Exemplo n.º 1
0
static void mesh_calc_edges(Mesh *mesh)
{
	CustomData edata;
	EdgeHashIterator *ehi;
	MFace *mf = mesh->mface;
	MEdge *med;
	EdgeHash *eh = BLI_edgehash_new();
	int i, *index, totedge, totface = mesh->totface;

	for (i = 0; i < totface; i++, mf++) {
		if (!BLI_edgehash_haskey(eh, mf->v1, mf->v2))
			BLI_edgehash_insert(eh, mf->v1, mf->v2, NULL);
		if (!BLI_edgehash_haskey(eh, mf->v2, mf->v3))
			BLI_edgehash_insert(eh, mf->v2, mf->v3, NULL);
		
		if (mf->v4) {
			if (!BLI_edgehash_haskey(eh, mf->v3, mf->v4))
				BLI_edgehash_insert(eh, mf->v3, mf->v4, NULL);
			if (!BLI_edgehash_haskey(eh, mf->v4, mf->v1))
				BLI_edgehash_insert(eh, mf->v4, mf->v1, NULL);
		} else {
			if (!BLI_edgehash_haskey(eh, mf->v3, mf->v1))
				BLI_edgehash_insert(eh, mf->v3, mf->v1, NULL);
		}
	}

	totedge = BLI_edgehash_size(eh);

	/* write new edges into a temporary CustomData */
	memset(&edata, 0, sizeof(edata));
	CustomData_add_layer(&edata, CD_MEDGE, CD_CALLOC, NULL, totedge);

	ehi = BLI_edgehashIterator_new(eh);
	med = CustomData_get_layer(&edata, CD_MEDGE);
	for(i = 0; !BLI_edgehashIterator_isDone(ehi);
	    BLI_edgehashIterator_step(ehi), ++i, ++med, ++index) {
		BLI_edgehashIterator_getKey(ehi, (int*)&med->v1, (int*)&med->v2);

		med->flag = ME_EDGEDRAW|ME_EDGERENDER;
	}
	BLI_edgehashIterator_free(ehi);

	/* free old CustomData and assign new one */
	CustomData_free(&mesh->edata, mesh->totedge);
	mesh->edata = edata;
	mesh->totedge = totedge;

	mesh->medge = CustomData_get_layer(&mesh->edata, CD_MEDGE);

	BLI_edgehash_free(eh, NULL);
}
Exemplo n.º 2
0
/* Creates a hash of edges to flags indicating selected/visible */
static void get_marked_edge_info__orFlags(EdgeHash *eh, int v0, int v1, int flags)
{
	int *flags_p;

	if (!BLI_edgehash_haskey(eh, v0, v1))
		BLI_edgehash_insert(eh, v0, v1, NULL);

	flags_p = (int *) BLI_edgehash_lookup_p(eh, v0, v1);
	*flags_p |= flags;
}
Exemplo n.º 3
0
/**
 * Insert function that doesn't set the value (use for EdgeSet)
 */
BLI_INLINE void edgehash_insert_ex_keyonly(EdgeHash *eh, unsigned int v0, unsigned int v1,
                                           unsigned int hash)
{
	EdgeEntry *e = BLI_mempool_alloc(eh->epool);

	BLI_assert((eh->flag & EDGEHASH_FLAG_ALLOW_DUPES) || (BLI_edgehash_haskey(eh, v0, v1) == 0));

	/* this helps to track down errors with bad edge data */
	BLI_assert(v0 < v1);
	BLI_assert(v0 != v1);

	e->next = eh->buckets[hash];
	e->v0 = v0;
	e->v1 = v1;
	/* intentionally leave value unset */
	eh->buckets[hash] = e;

	if (UNLIKELY(edgehash_test_expand_buckets(++eh->nentries, eh->nbuckets))) {
		edgehash_resize_buckets(eh, _ehash_hashsizes[++eh->cursize]);
	}
}
Exemplo n.º 4
0
/**
 * Internal insert function.
 * Takes a \a bucket_index argument to avoid calling #edgehash_bucket_index multiple times.
 */
BLI_INLINE void edgehash_insert_ex(
        EdgeHash *eh, uint v0, uint v1, void *val,
        const uint bucket_index)
{
	EdgeEntry *e = BLI_mempool_alloc(eh->epool);

	BLI_assert((eh->flag & EDGEHASH_FLAG_ALLOW_DUPES) || (BLI_edgehash_haskey(eh, v0, v1) == 0));
	IS_EDGEHASH_ASSERT(eh);

	/* this helps to track down errors with bad edge data */
	BLI_assert(v0 < v1);
	BLI_assert(v0 != v1);

	e->next = eh->buckets[bucket_index];
	e->v0 = v0;
	e->v1 = v1;
	e->val = val;
	eh->buckets[bucket_index] = e;

	if (UNLIKELY(edgehash_test_expand_buckets(++eh->nentries, eh->nbuckets))) {
		edgehash_resize_buckets(eh, _ehash_hashsizes[++eh->cursize]);
	}
}
Exemplo n.º 5
0
/**
 * Calculate edges from polygons
 *
 * \param mesh  The mesh to add edges into
 * \param update  When true create new edges co-exist
 */
void BKE_mesh_calc_edges(Mesh *mesh, bool update, const bool select)
{
	CustomData edata;
	EdgeHashIterator *ehi;
	MPoly *mp;
	MEdge *med, *med_orig;
	EdgeHash *eh = BLI_edgehash_new();
	int i, totedge, totpoly = mesh->totpoly;
	int med_index;
	/* select for newly created meshes which are selected [#25595] */
	const short ed_flag = (ME_EDGEDRAW | ME_EDGERENDER) | (select ? SELECT : 0);

	if (mesh->totedge == 0)
		update = false;

	if (update) {
		/* assume existing edges are valid
		 * useful when adding more faces and generating edges from them */
		med = mesh->medge;
		for (i = 0; i < mesh->totedge; i++, med++)
			BLI_edgehash_insert(eh, med->v1, med->v2, med);
	}

	/* mesh loops (bmesh only) */
	for (mp = mesh->mpoly, i = 0; i < totpoly; mp++, i++) {
		MLoop *l = &mesh->mloop[mp->loopstart];
		int j, l_prev = (l + (mp->totloop - 1))->v;
		for (j = 0; j < mp->totloop; j++, l++) {
			if (!BLI_edgehash_haskey(eh, l_prev, l->v)) {
				BLI_edgehash_insert(eh, l_prev, l->v, NULL);
			}
			l_prev = l->v;
		}
	}

	totedge = BLI_edgehash_size(eh);

	/* write new edges into a temporary CustomData */
	CustomData_reset(&edata);
	CustomData_add_layer(&edata, CD_MEDGE, CD_CALLOC, NULL, totedge);

	med = CustomData_get_layer(&edata, CD_MEDGE);
	for (ehi = BLI_edgehashIterator_new(eh), i = 0;
	     BLI_edgehashIterator_isDone(ehi) == FALSE;
	     BLI_edgehashIterator_step(ehi), ++i, ++med)
	{
		if (update && (med_orig = BLI_edgehashIterator_getValue(ehi))) {
			*med = *med_orig; /* copy from the original */
		}
		else {
			BLI_edgehashIterator_getKey(ehi, &med->v1, &med->v2);
			med->flag = ed_flag;
		}

		/* store the new edge index in the hash value */
		BLI_edgehashIterator_setValue(ehi, SET_INT_IN_POINTER(i));
	}
	BLI_edgehashIterator_free(ehi);

	if (mesh->totpoly) {
		/* second pass, iterate through all loops again and assign
		 * the newly created edges to them. */
		for (mp = mesh->mpoly, i = 0; i < mesh->totpoly; mp++, i++) {
			MLoop *l = &mesh->mloop[mp->loopstart];
			MLoop *l_prev = (l + (mp->totloop - 1));
			int j;
			for (j = 0; j < mp->totloop; j++, l++) {
				/* lookup hashed edge index */
				med_index = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, l_prev->v, l->v));
				l_prev->e = med_index;
				l_prev = l;
			}
		}
	}

	/* free old CustomData and assign new one */
	CustomData_free(&mesh->edata, mesh->totedge);
	mesh->edata = edata;
	mesh->totedge = totedge;

	mesh->medge = CustomData_get_layer(&mesh->edata, CD_MEDGE);

	BLI_edgehash_free(eh, NULL);
}
Exemplo n.º 6
0
int BKE_mesh_validate_arrays(Mesh *mesh,
                             MVert *mverts, unsigned int totvert,
                             MEdge *medges, unsigned int totedge,
                             MFace *mfaces, unsigned int totface,
                             MLoop *mloops, unsigned int totloop,
                             MPoly *mpolys, unsigned int totpoly,
                             MDeformVert *dverts, /* assume totvert length */
                             const bool do_verbose, const bool do_fixes)
{
#   define REMOVE_EDGE_TAG(_me) { _me->v2 = _me->v1; do_edge_free = true; } (void)0
#   define IS_REMOVED_EDGE(_me) (_me->v2 == _me->v1)

#   define REMOVE_LOOP_TAG(_ml) { _ml->e = INVALID_LOOP_EDGE_MARKER; do_polyloop_free = true; } (void)0
#   define REMOVE_POLY_TAG(_mp) { _mp->totloop *= -1; do_polyloop_free = true; } (void)0

	MVert *mv = mverts;
	MEdge *me;
	MLoop *ml;
	MPoly *mp;
	unsigned int i, j;
	int *v;

	bool do_edge_free = false;
	bool do_face_free = false;
	bool do_polyloop_free = false; /* This regroups loops and polys! */

	bool verts_fixed = false;
	bool vert_weights_fixed = false;
	bool msel_fixed = false;

	bool do_edge_recalc = false;

	EdgeHash *edge_hash = BLI_edgehash_new();

	BLI_assert(!(do_fixes && mesh == NULL));

	PRINT("%s: verts(%u), edges(%u), loops(%u), polygons(%u)\n",
	      __func__, totvert, totedge, totloop, totpoly);

	if (totedge == 0 && totpoly != 0) {
		PRINT("\tLogical error, %u polygons and 0 edges\n", totpoly);
		do_edge_recalc = do_fixes;
	}

	for (i = 1; i < totvert; i++, mv++) {
		int fix_normal = TRUE;

		for (j = 0; j < 3; j++) {
			if (!finite(mv->co[j])) {
				PRINT("\tVertex %u: has invalid coordinate\n", i);

				if (do_fixes) {
					zero_v3(mv->co);

					verts_fixed = TRUE;
				}
			}

			if (mv->no[j] != 0)
				fix_normal = FALSE;
		}

		if (fix_normal) {
			PRINT("\tVertex %u: has zero normal, assuming Z-up normal\n", i);
			if (do_fixes) {
				mv->no[2] = SHRT_MAX;
				verts_fixed = TRUE;
			}
		}
	}

	for (i = 0, me = medges; i < totedge; i++, me++) {
		int remove = FALSE;
		if (me->v1 == me->v2) {
			PRINT("\tEdge %u: has matching verts, both %u\n", i, me->v1);
			remove = do_fixes;
		}
		if (me->v1 >= totvert) {
			PRINT("\tEdge %u: v1 index out of range, %u\n", i, me->v1);
			remove = do_fixes;
		}
		if (me->v2 >= totvert) {
			PRINT("\tEdge %u: v2 index out of range, %u\n", i, me->v2);
			remove = do_fixes;
		}

		if (BLI_edgehash_haskey(edge_hash, me->v1, me->v2)) {
			PRINT("\tEdge %u: is a duplicate of %d\n", i,
			      GET_INT_FROM_POINTER(BLI_edgehash_lookup(edge_hash, me->v1, me->v2)));
			remove = do_fixes;
		}

		if (remove == FALSE) {
			BLI_edgehash_insert(edge_hash, me->v1, me->v2, SET_INT_IN_POINTER(i));
		}
		else {
			REMOVE_EDGE_TAG(me);
		}
	}

	if (mfaces && !mpolys) {
#		define REMOVE_FACE_TAG(_mf) { _mf->v3 = 0; do_face_free = TRUE; } (void)0
#		define CHECK_FACE_VERT_INDEX(a, b) \
					if (mf->a == mf->b) { \
						PRINT("    face %u: verts invalid, " STRINGIFY(a) "/" STRINGIFY(b) " both %u\n", i, mf->a); \
						remove = do_fixes; \
					} (void)0
#		define CHECK_FACE_EDGE(a, b) \
					if (!BLI_edgehash_haskey(edge_hash, mf->a, mf->b)) { \
						PRINT("    face %u: edge " STRINGIFY(a) "/" STRINGIFY(b) \
						      " (%u,%u) is missing egde data\n", i, mf->a, mf->b); \
						do_edge_recalc = TRUE; \
					} (void)0

		MFace *mf;
		MFace *mf_prev;

		SortFace *sort_faces = MEM_callocN(sizeof(SortFace) * totface, "search faces");
		SortFace *sf;
		SortFace *sf_prev;
		unsigned int totsortface = 0;

		PRINT("No Polys, only tesselated Faces\n");

		for (i = 0, mf = mfaces, sf = sort_faces; i < totface; i++, mf++) {
			int remove = FALSE;
			int fidx;
			unsigned int fv[4];

			fidx = mf->v4 ? 3 : 2;
			do {
				fv[fidx] = *(&(mf->v1) + fidx);
				if (fv[fidx] >= totvert) {
					PRINT("\tFace %u: 'v%d' index out of range, %u\n", i, fidx + 1, fv[fidx]);
					remove = do_fixes;
				}
			} while (fidx--);

			if (remove == FALSE) {
				if (mf->v4) {
					CHECK_FACE_VERT_INDEX(v1, v2);
					CHECK_FACE_VERT_INDEX(v1, v3);
					CHECK_FACE_VERT_INDEX(v1, v4);

					CHECK_FACE_VERT_INDEX(v2, v3);
					CHECK_FACE_VERT_INDEX(v2, v4);

					CHECK_FACE_VERT_INDEX(v3, v4);
				}
				else {
					CHECK_FACE_VERT_INDEX(v1, v2);
					CHECK_FACE_VERT_INDEX(v1, v3);

					CHECK_FACE_VERT_INDEX(v2, v3);
				}

				if (remove == FALSE) {
					if (totedge) {
						if (mf->v4) {
							CHECK_FACE_EDGE(v1, v2);
							CHECK_FACE_EDGE(v2, v3);
							CHECK_FACE_EDGE(v3, v4);
							CHECK_FACE_EDGE(v4, v1);
						}
						else {
							CHECK_FACE_EDGE(v1, v2);
							CHECK_FACE_EDGE(v2, v3);
							CHECK_FACE_EDGE(v3, v1);
						}
					}

					sf->index = i;

					if (mf->v4) {
						edge_store_from_mface_quad(sf->es, mf);

						qsort(sf->es, 4, sizeof(int64_t), int64_cmp);
					}
					else {
						edge_store_from_mface_tri(sf->es, mf);
						qsort(sf->es, 3, sizeof(int64_t), int64_cmp);
					}

					totsortface++;
					sf++;
				}
			}

			if (remove) {
				REMOVE_FACE_TAG(mf);
			}
		}

		qsort(sort_faces, totsortface, sizeof(SortFace), search_face_cmp);

		sf = sort_faces;
		sf_prev = sf;
		sf++;

		for (i = 1; i < totsortface; i++, sf++) {
			int remove = FALSE;

			/* on a valid mesh, code below will never run */
			if (memcmp(sf->es, sf_prev->es, sizeof(sf_prev->es)) == 0) {
				mf = mfaces + sf->index;

				if (do_verbose) {
					mf_prev = mfaces + sf_prev->index;

					if (mf->v4) {
						PRINT("\tFace %u & %u: are duplicates (%u,%u,%u,%u) (%u,%u,%u,%u)\n",
						      sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3, mf->v4,
						      mf_prev->v1, mf_prev->v2, mf_prev->v3, mf_prev->v4);
					}
					else {
						PRINT("\tFace %u & %u: are duplicates (%u,%u,%u) (%u,%u,%u)\n",
						      sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3,
						      mf_prev->v1, mf_prev->v2, mf_prev->v3);
					}
				}

				remove = do_fixes;
			}
			else {
				sf_prev = sf;
			}

			if (remove) {
				REMOVE_FACE_TAG(mf);
			}
		}

		MEM_freeN(sort_faces);

#		undef REMOVE_FACE_TAG
#		undef CHECK_FACE_VERT_INDEX
#		undef CHECK_FACE_EDGE
	}

	/* Checking loops and polys is a bit tricky, as they are quite intricated...
	 *
	 * Polys must have:
	 * - a valid loopstart value.
	 * - a valid totloop value (>= 3 and loopstart+totloop < me.totloop).
	 *
	 * Loops must have:
	 * - a valid v value.
	 * - a valid e value (corresponding to the edge it defines with the next loop in poly).
	 *
	 * Also, loops not used by polys can be discarded.
	 * And "intersecting" loops (i.e. loops used by more than one poly) are invalid,
	 * so be sure to leave at most one poly per loop!
	 */
	{
		SortPoly *sort_polys = MEM_callocN(sizeof(SortPoly) * totpoly, "mesh validate's sort_polys");
		SortPoly *prev_sp, *sp = sort_polys;
		int prev_end;
		for (i = 0, mp = mpolys; i < totpoly; i++, mp++, sp++) {
			sp->index = i;

			if (mp->loopstart < 0 || mp->totloop < 3) {
				/* Invalid loop data. */
				PRINT("\tPoly %u is invalid (loopstart: %u, totloop: %u)\n", sp->index, mp->loopstart, mp->totloop);
				sp->invalid = TRUE;
			}
			else if (mp->loopstart + mp->totloop > totloop) {
				/* Invalid loop data. */
				PRINT("\tPoly %u uses loops out of range (loopstart: %u, loopend: %u, max nbr of loops: %u)\n",
				      sp->index, mp->loopstart, mp->loopstart + mp->totloop - 1, totloop - 1);
				sp->invalid = TRUE;
			}
			else {
				/* Poly itself is valid, for now. */
				int v1, v2; /* v1 is prev loop vert idx, v2 is current loop one. */
				sp->invalid = FALSE;
				sp->verts = v = MEM_mallocN(sizeof(int) * mp->totloop, "Vert idx of SortPoly");
				sp->numverts = mp->totloop;
				sp->loopstart = mp->loopstart;

				/* Test all poly's loops' vert idx. */
				for (j = 0, ml = &mloops[sp->loopstart]; j < mp->totloop; j++, ml++, v++) {
					if (ml->v >= totvert) {
						/* Invalid vert idx. */
						PRINT("\tLoop %u has invalid vert reference (%u)\n", sp->loopstart + j, ml->v);
						sp->invalid = TRUE;
					}

					mverts[ml->v].flag |= ME_VERT_TMP_TAG;
					*v = ml->v;
				}

				/* is the same vertex used more than once */
				if (!sp->invalid) {
					v = sp->verts;
					for (j = 0; j < mp->totloop; j++, v++) {
						if ((mverts[*v].flag & ME_VERT_TMP_TAG) == 0) {
							PRINT("\tPoly %u has duplicate vert reference at corner (%u)\n", i, j);
							sp->invalid = TRUE;
						}
						mverts[*v].flag &= ~ME_VERT_TMP_TAG;
					}
				}

				if (sp->invalid)
					continue;

				/* Test all poly's loops. */
				for (j = 0, ml = &mloops[sp->loopstart]; j < mp->totloop; j++, ml++) {
					v1 = ml->v;
					v2 = mloops[sp->loopstart + (j + 1) % mp->totloop].v;
					if (!BLI_edgehash_haskey(edge_hash, v1, v2)) {
						/* Edge not existing. */
						PRINT("\tPoly %u needs missing edge (%u, %u)\n", sp->index, v1, v2);
						if (do_fixes)
							do_edge_recalc = TRUE;
						else
							sp->invalid = TRUE;
					}
					else if (ml->e >= totedge) {
						/* Invalid edge idx.
						 * We already know from previous text that a valid edge exists, use it (if allowed)! */
						if (do_fixes) {
							int prev_e = ml->e;
							ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(edge_hash, v1, v2));
							PRINT("\tLoop %u has invalid edge reference (%u), fixed using edge %u\n",
							      sp->loopstart + j, prev_e, ml->e);
						}
						else {
							PRINT("\tLoop %u has invalid edge reference (%u)\n", sp->loopstart + j, ml->e);
							sp->invalid = TRUE;
						}
					}
					else {
						me = &medges[ml->e];
						if (IS_REMOVED_EDGE(me) || !((me->v1 == v1 && me->v2 == v2) || (me->v1 == v2 && me->v2 == v1))) {
							/* The pointed edge is invalid (tagged as removed, or vert idx mismatch),
							 * and we already know from previous test that a valid one exists, use it (if allowed)! */
							if (do_fixes) {
								int prev_e = ml->e;
								ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(edge_hash, v1, v2));
								PRINT("\tPoly %u has invalid edge reference (%u), fixed using edge %u\n",
								      sp->index, prev_e, ml->e);
							}
							else {
								PRINT("\tPoly %u has invalid edge reference (%u)\n", sp->index, ml->e);
								sp->invalid = TRUE;
							}
						}
					}
				}

				/* Now check that that poly does not use a same vertex more than once! */
				if (!sp->invalid) {
					int *prev_v = v = sp->verts;
					j = sp->numverts;

					qsort(sp->verts, j, sizeof(int), int_cmp);

					for (j--, v++; j; j--, v++) {
						if (*v != *prev_v) {
							int dlt = v - prev_v;
							if (dlt > 1) {
								PRINT("\tPoly %u is invalid, it multi-uses vertex %u (%u times)\n",
								      sp->index, *prev_v, dlt);
								sp->invalid = TRUE;
							}
							prev_v = v;
						}
					}
					if (v - prev_v > 1) { /* Don't forget final verts! */
						PRINT("\tPoly %u is invalid, it multi-uses vertex %u (%u times)\n",
						      sp->index, *prev_v, (int)(v - prev_v));
						sp->invalid = TRUE;
					}
				}
			
			}
		}

		/* Second check pass, testing polys using the same verts. */
		qsort(sort_polys, totpoly, sizeof(SortPoly), search_poly_cmp);
		sp = prev_sp = sort_polys;
		sp++;

		for (i = 1; i < totpoly; i++, sp++) {
			int p1_nv = sp->numverts, p2_nv = prev_sp->numverts;
			int *p1_v = sp->verts, *p2_v = prev_sp->verts;
			short p1_sub = TRUE, p2_sub = TRUE;
			if (sp->invalid)
				break;
			/* Test same polys. */
#if 0
			/* NOTE: This performs a sub-set test. */
			/* XXX This (and the sort of verts list) is better than systematic
			 *     search of all verts of one list into the other if lists have
			 *     a fair amount of elements.
			 *     Not sure however it's worth it in this case?
			 *     But as we also need sorted vert list to check verts multi-used
			 *     (in first pass of checks)... */
			/* XXX If we consider only "equal" polys (i.e. using exactly same set of verts)
			 *     as invalid, better to replace this by a simple memory cmp... */
			while ((p1_nv && p2_nv) && (p1_sub || p2_sub)) {
				if (*p1_v < *p2_v) {
					if (p1_sub)
						p1_sub = FALSE;
					p1_nv--;
					p1_v++;
				}
				else if (*p2_v < *p1_v) {
					if (p2_sub)
						p2_sub = FALSE;
					p2_nv--;
					p2_v++;
				}
				else {
					/* Equality, both next verts. */
					p1_nv--;
					p2_nv--;
					p1_v++;
					p2_v++;
				}
			}
			if (p1_nv && p1_sub)
				p1_sub = FALSE;
			else if (p2_nv && p2_sub)
				p2_sub = FALSE;

			if (p1_sub && p2_sub) {
				PRINT("\tPolys %u and %u use same vertices, considering poly %u as invalid.\n",
				      prev_sp->index, sp->index, sp->index);
				sp->invalid = TRUE;
			}
			/* XXX In fact, these might be valid? :/ */
			else if (p1_sub) {
				PRINT("\t%u is a sub-poly of %u, considering it as invalid.\n", sp->index, prev_sp->index);
				sp->invalid = TRUE;
			}
			else if (p2_sub) {
				PRINT("\t%u is a sub-poly of %u, considering it as invalid.\n", prev_sp->index, sp->index);
				prev_sp->invalid = TRUE;
				prev_sp = sp; /* sp is new reference poly. */
			}
#else
			if (0) {
				p1_sub += 0;
				p2_sub += 0;
			}
			if ((p1_nv == p2_nv) && (memcmp(p1_v, p2_v, p1_nv * sizeof(*p1_v)) == 0)) {
				if (do_verbose) {
					PRINT("\tPolys %u and %u use same vertices (%u",
					      prev_sp->index, sp->index, *p1_v);
					for (j = 1; j < p1_nv; j++)
						PRINT(", %u", p1_v[j]);
					PRINT("), considering poly %u as invalid.\n", sp->index);
				}
				sp->invalid = TRUE;
			}
#endif
			else {
				prev_sp = sp;
			}
		}

		/* Third check pass, testing loops used by none or more than one poly. */
		qsort(sort_polys, totpoly, sizeof(SortPoly), search_polyloop_cmp);
		sp = sort_polys;
		prev_sp = NULL;
		prev_end = 0;
		for (i = 0; i < totpoly; i++, sp++) {
			/* Free this now, we don't need it anymore, and avoid us another loop! */
			if (sp->verts)
				MEM_freeN(sp->verts);

			/* Note above prev_sp: in following code, we make sure it is always valid poly (or NULL). */
			if (sp->invalid) {
				if (do_fixes) {
					REMOVE_POLY_TAG((&mpolys[sp->index]));
					/* DO NOT REMOVE ITS LOOPS!!!
					 * As already invalid polys are at the end of the SortPoly list, the loops they
					 * were the only users have already been tagged as "to remove" during previous
					 * iterations, and we don't want to remove some loops that may be used by
					 * another valid poly! */
				}
			}
			/* Test loops users. */
			else {
				/* Unused loops. */
				if (prev_end < sp->loopstart) {
					for (j = prev_end, ml = &mloops[prev_end]; j < sp->loopstart; j++, ml++) {
						PRINT("\tLoop %u is unused.\n", j);
						if (do_fixes)
							REMOVE_LOOP_TAG(ml);
					}
					prev_end = sp->loopstart + sp->numverts;
					prev_sp = sp;
				}
				/* Multi-used loops. */
				else if (prev_end > sp->loopstart) {
					PRINT("\tPolys %u and %u share loops from %u to %u, considering poly %u as invalid.\n",
					      prev_sp->index, sp->index, sp->loopstart, prev_end, sp->index);
					if (do_fixes) {
						REMOVE_POLY_TAG((&mpolys[sp->index]));
						/* DO NOT REMOVE ITS LOOPS!!!
						 * They might be used by some next, valid poly!
						 * Just not updating prev_end/prev_sp vars is enough to ensure the loops
						 * effectively no more needed will be marked as "to be removed"! */
					}
				}
				else {
					prev_end = sp->loopstart + sp->numverts;
					prev_sp = sp;
				}
			}
		}
		/* We may have some remaining unused loops to get rid of! */
		if (prev_end < totloop) {
			for (j = prev_end, ml = &mloops[prev_end]; j < totloop; j++, ml++) {
				PRINT("\tLoop %u is unused.\n", j);
				if (do_fixes)
					REMOVE_LOOP_TAG(ml);
			}
		}

		MEM_freeN(sort_polys);
	}

	BLI_edgehash_free(edge_hash, NULL);

	/* fix deform verts */
	if (dverts) {
		MDeformVert *dv;
		for (i = 0, dv = dverts; i < totvert; i++, dv++) {
			MDeformWeight *dw;

			for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
				/* note, greater then max defgroups is accounted for in our code, but not < 0 */
				if (!finite(dw->weight)) {
					PRINT("\tVertex deform %u, group %d has weight: %f\n", i, dw->def_nr, dw->weight);
					if (do_fixes) {
						dw->weight = 0.0f;
						vert_weights_fixed = TRUE;
					}
				}
				else if (dw->weight < 0.0f || dw->weight > 1.0f) {
					PRINT("\tVertex deform %u, group %d has weight: %f\n", i, dw->def_nr, dw->weight);
					if (do_fixes) {
						CLAMP(dw->weight, 0.0f, 1.0f);
						vert_weights_fixed = TRUE;
					}
				}

				if (dw->def_nr < 0) {
					PRINT("\tVertex deform %u, has invalid group %d\n", i, dw->def_nr);
					if (do_fixes) {
						defvert_remove_group(dv, dw);
						if (dv->dw) {
							/* re-allocated, the new values compensate for stepping
							 * within the for loop and may not be valid */
							j--;
							dw = dv->dw + j;

							vert_weights_fixed = TRUE;
						}
						else { /* all freed */
							break;
						}
					}
				}
			}
		}
	}

#   undef REMOVE_EDGE_TAG
#   undef IS_REMOVED_EDGE
#   undef REMOVE_LOOP_TAG
#   undef REMOVE_POLY_TAG

	if (mesh) {
		if (do_face_free) {
			BKE_mesh_strip_loose_faces(mesh);
		}

		if (do_polyloop_free) {
			BKE_mesh_strip_loose_polysloops(mesh);
		}

		if (do_edge_free) {
			BKE_mesh_strip_loose_edges(mesh);
		}

		if (do_edge_recalc) {
			BKE_mesh_calc_edges(mesh, true, false);
		}
	}

	if (mesh && mesh->mselect) {
		MSelect *msel;
		int free_msel = FALSE;

		for (i = 0, msel = mesh->mselect; i < mesh->totselect; i++, msel++) {
			int tot_elem = 0;

			if (msel->index < 0) {
				PRINT("\tMesh select element %d type %d index is negative, "
				      "resetting selection stack.\n", i, msel->type);
				free_msel = TRUE;
				break;
			}

			switch (msel->type) {
				case ME_VSEL:
					tot_elem = mesh->totvert;
					break;
				case ME_ESEL:
					tot_elem = mesh->totedge;
					break;
				case ME_FSEL:
					tot_elem = mesh->totface;
					break;
			}

			if (msel->index > tot_elem) {
				PRINT("\tMesh select element %d type %d index %d is larger than data array size %d, "
				      "resetting selection stack.\n", i, msel->type, msel->index, tot_elem);

				free_msel = TRUE;
				break;
			}
		}

		if (free_msel) {
			MEM_freeN(mesh->mselect);
			mesh->mselect = NULL;
			mesh->totselect = 0;
		}
	}

	PRINT("%s: finished\n\n", __func__);

	return (verts_fixed || vert_weights_fixed || do_polyloop_free || do_edge_free || do_edge_recalc || msel_fixed);
}
Exemplo n.º 7
0
static int cloth_build_springs ( ClothModifierData *clmd, DerivedMesh *dm )
{
	Cloth *cloth = clmd->clothObject;
	ClothSpring *spring = NULL, *tspring = NULL, *tspring2 = NULL;
	unsigned int struct_springs = 0, shear_springs=0, bend_springs = 0;
	unsigned int i = 0;
	unsigned int numverts = (unsigned int)dm->getNumVerts ( dm );
	unsigned int numedges = (unsigned int)dm->getNumEdges ( dm );
	unsigned int numfaces = (unsigned int)dm->getNumFaces ( dm );
	MEdge *medge = dm->getEdgeArray ( dm );
	MFace *mface = dm->getFaceArray ( dm );
	int index2 = 0; // our second vertex index
	LinkNode **edgelist = NULL;
	EdgeHash *edgehash = NULL;
	LinkNode *search = NULL, *search2 = NULL;
	
	// error handling
	if ( numedges==0 )
		return 0;

	cloth->springs = NULL;

	edgelist = MEM_callocN ( sizeof ( LinkNode * ) * numverts, "cloth_edgelist_alloc" );
	
	if(!edgelist)
		return 0;
	
	for ( i = 0; i < numverts; i++ )
	{
		edgelist[i] = NULL;
	}

	if ( cloth->springs )
		MEM_freeN ( cloth->springs );

	// create spring network hash
	edgehash = BLI_edgehash_new();

	// structural springs
	for ( i = 0; i < numedges; i++ )
	{
		spring = ( ClothSpring * ) MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );

		if ( spring )
		{
			spring->ij = MIN2(medge[i].v1, medge[i].v2);
			spring->kl = MAX2(medge[i].v2, medge[i].v1);
			spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
			clmd->sim_parms->avg_spring_len += spring->restlen;
			cloth->verts[spring->ij].avg_spring_len += spring->restlen;
			cloth->verts[spring->kl].avg_spring_len += spring->restlen;
			cloth->verts[spring->ij].spring_count++;
			cloth->verts[spring->kl].spring_count++;
			spring->type = CLOTH_SPRING_TYPE_STRUCTURAL;
			spring->flags = 0;
			spring->stiffness = (cloth->verts[spring->kl].struct_stiff + cloth->verts[spring->ij].struct_stiff) / 2.0f;
			struct_springs++;
			
			BLI_linklist_prepend ( &cloth->springs, spring );
		}
		else
		{
			cloth_free_errorsprings(cloth, edgehash, edgelist);
			return 0;
		}
	}
	
	if(struct_springs > 0)
		clmd->sim_parms->avg_spring_len /= struct_springs;
	
	for(i = 0; i < numverts; i++)
	{
		cloth->verts[i].avg_spring_len = cloth->verts[i].avg_spring_len * 0.49f / ((float)cloth->verts[i].spring_count);
	}
	
	// shear springs
	for ( i = 0; i < numfaces; i++ )
	{
		// triangle faces already have shear springs due to structural geometry
		if ( !mface[i].v4 )
			continue; 
		
		spring = ( ClothSpring *) MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
		
		if(!spring)
		{
			cloth_free_errorsprings(cloth, edgehash, edgelist);
			return 0;
		}

		spring->ij = MIN2(mface[i].v1, mface[i].v3);
		spring->kl = MAX2(mface[i].v3, mface[i].v1);
		spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
		spring->type = CLOTH_SPRING_TYPE_SHEAR;
		spring->stiffness = (cloth->verts[spring->kl].shear_stiff + cloth->verts[spring->ij].shear_stiff) / 2.0f;

		BLI_linklist_append ( &edgelist[spring->ij], spring );
		BLI_linklist_append ( &edgelist[spring->kl], spring );
		shear_springs++;

		BLI_linklist_prepend ( &cloth->springs, spring );

		
		// if ( mface[i].v4 ) --> Quad face
		spring = ( ClothSpring * ) MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
		
		if(!spring)
		{
			cloth_free_errorsprings(cloth, edgehash, edgelist);
			return 0;
		}

		spring->ij = MIN2(mface[i].v2, mface[i].v4);
		spring->kl = MAX2(mface[i].v4, mface[i].v2);
		spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
		spring->type = CLOTH_SPRING_TYPE_SHEAR;
		spring->stiffness = (cloth->verts[spring->kl].shear_stiff + cloth->verts[spring->ij].shear_stiff) / 2.0;

		BLI_linklist_append ( &edgelist[spring->ij], spring );
		BLI_linklist_append ( &edgelist[spring->kl], spring );
		shear_springs++;

		BLI_linklist_prepend ( &cloth->springs, spring );
	}
	
	if(numfaces) {
		// bending springs
		search2 = cloth->springs;
		for ( i = struct_springs; i < struct_springs+shear_springs; i++ )
		{
			if ( !search2 )
				break;

			tspring2 = search2->link;
			search = edgelist[tspring2->kl];
			while ( search )
			{
				tspring = search->link;
				index2 = ( ( tspring->ij==tspring2->kl ) ? ( tspring->kl ) : ( tspring->ij ) );
				
				// check for existing spring
				// check also if startpoint is equal to endpoint
				if ( !BLI_edgehash_haskey ( edgehash, MIN2(tspring2->ij, index2), MAX2(tspring2->ij, index2) )
				&& ( index2!=tspring2->ij ) )
				{
					spring = ( ClothSpring * ) MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
					
					if(!spring)
					{
						cloth_free_errorsprings(cloth, edgehash, edgelist);
						return 0;
					}

					spring->ij = MIN2(tspring2->ij, index2);
					spring->kl = MAX2(tspring2->ij, index2);
					spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
					spring->type = CLOTH_SPRING_TYPE_BENDING;
					spring->stiffness = (cloth->verts[spring->kl].bend_stiff + cloth->verts[spring->ij].bend_stiff) / 2.0f;
					BLI_edgehash_insert ( edgehash, spring->ij, spring->kl, NULL );
					bend_springs++;

					BLI_linklist_prepend ( &cloth->springs, spring );
				}
				search = search->next;
			}
			search2 = search2->next;
		}
	}
	else if(struct_springs > 2) {
		/* bending springs for hair strands */
		/* The current algorightm only goes through the edges in order of the mesh edges list	*/
		/* and makes springs between the outer vert of edges sharing a vertice. This works just */
		/* fine for hair, but not for user generated string meshes. This could/should be later	*/
		/* extended to work with non-ordered edges so that it can be used for general "rope		*/
		/* dynamics" without the need for the vertices or edges to be ordered through the length*/
		/* of the strands. -jahka */
		search = cloth->springs;
		search2 = search->next;
		while(search && search2)
		{
			tspring = search->link;
			tspring2 = search2->link;

			if(tspring->ij == tspring2->kl) {
				spring = ( ClothSpring * ) MEM_callocN ( sizeof ( ClothSpring ), "cloth spring" );
				
				if(!spring)
				{
					cloth_free_errorsprings(cloth, edgehash, edgelist);
					return 0;
				}

				spring->ij = tspring2->ij;
				spring->kl = tspring->kl;
				spring->restlen = len_v3v3(cloth->verts[spring->kl].xrest, cloth->verts[spring->ij].xrest);
				spring->type = CLOTH_SPRING_TYPE_BENDING;
				spring->stiffness = (cloth->verts[spring->kl].bend_stiff + cloth->verts[spring->ij].bend_stiff) / 2.0f;
				bend_springs++;

				BLI_linklist_prepend ( &cloth->springs, spring );
			}
			
			search = search->next;
			search2 = search2->next;
		}
	}
	
	/* insert other near springs in edgehash AFTER bending springs are calculated (for selfcolls) */
	for ( i = 0; i < numedges; i++ ) // struct springs
		BLI_edgehash_insert ( edgehash, MIN2(medge[i].v1, medge[i].v2), MAX2(medge[i].v2, medge[i].v1), NULL );
	
	for ( i = 0; i < numfaces; i++ ) // edge springs
	{
		if(mface[i].v4)
		{
			BLI_edgehash_insert ( edgehash, MIN2(mface[i].v1, mface[i].v3), MAX2(mface[i].v3, mface[i].v1), NULL );
			
			BLI_edgehash_insert ( edgehash, MIN2(mface[i].v2, mface[i].v4), MAX2(mface[i].v2, mface[i].v4), NULL );
		}
	}
	
	
	cloth->numsprings = struct_springs + shear_springs + bend_springs;
	
	if ( edgelist )
	{
		for ( i = 0; i < numverts; i++ )
		{
			BLI_linklist_free ( edgelist[i],NULL );
		}
	
		MEM_freeN ( edgelist );
	}
	
	cloth->edgehash = edgehash;
	
	if(G.rt>0)
		printf("avg_len: %f\n",clmd->sim_parms->avg_spring_len);

	return 1;

} /* cloth_build_springs */
Exemplo n.º 8
0
int seam_shortest_path(int source, int target)
{
	Heap *heap;
	EdgeHash *ehash;
	float *cost;
	MEdge *med;
	int a, *nedges, *edges, *prevedge, mednum = -1, nedgeswap = 0;
	TFace *tf;
	MFace *mf;
	Mesh* me = &gCloseMesh;

	/* mark hidden edges as done, so we don't use them */
	ehash = BLI_edgehash_new();

	for (a=0, mf=me->mface, tf=me->tface; a<me->totface; a++, tf++, mf++) 
	{
		if (!(tf->flag & TF_HIDE)) 
		{
			BLI_edgehash_insert(ehash, mf->v1, mf->v2, NULL);
			BLI_edgehash_insert(ehash, mf->v2, mf->v3, NULL);
			if (mf->v4) 
			{
				BLI_edgehash_insert(ehash, mf->v3, mf->v4, NULL);
				BLI_edgehash_insert(ehash, mf->v4, mf->v1, NULL);
			}
			else
				BLI_edgehash_insert(ehash, mf->v3, mf->v1, NULL);
		}
	}

	for (a=0, med=me->medge; a<me->totedge; a++, med++)
	{
		if (!BLI_edgehash_haskey(ehash, med->v1, med->v2))
		{
			med->flag |= ME_SEAM_DONE;
		}
	}

	BLI_edgehash_free(ehash, NULL);

	/* alloc */
	nedges = (int*)MEM_callocN(sizeof(*nedges)*me->totvert+1, "SeamPathNEdges");
	edges = (int*)MEM_mallocN(sizeof(*edges)*me->totedge*2, "SeamPathEdges");
	prevedge = (int*)MEM_mallocN(sizeof(*prevedge)*me->totedge, "SeamPathPrevious");
	cost = (float*)MEM_mallocN(sizeof(*cost)*me->totedge, "SeamPathCost");

	/* count edges, compute adjacent edges offsets and fill adjacent edges */
	for (a=0, med=me->medge; a<me->totedge; a++, med++) 
	{
		nedges[med->v1+1]++;
		nedges[med->v2+1]++;
	}

	for (a=1; a<me->totvert; a++) 
	{
		int newswap = nedges[a+1];
		nedges[a+1] = nedgeswap + nedges[a];
		nedgeswap = newswap;
	}
	nedges[0] = nedges[1] = 0;

	for (a=0, med=me->medge; a<me->totedge; a++, med++) 
	{
		edges[nedges[med->v1+1]++] = a;
		edges[nedges[med->v2+1]++] = a;

		cost[a] = 1e20f;
		prevedge[a] = -1;
	}

	/* regular dijkstra shortest path, but over edges instead of vertices */
	heap = BLI_heap_new();
	BLI_heap_insert(heap, 0.0f, (void*)source);
	cost[source] = 0.0f;

	while (!BLI_heap_empty(heap)) 
	{
		mednum = (int)BLI_heap_popmin(heap);
		med = me->medge + mednum;

		if (mednum == target)
			break;

		if (med->flag & ME_SEAM_DONE)
			continue;

		med->flag |= ME_SEAM_DONE;

		seam_add_adjacent(me, heap, mednum, med->v1, nedges, edges, prevedge, cost, target);
		seam_add_adjacent(me, heap, mednum, med->v2, nedges, edges, prevedge, cost, target);
	}
	
	MEM_freeN(nedges);
	MEM_freeN(edges);
	MEM_freeN(cost);
	BLI_heap_free(heap, NULL);

	for (a=0, med=me->medge; a<me->totedge; a++, med++)
	{
		med->flag &= ~ME_SEAM_DONE;
	}

	if (mednum != target) 
	{
		MEM_freeN(prevedge);
		return 0;
	}

	/* follow path back to source and mark as seam */
	if (mednum == target) 
	{
		short allseams = 1;

		mednum = target;
		do {
			med = me->medge + mednum;
			if (!(med->flag & ME_SEAM)) 
			{
				allseams = 0;
				break;
			}
			mednum = prevedge[mednum];
		} while (mednum != source);

		mednum = target;
		do {
			med = me->medge + mednum;
			if (allseams)
				med->flag &= ~ME_SEAM;
			else
				med->flag |= ME_SEAM;
			mednum = prevedge[mednum];
		} while (mednum != -1);
	}

	MEM_freeN(prevedge);
	return 1;
}
Exemplo n.º 9
0
/**
 * Specialized function to use when we _know_ existing edges don't overlap with poly edges.
 */
static void make_edges_mdata_extend(
    MEdge **r_alledge, int *r_totedge, const MPoly *mpoly, MLoop *mloop, const int totpoly)
{
  int totedge = *r_totedge;
  int totedge_new;
  EdgeHash *eh;
  unsigned int eh_reserve;
  const MPoly *mp;
  int i;

  eh_reserve = max_ii(totedge, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(totpoly));
  eh = BLI_edgehash_new_ex(__func__, eh_reserve);

  for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
    BKE_mesh_poly_edgehash_insert(eh, mp, mloop + mp->loopstart);
  }

  totedge_new = BLI_edgehash_len(eh);

#ifdef DEBUG
  /* ensure that there's no overlap! */
  if (totedge_new) {
    MEdge *medge = *r_alledge;
    for (i = 0; i < totedge; i++, medge++) {
      BLI_assert(BLI_edgehash_haskey(eh, medge->v1, medge->v2) == false);
    }
  }
#endif

  if (totedge_new) {
    EdgeHashIterator *ehi;
    MEdge *medge;
    unsigned int e_index = totedge;

    *r_alledge = medge = (*r_alledge ?
                              MEM_reallocN(*r_alledge, sizeof(MEdge) * (totedge + totedge_new)) :
                              MEM_calloc_arrayN(totedge_new, sizeof(MEdge), __func__));
    medge += totedge;

    totedge += totedge_new;

    /* --- */
    for (ehi = BLI_edgehashIterator_new(eh); BLI_edgehashIterator_isDone(ehi) == false;
         BLI_edgehashIterator_step(ehi), ++medge, e_index++) {
      BLI_edgehashIterator_getKey(ehi, &medge->v1, &medge->v2);
      BLI_edgehashIterator_setValue(ehi, POINTER_FROM_UINT(e_index));

      medge->crease = medge->bweight = 0;
      medge->flag = ME_EDGEDRAW | ME_EDGERENDER;
    }
    BLI_edgehashIterator_free(ehi);

    *r_totedge = totedge;

    for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
      MLoop *l = &mloop[mp->loopstart];
      MLoop *l_prev = (l + (mp->totloop - 1));
      int j;
      for (j = 0; j < mp->totloop; j++, l++) {
        /* lookup hashed edge index */
        l_prev->e = POINTER_AS_UINT(BLI_edgehash_lookup(eh, l_prev->v, l->v));
        l_prev = l;
      }
    }
  }

  BLI_edgehash_free(eh, NULL);
}
Exemplo n.º 10
0
void BKE_mesh_calc_edges(Mesh *mesh, int update)
{
	CustomData edata;
	EdgeHashIterator *ehi;
	MFace *mf = mesh->mface;
	MEdge *med, *med_orig;
	EdgeHash *eh = BLI_edgehash_new();
	int i, totedge, totface = mesh->totface;

	if(mesh->totedge==0)
		update= 0;

	if(update) {
		/* assume existing edges are valid
		 * useful when adding more faces and generating edges from them */
		med= mesh->medge;
		for(i= 0; i<mesh->totedge; i++, med++)
			BLI_edgehash_insert(eh, med->v1, med->v2, med);
	}

	for (i = 0; i < totface; i++, mf++) {
		if (!BLI_edgehash_haskey(eh, mf->v1, mf->v2))
			BLI_edgehash_insert(eh, mf->v1, mf->v2, NULL);
		if (!BLI_edgehash_haskey(eh, mf->v2, mf->v3))
			BLI_edgehash_insert(eh, mf->v2, mf->v3, NULL);

		if (mf->v4) {
			if (!BLI_edgehash_haskey(eh, mf->v3, mf->v4))
				BLI_edgehash_insert(eh, mf->v3, mf->v4, NULL);
			if (!BLI_edgehash_haskey(eh, mf->v4, mf->v1))
				BLI_edgehash_insert(eh, mf->v4, mf->v1, NULL);
		} else {
			if (!BLI_edgehash_haskey(eh, mf->v3, mf->v1))
				BLI_edgehash_insert(eh, mf->v3, mf->v1, NULL);
		}
	}

	totedge = BLI_edgehash_size(eh);

	/* write new edges into a temporary CustomData */
	memset(&edata, 0, sizeof(edata));
	CustomData_add_layer(&edata, CD_MEDGE, CD_CALLOC, NULL, totedge);

	ehi = BLI_edgehashIterator_new(eh);
	med = CustomData_get_layer(&edata, CD_MEDGE);
	for(i = 0; !BLI_edgehashIterator_isDone(ehi);
		BLI_edgehashIterator_step(ehi), ++i, ++med) {

		if(update && (med_orig=BLI_edgehashIterator_getValue(ehi))) {
			*med= *med_orig; /* copy from the original */
		} else {
			BLI_edgehashIterator_getKey(ehi, (int*)&med->v1, (int*)&med->v2);
			med->flag = ME_EDGEDRAW|ME_EDGERENDER|SELECT; /* select for newly created meshes which are selected [#25595] */
		}
	}
	BLI_edgehashIterator_free(ehi);

	/* free old CustomData and assign new one */
	CustomData_free(&mesh->edata, mesh->totedge);
	mesh->edata = edata;
	mesh->totedge = totedge;

	mesh->medge = CustomData_get_layer(&mesh->edata, CD_MEDGE);

	BLI_edgehash_free(eh, NULL);
}
Exemplo n.º 11
0
int BKE_mesh_validate_arrays(Mesh *me, MVert *UNUSED(mverts), unsigned int totvert, MEdge *medges, unsigned int totedge, MFace *mfaces, unsigned int totface, const short do_verbose, const short do_fixes)
{
#	define PRINT if(do_verbose) printf
#	define REMOVE_EDGE_TAG(_med) { _med->v2= _med->v1; do_edge_free= 1; }
#	define REMOVE_FACE_TAG(_mf) { _mf->v3=0; do_face_free= 1; }

//	MVert *mv;
	MEdge *med;
	MFace *mf;
	MFace *mf_prev;
	unsigned int i;

	int do_face_free= FALSE;
	int do_edge_free= FALSE;

	int do_edge_recalc= FALSE;

	EdgeHash *edge_hash = BLI_edgehash_new();

	SortFace *sort_faces= MEM_callocN(sizeof(SortFace) * totface, "search faces");
	SortFace *sf;
	SortFace *sf_prev;
	unsigned int totsortface= 0;

	BLI_assert(!(do_fixes && me == NULL));

	PRINT("ED_mesh_validate: verts(%u), edges(%u), faces(%u)\n", totvert, totedge, totface);

	if(totedge == 0 && totface != 0) {
		PRINT("    locical error, %u faces and 0 edges\n", totface);
		do_edge_recalc= TRUE;
	}

	for(i=0, med= medges; i<totedge; i++, med++) {
		int remove= FALSE;
		if(med->v1 == med->v2) {
			PRINT("    edge %u: has matching verts, both %u\n", i, med->v1);
			remove= do_fixes;
		}
		if(med->v1 >= totvert) {
			PRINT("    edge %u: v1 index out of range, %u\n", i, med->v1);
			remove= do_fixes;
		}
		if(med->v2 >= totvert) {
			PRINT("    edge %u: v2 index out of range, %u\n", i, med->v2);
			remove= do_fixes;
		}

		if(BLI_edgehash_haskey(edge_hash, med->v1, med->v2)) {
			PRINT("    edge %u: is a duplicate of, %d\n", i, GET_INT_FROM_POINTER(BLI_edgehash_lookup(edge_hash, med->v1, med->v2)));
			remove= do_fixes;
		}

		if(remove == FALSE){
			BLI_edgehash_insert(edge_hash, med->v1, med->v2, SET_INT_IN_POINTER(i));
		}
		else {
			REMOVE_EDGE_TAG(med);
		}
	}

	for(i=0, mf=mfaces, sf=sort_faces; i<totface; i++, mf++) {
		int remove= FALSE;
		int fidx;
		unsigned int fv[4];

		fidx = mf->v4 ? 3:2;
		do {
			fv[fidx]= *(&(mf->v1) + fidx);
			if(fv[fidx] >= totvert) {
				PRINT("    face %u: 'v%d' index out of range, %u\n", i, fidx + 1, fv[fidx]);
				remove= do_fixes;
			}
		} while (fidx--);

		if(remove == FALSE) {
			if(mf->v4) {
				if(mf->v1 == mf->v2) { PRINT("    face %u: verts invalid, v1/v2 both %u\n", i, mf->v1); remove= do_fixes; }
				if(mf->v1 == mf->v3) { PRINT("    face %u: verts invalid, v1/v3 both %u\n", i, mf->v1); remove= do_fixes;  }
				if(mf->v1 == mf->v4) { PRINT("    face %u: verts invalid, v1/v4 both %u\n", i, mf->v1); remove= do_fixes;  }

				if(mf->v2 == mf->v3) { PRINT("    face %u: verts invalid, v2/v3 both %u\n", i, mf->v2); remove= do_fixes;  }
				if(mf->v2 == mf->v4) { PRINT("    face %u: verts invalid, v2/v4 both %u\n", i, mf->v2); remove= do_fixes;  }

				if(mf->v3 == mf->v4) { PRINT("    face %u: verts invalid, v3/v4 both %u\n", i, mf->v3); remove= do_fixes;  }
			}
			else {
				if(mf->v1 == mf->v2) { PRINT("    faceT %u: verts invalid, v1/v2 both %u\n", i, mf->v1); remove= do_fixes; }
				if(mf->v1 == mf->v3) { PRINT("    faceT %u: verts invalid, v1/v3 both %u\n", i, mf->v1); remove= do_fixes; }

				if(mf->v2 == mf->v3) { PRINT("    faceT %u: verts invalid, v2/v3 both %u\n", i, mf->v2); remove= do_fixes; }
			}

			if(remove == FALSE) {
				if(totedge) {
					if(mf->v4) {
						if(!BLI_edgehash_haskey(edge_hash, mf->v1, mf->v2)) { PRINT("    face %u: edge v1/v2 (%u,%u) is missing egde data\n", i, mf->v1, mf->v2); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v2, mf->v3)) { PRINT("    face %u: edge v2/v3 (%u,%u) is missing egde data\n", i, mf->v2, mf->v3); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v3, mf->v4)) { PRINT("    face %u: edge v3/v4 (%u,%u) is missing egde data\n", i, mf->v3, mf->v4); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v4, mf->v1)) { PRINT("    face %u: edge v4/v1 (%u,%u) is missing egde data\n", i, mf->v4, mf->v1); do_edge_recalc= TRUE; }
					}
					else {
						if(!BLI_edgehash_haskey(edge_hash, mf->v1, mf->v2)) { PRINT("    face %u: edge v1/v2 (%u,%u) is missing egde data\n", i, mf->v1, mf->v2); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v2, mf->v3)) { PRINT("    face %u: edge v2/v3 (%u,%u) is missing egde data\n", i, mf->v2, mf->v3); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v3, mf->v1)) { PRINT("    face %u: edge v3/v1 (%u,%u) is missing egde data\n", i, mf->v3, mf->v1); do_edge_recalc= TRUE; }
					}
				}

				sf->index = i;

				if(mf->v4) {
					edge_store_from_mface_quad(sf->es, mf);

					qsort(sf->es, 4, sizeof(int64_t), int64_cmp);
				}
				else {
					edge_store_from_mface_tri(sf->es, mf);
					qsort(sf->es, 3, sizeof(int64_t), int64_cmp);
				}

				totsortface++;
				sf++;
			}
		}
		if(remove) {
			REMOVE_FACE_TAG(mf);
		}
	}

	qsort(sort_faces, totsortface, sizeof(SortFace), search_face_cmp);

	sf= sort_faces;
	sf_prev= sf;
	sf++;

	for(i=1; i<totsortface; i++, sf++) {
		int remove= FALSE;
		/* on a valid mesh, code below will never run */
		if(memcmp(sf->es, sf_prev->es, sizeof(sf_prev->es)) == 0) {
			mf= mfaces + sf->index;

			if(do_verbose) {
				mf_prev= mfaces + sf_prev->index;
				if(mf->v4) {
					PRINT("    face %u & %u: are duplicates (%u,%u,%u,%u) (%u,%u,%u,%u)\n", sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3, mf->v4, mf_prev->v1, mf_prev->v2, mf_prev->v3, mf_prev->v4);
				}
				else {
					PRINT("    face %u & %u: are duplicates (%u,%u,%u) (%u,%u,%u)\n", sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3, mf_prev->v1, mf_prev->v2, mf_prev->v3);
				}
			}

			remove= do_fixes;
		}
		else {
			sf_prev= sf;
		}

		if(remove) {
			REMOVE_FACE_TAG(mf);
		}
	}

	BLI_edgehash_free(edge_hash, NULL);
	MEM_freeN(sort_faces);

	PRINT("BKE_mesh_validate: finished\n\n");

#	 undef PRINT
#	 undef REMOVE_EDGE_TAG
#	 undef REMOVE_FACE_TAG

	if(me) {
		if(do_face_free) {
			mesh_strip_loose_faces(me);
		}

		if (do_edge_free) {
			mesh_strip_loose_edges(me);
		}

		if(do_fixes && do_edge_recalc) {
			BKE_mesh_calc_edges(me, TRUE);
		}
	}

	return (do_face_free || do_edge_free || do_edge_recalc);
}
Exemplo n.º 12
0
int BKE_mesh_validate_arrays( Mesh *me,
                              MVert *mverts, unsigned int totvert,
                              MEdge *medges, unsigned int totedge,
                              MFace *mfaces, unsigned int totface,
                              MDeformVert *dverts, /* assume totvert length */
                              const short do_verbose, const short do_fixes)
{
#	define REMOVE_EDGE_TAG(_med) { _med->v2= _med->v1; do_edge_free= 1; }
#	define REMOVE_FACE_TAG(_mf) { _mf->v3=0; do_face_free= 1; }

//	MVert *mv;
	MEdge *med;
	MFace *mf;
	MFace *mf_prev;
	MVert *mvert= mverts;
	unsigned int i;

	short do_face_free= FALSE;
	short do_edge_free= FALSE;

	short verts_fixed= FALSE;
	short vert_weights_fixed= FALSE;

	int do_edge_recalc= FALSE;

	EdgeHash *edge_hash = BLI_edgehash_new();

	SortFace *sort_faces= MEM_callocN(sizeof(SortFace) * totface, "search faces");
	SortFace *sf;
	SortFace *sf_prev;
	unsigned int totsortface= 0;

	BLI_assert(!(do_fixes && me == NULL));

	PRINT("%s: verts(%u), edges(%u), faces(%u)\n", __func__, totvert, totedge, totface);

	if(totedge == 0 && totface != 0) {
		PRINT("    locical error, %u faces and 0 edges\n", totface);
		do_edge_recalc= TRUE;
	}

	for(i=1; i<totvert; i++, mvert++) {
		int j;
		int fix_normal= TRUE;

		for(j=0; j<3; j++) {
			if(!finite(mvert->co[j])) {
				PRINT("    vertex %u: has invalid coordinate\n", i);

				if (do_fixes) {
					zero_v3(mvert->co);

					verts_fixed= TRUE;
				}
			}

			if(mvert->no[j]!=0)
				fix_normal= FALSE;
		}

		if(fix_normal) {
			PRINT("    vertex %u: has zero normal, assuming Z-up normal\n", i);
			if (do_fixes) {
				mvert->no[2]= SHRT_MAX;
				verts_fixed= TRUE;
			}
		}
	}

	for(i=0, med= medges; i<totedge; i++, med++) {
		int remove= FALSE;
		if(med->v1 == med->v2) {
			PRINT("    edge %u: has matching verts, both %u\n", i, med->v1);
			remove= do_fixes;
		}
		if(med->v1 >= totvert) {
			PRINT("    edge %u: v1 index out of range, %u\n", i, med->v1);
			remove= do_fixes;
		}
		if(med->v2 >= totvert) {
			PRINT("    edge %u: v2 index out of range, %u\n", i, med->v2);
			remove= do_fixes;
		}

		if(BLI_edgehash_haskey(edge_hash, med->v1, med->v2)) {
			PRINT("    edge %u: is a duplicate of, %d\n", i, GET_INT_FROM_POINTER(BLI_edgehash_lookup(edge_hash, med->v1, med->v2)));
			remove= do_fixes;
		}

		if(remove == FALSE){
			BLI_edgehash_insert(edge_hash, med->v1, med->v2, SET_INT_IN_POINTER(i));
		}
		else {
			REMOVE_EDGE_TAG(med);
		}
	}

	for(i=0, mf=mfaces, sf=sort_faces; i<totface; i++, mf++) {
		int remove= FALSE;
		int fidx;
		unsigned int fv[4];

		fidx = mf->v4 ? 3:2;
		do {
			fv[fidx]= *(&(mf->v1) + fidx);
			if(fv[fidx] >= totvert) {
				PRINT("    face %u: 'v%d' index out of range, %u\n", i, fidx + 1, fv[fidx]);
				remove= do_fixes;
			}
		} while (fidx--);

		if(remove == FALSE) {
			if(mf->v4) {
				if(mf->v1 == mf->v2) { PRINT("    face %u: verts invalid, v1/v2 both %u\n", i, mf->v1); remove= do_fixes; }
				if(mf->v1 == mf->v3) { PRINT("    face %u: verts invalid, v1/v3 both %u\n", i, mf->v1); remove= do_fixes;  }
				if(mf->v1 == mf->v4) { PRINT("    face %u: verts invalid, v1/v4 both %u\n", i, mf->v1); remove= do_fixes;  }

				if(mf->v2 == mf->v3) { PRINT("    face %u: verts invalid, v2/v3 both %u\n", i, mf->v2); remove= do_fixes;  }
				if(mf->v2 == mf->v4) { PRINT("    face %u: verts invalid, v2/v4 both %u\n", i, mf->v2); remove= do_fixes;  }

				if(mf->v3 == mf->v4) { PRINT("    face %u: verts invalid, v3/v4 both %u\n", i, mf->v3); remove= do_fixes;  }
			}
			else {
				if(mf->v1 == mf->v2) { PRINT("    faceT %u: verts invalid, v1/v2 both %u\n", i, mf->v1); remove= do_fixes; }
				if(mf->v1 == mf->v3) { PRINT("    faceT %u: verts invalid, v1/v3 both %u\n", i, mf->v1); remove= do_fixes; }

				if(mf->v2 == mf->v3) { PRINT("    faceT %u: verts invalid, v2/v3 both %u\n", i, mf->v2); remove= do_fixes; }
			}

			if(remove == FALSE) {
				if(totedge) {
					if(mf->v4) {
						if(!BLI_edgehash_haskey(edge_hash, mf->v1, mf->v2)) { PRINT("    face %u: edge v1/v2 (%u,%u) is missing egde data\n", i, mf->v1, mf->v2); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v2, mf->v3)) { PRINT("    face %u: edge v2/v3 (%u,%u) is missing egde data\n", i, mf->v2, mf->v3); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v3, mf->v4)) { PRINT("    face %u: edge v3/v4 (%u,%u) is missing egde data\n", i, mf->v3, mf->v4); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v4, mf->v1)) { PRINT("    face %u: edge v4/v1 (%u,%u) is missing egde data\n", i, mf->v4, mf->v1); do_edge_recalc= TRUE; }
					}
					else {
						if(!BLI_edgehash_haskey(edge_hash, mf->v1, mf->v2)) { PRINT("    face %u: edge v1/v2 (%u,%u) is missing egde data\n", i, mf->v1, mf->v2); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v2, mf->v3)) { PRINT("    face %u: edge v2/v3 (%u,%u) is missing egde data\n", i, mf->v2, mf->v3); do_edge_recalc= TRUE; }
						if(!BLI_edgehash_haskey(edge_hash, mf->v3, mf->v1)) { PRINT("    face %u: edge v3/v1 (%u,%u) is missing egde data\n", i, mf->v3, mf->v1); do_edge_recalc= TRUE; }
					}
				}

				sf->index = i;

				if(mf->v4) {
					edge_store_from_mface_quad(sf->es, mf);

					qsort(sf->es, 4, sizeof(int64_t), int64_cmp);
				}
				else {
					edge_store_from_mface_tri(sf->es, mf);
					qsort(sf->es, 3, sizeof(int64_t), int64_cmp);
				}

				totsortface++;
				sf++;
			}
		}
		if(remove) {
			REMOVE_FACE_TAG(mf);
		}
	}

	qsort(sort_faces, totsortface, sizeof(SortFace), search_face_cmp);

	sf= sort_faces;
	sf_prev= sf;
	sf++;

	for(i=1; i<totsortface; i++, sf++) {
		int remove= FALSE;
		/* on a valid mesh, code below will never run */
		if(memcmp(sf->es, sf_prev->es, sizeof(sf_prev->es)) == 0) {
			mf= mfaces + sf->index;

			if(do_verbose) {
				mf_prev= mfaces + sf_prev->index;
				if(mf->v4) {
					PRINT("    face %u & %u: are duplicates (%u,%u,%u,%u) (%u,%u,%u,%u)\n", sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3, mf->v4, mf_prev->v1, mf_prev->v2, mf_prev->v3, mf_prev->v4);
				}
				else {
					PRINT("    face %u & %u: are duplicates (%u,%u,%u) (%u,%u,%u)\n", sf->index, sf_prev->index, mf->v1, mf->v2, mf->v3, mf_prev->v1, mf_prev->v2, mf_prev->v3);
				}
			}

			remove= do_fixes;
		}
		else {
			sf_prev= sf;
		}

		if(remove) {
			REMOVE_FACE_TAG(mf);
		}
	}

	BLI_edgehash_free(edge_hash, NULL);
	MEM_freeN(sort_faces);


	/* fix deform verts */
	if (dverts) {
		MDeformVert *dv;
		for(i=0, dv= dverts; i<totvert; i++, dv++) {
			MDeformWeight *dw;
			unsigned int j;

			for(j=0, dw= dv->dw; j < dv->totweight; j++, dw++) {
				/* note, greater then max defgroups is accounted for in our code, but not < 0 */
				if (!finite(dw->weight)) {
					PRINT("    vertex deform %u, group %d has weight: %f\n", i, dw->def_nr, dw->weight);
					if (do_fixes) {
						dw->weight= 0.0f;
						vert_weights_fixed= TRUE;
					}
				}
				else if (dw->weight < 0.0f || dw->weight > 1.0f) {
					PRINT("    vertex deform %u, group %d has weight: %f\n", i, dw->def_nr, dw->weight);
					if (do_fixes) {
						CLAMP(dw->weight, 0.0f, 1.0f);
						vert_weights_fixed= TRUE;
					}
				}

				if (dw->def_nr < 0) {
					PRINT("    vertex deform %u, has invalid group %d\n", i, dw->def_nr);
					if (do_fixes) {
						defvert_remove_group(dv, dw);
						if (dv->dw) {
							/* re-allocated, the new values compensate for stepping
							 * within the for loop and may not be valid */
							j--;
							dw= dv->dw + j;

							vert_weights_fixed= TRUE;
						}
						else { /* all freed */
							break;
						}
					}
				}
			}
		}
	}


	PRINT("BKE_mesh_validate: finished\n\n");

#	 undef REMOVE_EDGE_TAG
#	 undef REMOVE_FACE_TAG

	if(me) {
		if(do_face_free) {
			mesh_strip_loose_faces(me);
		}

		if (do_edge_free) {
			mesh_strip_loose_edges(me);
		}

		if(do_fixes && do_edge_recalc) {
			BKE_mesh_calc_edges(me, TRUE);
		}
	}

	return (verts_fixed || vert_weights_fixed || do_face_free || do_edge_free || do_edge_recalc);
}