Exemplo n.º 1
0
/**Function*************************************************************

  Synopsis    [Derives the miter of two sequential networks.]

  Description [Assumes that the networks are strashed.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkMiterInt( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int fComb, int nPartSize, int fImplic, int fMulti )
{
    char Buffer[1000];
    Abc_Ntk_t * pNtkMiter;

    assert( Abc_NtkIsStrash(pNtk1) );
    assert( Abc_NtkIsStrash(pNtk2) );

    // start the new network
    pNtkMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
    sprintf( Buffer, "%s_%s_miter", pNtk1->pName, pNtk2->pName );
    pNtkMiter->pName = Extra_UtilStrsav(Buffer);

    // perform strashing
    Abc_NtkMiterPrepare( pNtk1, pNtk2, pNtkMiter, fComb, nPartSize, fMulti );
    Abc_NtkMiterAddOne( pNtk1, pNtkMiter );
    Abc_NtkMiterAddOne( pNtk2, pNtkMiter );
    Abc_NtkMiterFinalize( pNtk1, pNtk2, pNtkMiter, fComb, nPartSize, fImplic, fMulti );
    Abc_AigCleanup((Abc_Aig_t *)pNtkMiter->pManFunc);

    // make sure that everything is okay
    if ( !Abc_NtkCheck( pNtkMiter ) )
    {
        printf( "Abc_NtkMiter: The network check has failed.\n" );
        Abc_NtkDelete( pNtkMiter );
        return NULL;
    }
    return pNtkMiter;
}
Exemplo n.º 2
0
/**Function*************************************************************

  Synopsis    [Transform the netlist into a logic network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkToLogic( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew; 
    Abc_Obj_t * pObj, * pFanin;
    int i, k;
    // consider the case of the AIG
    if ( Abc_NtkIsStrash(pNtk) )
        return Abc_NtkAigToLogicSop( pNtk );
    assert( Abc_NtkIsNetlist(pNtk) );
    // consider simple case when there is hierarchy
//    assert( pNtk->pDesign == NULL );
    assert( Abc_NtkWhiteboxNum(pNtk) == 0 );
    assert( Abc_NtkBlackboxNum(pNtk) == 0 );
    // start the network
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, pNtk->ntkFunc );
    // duplicate the nodes 
    Abc_NtkForEachNode( pNtk, pObj, i )
        Abc_NtkDupObj(pNtkNew, pObj, 0);
    // reconnect the internal nodes in the new network
    Abc_NtkForEachNode( pNtk, pObj, i )
        Abc_ObjForEachFanin( pObj, pFanin, k )
            Abc_ObjAddFanin( pObj->pCopy, Abc_ObjFanin0(pFanin)->pCopy );
    // collect the CO nodes
    Abc_NtkFinalize( pNtk, pNtkNew );
    // fix the problem with CO pointing directly to CIs
    Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );
    // duplicate EXDC 
    if ( pNtk->pExdc )
        pNtkNew->pExdc = Abc_NtkToLogic( pNtk->pExdc );
    if ( !Abc_NtkCheck( pNtkNew ) )
        fprintf( stdout, "Abc_NtkToLogic(): Network check has failed.\n" );
    return pNtkNew;
}
Exemplo n.º 3
0
/**Function*************************************************************

  Synopsis    [Gives the current ABC network to AIG manager for processing.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkMiniBalance( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkAig;
    Hop_Man_t * pMan, * pTemp;
    assert( Abc_NtkIsStrash(pNtk) );
    // convert to the AIG manager
    pMan = Abc_NtkToMini( pNtk );
    if ( pMan == NULL )
        return NULL;
    if ( !Hop_ManCheck( pMan ) )
    {
        printf( "AIG check has failed.\n" );
        Hop_ManStop( pMan );
        return NULL;
    }
    // perform balance
    Hop_ManPrintStats( pMan );
//    Hop_ManDumpBlif( pMan, "aig_temp.blif" );
    pMan = Hop_ManBalance( pTemp = pMan, 1 );
    Hop_ManStop( pTemp );
    Hop_ManPrintStats( pMan );
    // convert from the AIG manager
    pNtkAig = Abc_NtkFromMini( pNtk, pMan );
    if ( pNtkAig == NULL )
        return NULL;
    Hop_ManStop( pMan );
    // make sure everything is okay
    if ( !Abc_NtkCheck( pNtkAig ) )
    {
        printf( "Abc_NtkStrash: The network check has failed.\n" );
        Abc_NtkDelete( pNtkAig );
        return NULL;
    }
    return pNtkAig;
}
Exemplo n.º 4
0
/**Function*************************************************************

  Synopsis    [Extracts sequential DCs of the network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkExtractSequentialDcs( Abc_Ntk_t * pNtk, int fVerbose )
{
    int fReorder = 1;
    DdManager * dd;
    DdNode * bRelation, * bInitial, * bUnreach;

    // remove EXDC network if present
    if ( pNtk->pExdc )
    {
        Abc_NtkDelete( pNtk->pExdc );
        pNtk->pExdc = NULL; 
    }

    // compute the global BDDs of the latches
    dd = Abc_NtkBuildGlobalBdds( pNtk, 10000000, 1, 1, fVerbose );    
    if ( dd == NULL )
        return 0;
    if ( fVerbose )
        printf( "Shared BDD size = %6d nodes.\n", Cudd_ReadKeys(dd) - Cudd_ReadDead(dd) );

    // create the transition relation (dereferenced global BDDs)
    bRelation = Abc_NtkTransitionRelation( dd, pNtk, fVerbose );              Cudd_Ref( bRelation );
    // create the initial state and the variable map
    bInitial  = Abc_NtkInitStateAndVarMap( dd, pNtk, fVerbose );              Cudd_Ref( bInitial );
    // compute the unreachable states
    bUnreach  = Abc_NtkComputeUnreachable( dd, pNtk, bRelation, bInitial, fVerbose );   Cudd_Ref( bUnreach );
    Cudd_RecursiveDeref( dd, bRelation );
    Cudd_RecursiveDeref( dd, bInitial );

    // reorder and disable reordering
    if ( fReorder )
    {
        if ( fVerbose )
            fprintf( stdout, "BDD nodes in the unreachable states before reordering %d.\n", Cudd_DagSize(bUnreach) );
        Cudd_ReduceHeap( dd, CUDD_REORDER_SYMM_SIFT, 1 );
        Cudd_AutodynDisable( dd );
        if ( fVerbose )
            fprintf( stdout, "BDD nodes in the unreachable states after reordering %d.\n", Cudd_DagSize(bUnreach) );
    }

    // allocate ZDD variables
    Cudd_zddVarsFromBddVars( dd, 2 );
    // create the EXDC network representing the unreachable states
    if ( pNtk->pExdc )
        Abc_NtkDelete( pNtk->pExdc );
    pNtk->pExdc = Abc_NtkConstructExdc( dd, pNtk, bUnreach );
    Cudd_RecursiveDeref( dd, bUnreach );
    Extra_StopManager( dd );
//    pNtk->pManGlob = NULL;

    // make sure that everything is okay
    if ( pNtk->pExdc && !Abc_NtkCheck( pNtk->pExdc ) )
    {
        printf( "Abc_NtkExtractSequentialDcs: The network check has failed.\n" );
        Abc_NtkDelete( pNtk->pExdc );
        return 0;
    }
    return 1;
}
Exemplo n.º 5
0
/**Function*************************************************************

  Synopsis    [Interface with the FPGA mapping package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkFpga( Abc_Ntk_t * pNtk, float DelayTarget, int fRecovery, int fSwitching, int fLatchPaths, int fVerbose )
{
    int fShowSwitching = 1;
    Abc_Ntk_t * pNtkNew;
    Fpga_Man_t * pMan;
    Vec_Int_t * vSwitching;
    float * pSwitching = NULL;

    assert( Abc_NtkIsStrash(pNtk) );

    // print a warning about choice nodes
    if ( Abc_NtkGetChoiceNum( pNtk ) )
        printf( "Performing FPGA mapping with choices.\n" );

    // compute switching activity
    fShowSwitching |= fSwitching;
    if ( fShowSwitching )
    {
        extern Vec_Int_t * Sim_NtkComputeSwitching( Abc_Ntk_t * pNtk, int nPatterns );
        vSwitching = Sim_NtkComputeSwitching( pNtk, 4096 );
        pSwitching = (float *)vSwitching->pArray;
    }

    // perform FPGA mapping
    pMan = Abc_NtkToFpga( pNtk, fRecovery, pSwitching, fLatchPaths, fVerbose );    
    if ( pSwitching ) Vec_IntFree( vSwitching );
    if ( pMan == NULL )
        return NULL;
    Fpga_ManSetSwitching( pMan, fSwitching );
    Fpga_ManSetLatchPaths( pMan, fLatchPaths );
    Fpga_ManSetLatchNum( pMan, Abc_NtkLatchNum(pNtk) );
    Fpga_ManSetDelayTarget( pMan, DelayTarget );
    if ( !Fpga_Mapping( pMan ) )
    {
        Fpga_ManFree( pMan );
        return NULL;
    }

    // transform the result of mapping into a BDD network
    pNtkNew = Abc_NtkFromFpga( pMan, pNtk );
    if ( pNtkNew == NULL )
        return NULL;
    Fpga_ManFree( pMan );

    // make the network minimum base
    Abc_NtkMinimumBase( pNtkNew );

    if ( pNtk->pExdc )
        pNtkNew->pExdc = Abc_NtkDup( pNtk->pExdc );

    // make sure that everything is okay
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkFpga: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}
/**Function*************************************************************

  Synopsis    [Transforms the AIG into nodes.]

  Description [Threhold is the max number of nodes duplicated at a node.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkMulti( Abc_Ntk_t * pNtk, int nThresh, int nFaninMax, int fCnf, int fMulti, int fSimple, int fFactor )
{
    Abc_Ntk_t * pNtkNew;

    assert( Abc_NtkIsStrash(pNtk) );
    assert( nThresh >= 0 );
    assert( nFaninMax > 1 );

    // print a warning about choice nodes
    if ( Abc_NtkGetChoiceNum( pNtk ) )
        printf( "Warning: The choice nodes in the AIG are removed by renoding.\n" );

    // define the boundary
    if ( fCnf )
        Abc_NtkMultiSetBoundsCnf( pNtk );
    else if ( fMulti )
        Abc_NtkMultiSetBoundsMulti( pNtk, nThresh );
    else if ( fSimple )
        Abc_NtkMultiSetBoundsSimple( pNtk );
    else if ( fFactor )
        Abc_NtkMultiSetBoundsFactor( pNtk );
    else
        Abc_NtkMultiSetBounds( pNtk, nThresh, nFaninMax );

    // perform renoding for this boundary
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD );
    Abc_NtkMultiInt( pNtk, pNtkNew );
    Abc_NtkFinalize( pNtk, pNtkNew );

    // make the network minimum base
    Abc_NtkMinimumBase( pNtkNew );

    // fix the problem with complemented and duplicated CO edges
    Abc_NtkLogicMakeSimpleCos( pNtkNew, 0 );

    // report the number of CNF objects
    if ( fCnf )
    {
//        int nClauses = Abc_NtkGetClauseNum(pNtkNew) + 2*Abc_NtkPoNum(pNtkNew) + 2*Abc_NtkLatchNum(pNtkNew);
//        printf( "CNF variables = %d. CNF clauses = %d.\n",  Abc_NtkNodeNum(pNtkNew), nClauses );
    }
//printf( "Maximum fanin = %d.\n", Abc_NtkGetFaninMax(pNtkNew) );

    if ( pNtk->pExdc )
        pNtkNew->pExdc = Abc_NtkDup( pNtk->pExdc );
    // make sure everything is okay
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkMulti: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}
Exemplo n.º 7
0
/**Function*************************************************************

  Synopsis    [Constructs the network isomorphic to the given BDD.]

  Description [Assumes that the BDD depends on the variables whose indexes
  correspond to the names in the array (pNamesPi). Otherwise, returns NULL.
  The resulting network comes with one node, whose functionality is
  equal to the given BDD. To decompose this BDD into the network of
  multiplexers use Abc_NtkBddToMuxes(). To decompose this BDD into
  an And-Inverter Graph, use Abc_NtkStrash().]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkDeriveFromBdd( void * dd0, void * bFunc, char * pNamePo, Vec_Ptr_t * vNamesPi )
{
    DdManager * dd = (DdManager *)dd0;
    Abc_Ntk_t * pNtk; 
    Vec_Ptr_t * vNamesPiFake = NULL;
    Abc_Obj_t * pNode, * pNodePi, * pNodePo;
    DdNode * bSupp, * bTemp;
    char * pName;
    int i;

    // supply fake names if real names are not given
    if ( pNamePo == NULL )
        pNamePo = "F";
    if ( vNamesPi == NULL )
    {
        vNamesPiFake = Abc_NodeGetFakeNames( dd->size );
        vNamesPi = vNamesPiFake;
    }

    // make sure BDD depends on the variables whose index 
    // does not exceed the size of the array with PI names
    bSupp = Cudd_Support( dd, (DdNode *)bFunc );   Cudd_Ref( bSupp );
    for ( bTemp = bSupp; bTemp != Cudd_ReadOne(dd); bTemp = cuddT(bTemp) )
        if ( (int)Cudd_NodeReadIndex(bTemp) >= Vec_PtrSize(vNamesPi) )
            break;
    Cudd_RecursiveDeref( dd, bSupp );
    if ( bTemp != Cudd_ReadOne(dd) )
        return NULL;

    // start the network
    pNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_BDD, 1 );
    pNtk->pName = Extra_UtilStrsav(pNamePo);
    // make sure the new manager has enough inputs
    Cudd_bddIthVar( (DdManager *)pNtk->pManFunc, Vec_PtrSize(vNamesPi) );
    // add the PIs corresponding to the names
    Vec_PtrForEachEntry( char *, vNamesPi, pName, i )
        Abc_ObjAssignName( Abc_NtkCreatePi(pNtk), pName, NULL );
    // create the node
    pNode = Abc_NtkCreateNode( pNtk );
    pNode->pData = (DdNode *)Cudd_bddTransfer( dd, (DdManager *)pNtk->pManFunc, (DdNode *)bFunc ); Cudd_Ref((DdNode *)pNode->pData);
    Abc_NtkForEachPi( pNtk, pNodePi, i )
        Abc_ObjAddFanin( pNode, pNodePi );
    // create the only PO
    pNodePo = Abc_NtkCreatePo( pNtk );
    Abc_ObjAddFanin( pNodePo, pNode );
    Abc_ObjAssignName( pNodePo, pNamePo, NULL );
    // make the network minimum base
    Abc_NtkMinimumBase( pNtk );
    if ( vNamesPiFake )
        Abc_NodeFreeNames( vNamesPiFake );
    if ( !Abc_NtkCheck( pNtk ) )
        fprintf( stdout, "Abc_NtkDeriveFromBdd(): Network check has failed.\n" );
    return pNtk;
}
Exemplo n.º 8
0
/**Function*************************************************************

  Synopsis    [Interface with the mapping package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkSuperChoice( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;

    Map_Man_t * pMan;

    assert( Abc_NtkIsStrash(pNtk) );

    // check that the library is available
    if ( Abc_FrameReadLibGen() == NULL )
    {
        printf( "The current library is not available.\n" );
        return 0;
    }

    // derive the supergate library
    if ( Abc_FrameReadLibSuper() == NULL && Abc_FrameReadLibGen() )
    {
//        printf( "A simple supergate library is derived from gate library \"%s\".\n", 
//            Mio_LibraryReadName((Mio_Library_t *)Abc_FrameReadLibGen()) );
        Map_SuperLibDeriveFromGenlib( (Mio_Library_t *)Abc_FrameReadLibGen(), 0 );
    }

    // print a warning about choice nodes
    if ( Abc_NtkGetChoiceNum( pNtk ) )
        printf( "Performing mapping with choices.\n" );

    // perform the mapping
    pMan = Abc_NtkToMap( pNtk, -1, 1, NULL, 0 );
    if ( pMan == NULL )
        return NULL;
    if ( !Map_Mapping( pMan ) )
    {
        Map_ManFree( pMan );
        return NULL;
    }

    // reconstruct the network after mapping
    pNtkNew = Abc_NtkFromMapSuperChoice( pMan, pNtk );
    if ( pNtkNew == NULL )
        return NULL;
    Map_ManFree( pMan );

    // make sure that everything is okay
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkMap: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}
Exemplo n.º 9
0
/**Function*************************************************************

  Synopsis    [Performs retiming in one direction.]

  Description [Currently does not retime over black boxes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeIncremental( Abc_Ntk_t * pNtk, int nDelayLim, int fForward, int fMinDelay, int fOneStep, int fVerbose )
{
    Abc_Ntk_t * pNtkCopy = NULL;
    Vec_Ptr_t * vBoxes;
    st__table * tLatches;
    int nLatches = Abc_NtkLatchNum(pNtk);
    int nIdMaxStart = Abc_NtkObjNumMax(pNtk);
    int RetValue;
    int nIterLimit = -1; // Suppress "might be used uninitialized"
    if ( Abc_NtkNodeNum(pNtk) == 0 )
        return 0;
    // reorder CI/CO/latch inputs
    Abc_NtkOrderCisCos( pNtk );
    if ( fMinDelay ) 
    {
        nIterLimit = fOneStep? 1 : 2 * Abc_NtkLevel(pNtk);
        pNtkCopy = Abc_NtkDup( pNtk );
        tLatches = Abc_NtkRetimePrepareLatches( pNtkCopy );
        st__free_table( tLatches );
    }
    // collect latches and remove CIs/COs
    tLatches = Abc_NtkRetimePrepareLatches( pNtk );
    // share the latches
    Abc_NtkRetimeShareLatches( pNtk, 0 );    
    // save boxes
    vBoxes = pNtk->vBoxes;  pNtk->vBoxes = NULL;
    // perform the retiming
    if ( fMinDelay )
        Abc_NtkRetimeMinDelay( pNtk, pNtkCopy, nDelayLim, nIterLimit, fForward, fVerbose );
    else
        Abc_NtkRetimeOneWay( pNtk, fForward, fVerbose );
    if ( fMinDelay ) 
        Abc_NtkDelete( pNtkCopy );
    // share the latches
    Abc_NtkRetimeShareLatches( pNtk, 0 );    
    // restore boxes
    pNtk->vBoxes = vBoxes;
    // finalize the latches
    RetValue = Abc_NtkRetimeFinalizeLatches( pNtk, tLatches, nIdMaxStart );
    st__free_table( tLatches );
    if ( RetValue == 0 )
        return 0;
    // fix the COs
//    Abc_NtkLogicMakeSimpleCos( pNtk, 0 );
    // check for correctness
    if ( !Abc_NtkCheck( pNtk ) )
        fprintf( stdout, "Abc_NtkRetimeForward(): Network check has failed.\n" );
    // return the number of latches saved
    return nLatches - Abc_NtkLatchNum(pNtk);
}
Exemplo n.º 10
0
/**Function*************************************************************

  Synopsis    [Creates the network isomorphic to the union of local BDDs of the nodes.]

  Description [The nodes of the local BDDs are converted into the network nodes 
  with logic functions equal to the MUX.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkBddToMuxes( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;
    assert( Abc_NtkIsBddLogic(pNtk) );
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );
    Abc_NtkBddToMuxesPerform( pNtk, pNtkNew );
    Abc_NtkFinalize( pNtk, pNtkNew );
    // make sure everything is okay
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkBddToMuxes: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}
Exemplo n.º 11
0
Abc_Ntk_t * Abc_NtkFromMiniAig( Mini_Aig_t * p )
{
    Abc_Ntk_t * pNtk;
    Abc_Obj_t * pObj;
    Vec_Int_t * vCopies;
    int i, nNodes;
    // get the number of nodes
    nNodes = Mini_AigNodeNum(p);
    // create ABC network
    pNtk = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
    pNtk->pName = Abc_UtilStrsav( "MiniAig" );
    // create mapping from MiniAIG objects into ABC objects
    vCopies = Vec_IntAlloc( nNodes );
    Vec_IntPush( vCopies, Abc_LitNot(Abc_ObjToLit(Abc_AigConst1(pNtk))) );
    // iterate through the objects
    for ( i = 1; i < nNodes; i++ )
    {
        if ( Mini_AigNodeIsPi( p, i ) )
            pObj = Abc_NtkCreatePi(pNtk);
        else if ( Mini_AigNodeIsPo( p, i ) )
            Abc_ObjAddFanin( (pObj = Abc_NtkCreatePo(pNtk)), Abc_NodeFanin0Copy(pNtk, vCopies, p, i) );
        else if ( Mini_AigNodeIsAnd( p, i ) )
            pObj = Abc_AigAnd((Abc_Aig_t *)pNtk->pManFunc, Abc_NodeFanin0Copy(pNtk, vCopies, p, i), Abc_NodeFanin1Copy(pNtk, vCopies, p, i));
        else assert( 0 );
        Vec_IntPush( vCopies, Abc_ObjToLit(pObj) );
    }
    assert( Vec_IntSize(vCopies) == nNodes );
    Abc_AigCleanup( (Abc_Aig_t *)pNtk->pManFunc );
    Vec_IntFree( vCopies );
    Abc_NtkAddDummyPiNames( pNtk );
    Abc_NtkAddDummyPoNames( pNtk );
    if ( !Abc_NtkCheck( pNtk ) )
        fprintf( stdout, "Abc_NtkFromMini(): Network check has failed.\n" );
    // add latches
    if ( Mini_AigRegNum(p) > 0 )
    {
        extern Abc_Ntk_t * Abc_NtkRestrashWithLatches( Abc_Ntk_t * pNtk, int nLatches );
        Abc_Ntk_t * pTemp;
        pNtk = Abc_NtkRestrashWithLatches( pTemp = pNtk, Mini_AigRegNum(p) );
        Abc_NtkDelete( pTemp );
    }
    return pNtk;
}
Exemplo n.º 12
0
/**Function*************************************************************

  Synopsis    [Performs fast FPGA mapping of the network.]

  Description [Takes the AIG to be mapped, the LUT size, and verbosity
  flag. Produces the new network by fast FPGA mapping of the current 
  network. If the current network in ABC in not an AIG, the user should 
  run command "strash" to make sure that the current network into an AIG 
  before calling this procedure.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkFpgaFast( Abc_Ntk_t * pNtk, int nLutSize, int fRecovery, int fVerbose )
{
    Ivy_Man_t * pMan;
    Abc_Ntk_t * pNtkNew;
    // make sure the network is an AIG
    assert( Abc_NtkIsStrash(pNtk) );
    // convert the network into the AIG
    pMan = Abc_NtkIvyBefore( pNtk, 0, 0 );
    // perform fast FPGA mapping
    Ivy_FastMapPerform( pMan, nLutSize, fRecovery, fVerbose );
    // convert back into the ABC network
    pNtkNew = Ivy_ManFpgaToAbc( pNtk, pMan );
    Ivy_FastMapStop( pMan );
    Ivy_ManStop( pMan );  
    // make sure that the final network passes the test
    if ( pNtkNew != NULL && !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkFastMap: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}
Exemplo n.º 13
0
/**Function*************************************************************

  Synopsis    [Converts the network from the AIG manager into ABC.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkFromMini( Abc_Ntk_t * pNtk, Hop_Man_t * pMan )
{
    Vec_Ptr_t * vNodes;
    Abc_Ntk_t * pNtkNew;
    Hop_Obj_t * pObj;
    int i;
    // perform strashing
    pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_STRASH, ABC_FUNC_AIG );
    // transfer the pointers to the basic nodes
    Hop_ManConst1(pMan)->pData = Abc_AigConst1(pNtkNew);
    Hop_ManForEachPi( pMan, pObj, i )
        pObj->pData = Abc_NtkCi(pNtkNew, i);
    // rebuild the AIG
    vNodes = Hop_ManDfs( pMan );
    Vec_PtrForEachEntry( Hop_Obj_t *, vNodes, pObj, i )
        pObj->pData = Abc_AigAnd( (Abc_Aig_t *)pNtkNew->pManFunc, (Abc_Obj_t *)Hop_ObjChild0Copy(pObj), (Abc_Obj_t *)Hop_ObjChild1Copy(pObj) );
    Vec_PtrFree( vNodes );
    // connect the PO nodes
    Hop_ManForEachPo( pMan, pObj, i )
        Abc_ObjAddFanin( Abc_NtkCo(pNtkNew, i), (Abc_Obj_t *)Hop_ObjChild0Copy(pObj) );
    if ( !Abc_NtkCheck( pNtkNew ) )
        fprintf( stdout, "Abc_NtkFromMini(): Network check has failed.\n" );
    return pNtkNew;
}
Exemplo n.º 14
0
/**Function*************************************************************

  Synopsis    [Prepares the IVY package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkIvyAfter( Abc_Ntk_t * pNtk, Ivy_Man_t * pMan, int fSeq, int fHaig )
{
    Abc_Ntk_t * pNtkAig;
    int nNodes, fCleanup = 1;
    // convert from the AIG manager
    if ( fSeq )
        pNtkAig = Abc_NtkFromIvySeq( pNtk, pMan, fHaig );
    else
        pNtkAig = Abc_NtkFromIvy( pNtk, pMan );
    // report the cleanup results
    if ( !fHaig && fCleanup && (nNodes = Abc_AigCleanup(pNtkAig->pManFunc)) )
        printf( "Warning: AIG cleanup removed %d nodes (this is not a bug).\n", nNodes );
    // duplicate EXDC 
    if ( pNtk->pExdc )
        pNtkAig->pExdc = Abc_NtkDup( pNtk->pExdc );
    // make sure everything is okay
    if ( !Abc_NtkCheck( pNtkAig ) )
    {
        printf( "Abc_NtkStrash: The network check has failed.\n" );
        Abc_NtkDelete( pNtkAig );
        return NULL;
    }
    return pNtkAig;
}
Exemplo n.º 15
0
ABC_NAMESPACE_IMPL_START


// For description of Binary BLIF format, refer to "abc/src/aig/bbl/bblif.h"

////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Fnction*************************************************************

  Synopsis    [Constructs ABC network from the manager.]

  Description [The ABC network is started, as well as the array vCopy,
  which will map the new ID of each object in the BBLIF manager into
  the ponter ot the corresponding object in the ABC. For each internal
  node, determined by Bbl_ObjIsLut(), the SOP representation is created
  by retrieving the SOP representation of the BBLIF object. Finally,
  the objects are connected using fanin/fanout creation, and the dummy
  names are assigned because ABC requires each CI/CO to have a name.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Bbl_ManToAbc( Bbl_Man_t * p )
{
    Abc_Ntk_t * pNtk;
    Abc_Obj_t * pObjNew;
    Bbl_Obj_t * pObj, * pFanin;
    Vec_Ptr_t * vCopy;
    // start the network
    pNtk = Abc_NtkAlloc( ABC_NTK_LOGIC, ABC_FUNC_SOP, 1 );
    pNtk->pName = Extra_UtilStrsav( Bbl_ManName(p) );
    // create objects
    vCopy = Vec_PtrStart( 1000 );
    Bbl_ManForEachObj( p, pObj )
    {
        if ( Bbl_ObjIsInput(pObj) )
            pObjNew = Abc_NtkCreatePi( pNtk );
        else if ( Bbl_ObjIsOutput(pObj) )
            pObjNew = Abc_NtkCreatePo( pNtk );
        else if ( Bbl_ObjIsLut(pObj) )
            pObjNew = Abc_NtkCreateNode( pNtk );
        else assert( 0 );
        if ( Bbl_ObjIsLut(pObj) )
            pObjNew->pData = Abc_SopRegister( (Mem_Flex_t *)pNtk->pManFunc, Bbl_ObjSop(p, pObj) );
        Vec_PtrSetEntry( vCopy, Bbl_ObjId(pObj), pObjNew );
    }
    // connect objects
    Bbl_ManForEachObj( p, pObj )
        Bbl_ObjForEachFanin( pObj, pFanin )
            Abc_ObjAddFanin( (Abc_Obj_t *)Vec_PtrEntry(vCopy, Bbl_ObjId(pObj)), (Abc_Obj_t *)Vec_PtrEntry(vCopy, Bbl_ObjId(pFanin)) );
    // finalize
    Vec_PtrFree( vCopy );
    Abc_NtkAddDummyPiNames( pNtk );
    Abc_NtkAddDummyPoNames( pNtk );
    if ( !Abc_NtkCheck( pNtk ) )
        printf( "Bbl_ManToAbc(): Network check has failed.\n" );
    return pNtk;
}
Exemplo n.º 16
0
/**Function*************************************************************

  Synopsis    [Structurally hashes the given window.]

  Description [The first PO is the observability condition. The second 
  is the node's function. The remaining POs are the candidate divisors.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Res_WndStrash( Res_Win_t * p )
{
    Vec_Ptr_t * vPairs;
    Abc_Ntk_t * pAig;
    Abc_Obj_t * pObj, * pMiter;
    int i;
    assert( Abc_NtkHasAig(p->pNode->pNtk) );
//    Abc_NtkCleanCopy( p->pNode->pNtk );
    // create the network
    pAig = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
    pAig->pName = Extra_UtilStrsav( "window" );
    // create the inputs
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vLeaves, pObj, i )
        pObj->pCopy = Abc_NtkCreatePi( pAig );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vBranches, pObj, i )
        pObj->pCopy = Abc_NtkCreatePi( pAig );
    // go through the nodes in the topological order
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vNodes, pObj, i )
    {
        pObj->pCopy = Abc_ConvertAigToAig( pAig, pObj );
        if ( pObj == p->pNode )
            pObj->pCopy = Abc_ObjNot( pObj->pCopy );
    }
    // collect the POs
    vPairs = Vec_PtrAlloc( 2 * Vec_PtrSize(p->vRoots) );
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
    {
        Vec_PtrPush( vPairs, pObj->pCopy );
        Vec_PtrPush( vPairs, NULL );
    }
    // mark the TFO of the node
    Abc_NtkIncrementTravId( p->pNode->pNtk );
    Res_WinSweepLeafTfo_rec( p->pNode, (int)p->pNode->Level + p->nWinTfoMax );
    // update strashing of the node
    p->pNode->pCopy = Abc_ObjNot( p->pNode->pCopy );
    Abc_NodeSetTravIdPrevious( p->pNode );
    // redo strashing in the TFO
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vNodes, pObj, i )
    {
        if ( Abc_NodeIsTravIdCurrent(pObj) )
            pObj->pCopy = Abc_ConvertAigToAig( pAig, pObj );
    }
    // collect the POs
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vRoots, pObj, i )
        Vec_PtrWriteEntry( vPairs, 2 * i + 1, pObj->pCopy );
    // add the miter
    pMiter = Abc_AigMiter( (Abc_Aig_t *)pAig->pManFunc, vPairs, 0 );
    Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), pMiter );
    Vec_PtrFree( vPairs );
    // add the node
    Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), p->pNode->pCopy );
    // add the fanins
    Abc_ObjForEachFanin( p->pNode, pObj, i )
        Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), pObj->pCopy );
    // add the divisors
    Vec_PtrForEachEntry( Abc_Obj_t *, p->vDivs, pObj, i )
        Abc_ObjAddFanin( Abc_NtkCreatePo(pAig), pObj->pCopy );
    // add the names
    Abc_NtkAddDummyPiNames( pAig );
    Abc_NtkAddDummyPoNames( pAig );
    // check the resulting network
    if ( !Abc_NtkCheck( pAig ) )
        fprintf( stdout, "Res_WndStrash(): Network check has failed.\n" );
    return pAig;
}
Exemplo n.º 17
0
/**Function*************************************************************

  Synopsis    [Interface with the mapping package.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkMap( Abc_Ntk_t * pNtk, double DelayTarget, double AreaMulti, double DelayMulti, float LogFan, float Slew, float Gain, int nGatesMin, int fRecovery, int fSwitching, int fSkipFanout, int fVerbose )
{
    static int fUseMulti = 0;
    int fShowSwitching = 1;
    Abc_Ntk_t * pNtkNew;
    Map_Man_t * pMan;
    Vec_Int_t * vSwitching = NULL;
    float * pSwitching = NULL;
    abctime clk, clkTotal = Abc_Clock();
    Mio_Library_t * pLib = (Mio_Library_t *)Abc_FrameReadLibGen();

    assert( Abc_NtkIsStrash(pNtk) );
    // derive library from SCL
    // if the library is created here, it will be deleted when pSuperLib is deleted in Map_SuperLibFree()
    if ( Abc_FrameReadLibScl() && Abc_SclHasDelayInfo( Abc_FrameReadLibScl() ) )
    {
        pLib = Abc_SclDeriveGenlib( Abc_FrameReadLibScl(), Slew, Gain, nGatesMin, fVerbose );
        if ( Abc_FrameReadLibGen() )
            Mio_LibraryTransferDelays( (Mio_Library_t *)Abc_FrameReadLibGen(), pLib );
        // remove supergate library
        Map_SuperLibFree( (Map_SuperLib_t *)Abc_FrameReadLibSuper() );
        Abc_FrameSetLibSuper( NULL );
    }
    // quit if there is no library
    if ( pLib == NULL )
    {
        printf( "The current library is not available.\n" );
        return 0;
    }
    if ( AreaMulti != 0.0 )
        fUseMulti = 1, printf( "The cell areas are multiplied by the factor: <num_fanins> ^ (%.2f).\n", AreaMulti );
    if ( DelayMulti != 0.0 )
        fUseMulti = 1, printf( "The cell delays are multiplied by the factor: <num_fanins> ^ (%.2f).\n", DelayMulti );

    // penalize large gates by increasing their area
    if ( AreaMulti != 0.0 )
        Mio_LibraryMultiArea( pLib, AreaMulti );
    if ( DelayMulti != 0.0 )
        Mio_LibraryMultiDelay( pLib, DelayMulti );

    // derive the supergate library
    if ( fUseMulti || Abc_FrameReadLibSuper() == NULL )
    {
        if ( fVerbose )
            printf( "Converting \"%s\" into supergate library \"%s\".\n", 
                Mio_LibraryReadName(pLib), Extra_FileNameGenericAppend(Mio_LibraryReadName(pLib), ".super") );
        // compute supergate library to be used for mapping
        Map_SuperLibDeriveFromGenlib( pLib, fVerbose );
    }

    // return the library to normal
    if ( AreaMulti != 0.0 )
        Mio_LibraryMultiArea( (Mio_Library_t *)Abc_FrameReadLibGen(), -AreaMulti );
    if ( DelayMulti != 0.0 )
        Mio_LibraryMultiDelay( (Mio_Library_t *)Abc_FrameReadLibGen(), -DelayMulti );

    // print a warning about choice nodes
    if ( fVerbose && Abc_NtkGetChoiceNum( pNtk ) )
        printf( "Performing mapping with choices.\n" );

    // compute switching activity
    fShowSwitching |= fSwitching;
    if ( fShowSwitching )
    {
        extern Vec_Int_t * Sim_NtkComputeSwitching( Abc_Ntk_t * pNtk, int nPatterns );
        vSwitching = Sim_NtkComputeSwitching( pNtk, 4096 );
        pSwitching = (float *)vSwitching->pArray;
    }

    // perform the mapping
    pMan = Abc_NtkToMap( pNtk, DelayTarget, fRecovery, pSwitching, fVerbose );
    if ( pSwitching ) Vec_IntFree( vSwitching );
    if ( pMan == NULL )
        return NULL;
clk = Abc_Clock();
    Map_ManSetSwitching( pMan, fSwitching );
    Map_ManSetSkipFanout( pMan, fSkipFanout );
    if ( LogFan != 0 )
        Map_ManCreateNodeDelays( pMan, LogFan );
    if ( !Map_Mapping( pMan ) )
    {
        Map_ManFree( pMan );
        return NULL;
    }
//    Map_ManPrintStatsToFile( pNtk->pSpec, Map_ManReadAreaFinal(pMan), Map_ManReadRequiredGlo(pMan), Abc_Clock()-clk );

    // reconstruct the network after mapping
    pNtkNew = Abc_NtkFromMap( pMan, pNtk );
    Map_ManFree( pMan );
    if ( pNtkNew == NULL )
        return NULL;

    if ( pNtk->pExdc )
        pNtkNew->pExdc = Abc_NtkDup( pNtk->pExdc );
if ( fVerbose )
{
ABC_PRT( "Total runtime", Abc_Clock() - clkTotal );
}

    // make sure that everything is okay
    if ( !Abc_NtkCheck( pNtkNew ) )
    {
        printf( "Abc_NtkMap: The network check has failed.\n" );
        Abc_NtkDelete( pNtkNew );
        return NULL;
    }
    return pNtkNew;
}