"\n", k)) ; pivcol_position = EMPTY ; /* end the prior Uchain */ /* save the current Upattern, and then */ /* clear it and start a new Upattern */ DEBUG2 (("Ending prior chain, k-1 = "ID"\n", k-1)) ; uilen = ulen ; Ui = (Int *) (Numeric->Memory + p) ; Numeric->isize += ulen ; p += UNITS (Int, ulen) ; for (i = 0 ; i < ulen ; i++) { col = Upattern [i] ; ASSERT (col >= 0 && col < Work->n_col) ; Upos [col] = EMPTY ; Ui [i] = col ; } ulen = 0 ; } else { /* continue the prior Uchain */ DEBUG2 (("Continue Uchain, k = "ID"\n", k)) ; ASSERT (k > 0) ; /* remove pivot col index from current row of U */ /* if a new Uchain starts, then all entries are removed later */ DEBUG2 (("Removing pivcol from Upattern, k = "ID"\n", k)) ; if (pivcol_position != EMPTY) { /* place the last entry in the row in the */ /* position of the pivot col index */ ASSERT (pivcol == Upattern [pivcol_position]) ; col = Upattern [--ulen] ; ASSERT (col >= 0 && col < Work->n_col) ; Upattern [pivcol_position] = col ; Upos [col] = pivcol_position ; Upos [pivcol] = EMPTY ; } /* this row continues the Uchain. Keep track of how much */ /* to trim from the k-th length to get the length of the */ /* (k-1)st row of U */ uilen = unz2i ; } Uval = (Entry *) (Numeric->Memory + p) ; /* p += UNITS (Entry, unzx), no need to increment p */ for (i = 0 ; i < unzx ; i++) { CLEAR (Uval [i]) ; } if (newUchain) { ASSERT (ulen == 0) ; #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu1 [i*nb] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Pivcol [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Fcols [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int col2, pos ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; col2 = Pivcol [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; Int col2, pos ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; col2 = Fcols [i] ; pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; Uval [pos] = x ; } #endif } else { ASSERT (ulen > 0) ; /* store the numerical entries and find new nonzeros */ #ifdef DROP for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu1 [i*nb] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Pivcol [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; double s ; Int col2, pos ; x = Fu2 [i] ; APPROX_ABS (s, x) ; if (s <= droptol) continue ; col2 = Fcols [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } #else for (i = kk + 1 ; i < fnpiv ; i++) { Entry x ; Int col2, pos ; x = Fu1 [i*nb] ; if (IS_ZERO (x)) continue ; col2 = Pivcol [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } for (i = 0 ; i < fncols ; i++) { Entry x ; Int col2, pos ; x = Fu2 [i] ; if (IS_ZERO (x)) continue ; col2 = Fcols [i] ; pos = Upos [col2] ; if (pos == EMPTY) { pos = ulen++ ; Upattern [pos] = col2 ; Upos [col2] = pos ; } Uval [pos] = x ; } #endif } ASSERT (ulen == unzx) ; ASSERT (unz <= ulen) ; DEBUG4 (("unz "ID" \n", unz)) ; #ifdef DROP DEBUG4 (("all_unz "ID" \n", all_unz)) ; ASSERT (unz <= all_unz) ; Numeric->unz += unz ; Numeric->all_unz += all_unz ; /* count the "true" flops, based on LU pattern only */ Numeric->flops += DIV_FLOPS * Lnz [kk] /* scale pivot column */ + MULTSUB_FLOPS * (Lnz [kk] * all_unz) ; /* outer product */ #else Numeric->unz += unz ; Numeric->all_unz += unz ; /* count the "true" flops, based on LU pattern only */ Numeric->flops += DIV_FLOPS * Lnz [kk] /* scale pivot column */ + MULTSUB_FLOPS * (Lnz [kk] * unz) ; /* outer product */ #endif Numeric->nUentries += unzx ; Work->ulen = ulen ; DEBUG1 (("Work->ulen = "ID" at end of pivot step, k: "ID"\n", ulen, k)); /* ------------------------------------------------------------------ */ /* the pivot row is the k-th row of U */ /* ------------------------------------------------------------------ */ Upos [pivcol] = pivcol_position ; /* not aliased */ Uip [pivrow] = uip ; /* aliased with Row_tuples */ Uilen [pivrow] = uilen ; /* aliased with Row_tlen */ } /* ---------------------------------------------------------------------- */ /* no more pivots in frontal working array */ /* ---------------------------------------------------------------------- */ Work->npiv += fnpiv ; Work->fnpiv = 0 ; Work->fnzeros = 0 ; return (TRUE) ; }
GLOBAL void UMF_scale ( Int n, Entry pivot, Entry X [ ] ) { Entry x ; double s ; Int i ; /* ---------------------------------------------------------------------- */ /* compute the approximate absolute value of the pivot, and select method */ /* ---------------------------------------------------------------------- */ APPROX_ABS (s, pivot) ; if (s < RECIPROCAL_TOLERANCE || IS_NAN (pivot)) { /* ------------------------------------------------------------------ */ /* tiny, or zero, pivot case */ /* ------------------------------------------------------------------ */ /* The pivot is tiny, or NaN. Do not divide zero by the pivot value, * and do not multiply by 1/pivot, either. */ for (i = 0 ; i < n ; i++) { /* X [i] /= pivot ; */ x = X [i] ; #ifndef NO_DIVIDE_BY_ZERO if (IS_NONZERO (x)) { DIV (X [i], x, pivot) ; } #else /* Do not divide by zero */ if (IS_NONZERO (x) && IS_NONZERO (pivot)) { DIV (X [i], x, pivot) ; } #endif } } else { /* ------------------------------------------------------------------ */ /* normal case */ /* ------------------------------------------------------------------ */ /* The pivot is not tiny, and is not NaN. Don't bother to check for * zeros in the pivot column, X. This is slightly more accurate than * multiplying by 1/pivot (but slightly slower), particularly if the * pivot column consists of only IEEE subnormals. */ for (i = 0 ; i < n ; i++) { /* X [i] /= pivot ; */ x = X [i] ; DIV (X [i], x, pivot) ; } } }