Exemplo n.º 1
0
void arch_init(void)
{
	k_stacks = (void*) &k_stacks_start;
	assert(!((vir_bytes) k_stacks % K_STACK_SIZE));

#ifndef CONFIG_SMP
	/*
	 * use stack 0 and cpu id 0 on a single processor machine, SMP
	 * configuration does this in smp_init() for all cpus at once
	 */
	tss_init(0, get_k_stack_top(0));
#endif

#if !CONFIG_OXPCIE
	ser_init();
#endif

#ifdef USE_ACPI
	acpi_init();
#endif

#if defined(USE_APIC) && !defined(CONFIG_SMP)
	if (config_no_apic) {
		BOOT_VERBOSE(printf("APIC disabled, using legacy PIC\n"));
	}
	else if (!apic_single_cpu_init()) {
		BOOT_VERBOSE(printf("APIC not present, using legacy PIC\n"));
	}
#endif

	/* Reserve some BIOS ranges */
	cut_memmap(&kinfo, BIOS_MEM_BEGIN, BIOS_MEM_END);
	cut_memmap(&kinfo, BASE_MEM_TOP, UPPER_MEM_END);
}
Exemplo n.º 2
0
PUBLIC void arch_init(void)
{
#ifdef CONFIG_APIC
    /*
     * this is setting kernel segments to cover most of the phys memory. The
     * value is high enough to reach local APIC nad IOAPICs before paging is
     * turned on.
     */
    prot_set_kern_seg_limit(0xfff00000);
    reload_ds();
#endif

    idt_init();

    tss_init(&tss, &k_boot_stktop, 0);

    acpi_init();

#if defined(CONFIG_APIC) && !defined(CONFIG_SMP)
    if (config_no_apic) {
        BOOT_VERBOSE(printf("APIC disabled, using legacy PIC\n"));
    }
    else if (!apic_single_cpu_init()) {
        BOOT_VERBOSE(printf("APIC not present, using legacy PIC\n"));
    }
#endif

    fpu_init();
}
Exemplo n.º 3
0
PRIVATE void estimate_cpu_freq(void)
{
	u64_t tsc_delta;
	u64_t cpu_freq;

	irq_hook_t calib_cpu;

	/* set the probe, we use the legacy timer, IRQ 0 */
	put_irq_handler(&calib_cpu, CLOCK_IRQ, calib_cpu_handler);

	/* just in case we are in an SMP single cpu fallback mode */
	BKL_UNLOCK();
	/* set the PIC timer to get some time */
	intr_enable();

	/* loop for some time to get a sample */
	while(probe_ticks < PROBE_TICKS) {
		intr_enable();
	}

	intr_disable();
	/* just in case we are in an SMP single cpu fallback mode */
	BKL_LOCK();

	/* remove the probe */
	rm_irq_handler(&calib_cpu);

	tsc_delta = sub64(tsc1, tsc0);

	cpu_freq = mul64(div64u64(tsc_delta, PROBE_TICKS - 1), make64(system_hz, 0));
	cpu_set_freq(cpuid, cpu_freq);
	cpu_info[cpuid].freq = div64u(cpu_freq, 1000000);
	BOOT_VERBOSE(cpu_print_freq(cpuid));
}
Exemplo n.º 4
0
PUBLIC void arch_init(void)
{
#ifdef USE_APIC
	/*
	 * this is setting kernel segments to cover most of the phys memory. The
	 * value is high enough to reach local APIC nad IOAPICs before paging is
	 * turned on.
	 */
	prot_set_kern_seg_limit(0xfff00000);
	reload_ds();
#endif

	idt_init();

	/* FIXME stupid a.out
	 * align the stacks in the stack are to the K_STACK_SIZE which is a
	 * power of 2
	 */
	k_stacks = (void*) (((vir_bytes)&k_stacks_start + K_STACK_SIZE - 1) &
							~(K_STACK_SIZE - 1));

#ifndef CONFIG_SMP
	/*
	 * use stack 0 and cpu id 0 on a single processor machine, SMP
	 * configuration does this in smp_init() for all cpus at once
	 */
	tss_init(0, get_k_stack_top(0));
#endif

#if !CONFIG_OXPCIE
	ser_init();
#endif

#ifdef USE_ACPI
	acpi_init();
#endif

#if defined(USE_APIC) && !defined(CONFIG_SMP)
	if (config_no_apic) {
		BOOT_VERBOSE(printf("APIC disabled, using legacy PIC\n"));
	}
	else if (!apic_single_cpu_init()) {
		BOOT_VERBOSE(printf("APIC not present, using legacy PIC\n"));
	}
#endif
}
Exemplo n.º 5
0
PUBLIC int init_local_timer(unsigned freq)
{
#ifdef USE_APIC
	/* if we know the address, lapic is enabled and we should use it */
	if (lapic_addr) {
		unsigned cpu = cpuid;
		tsc_per_ms[cpu] = div64u(cpu_get_freq(cpu), 1000);
		lapic_set_timer_one_shot(1000000/system_hz);
	} else
	{
		BOOT_VERBOSE(printf("Initiating legacy i8253 timer\n"));
#else
	{
#endif
		init_8253A_timer(freq);
		estimate_cpu_freq();
		/* always only 1 cpu in the system */
		tsc_per_ms[0] = div64u(cpu_get_freq(0), 1000);
	}

	return 0;
}

PUBLIC void stop_local_timer(void)
{
#ifdef USE_APIC
	if (lapic_addr) {
		lapic_stop_timer();
		apic_eoi();
	} else
#endif
	{
		stop_8253A_timer();
	}
}

PUBLIC void restart_local_timer(void)
{
#ifdef USE_APIC
	if (lapic_addr) {
		lapic_restart_timer();
	}
#endif
}

PUBLIC int register_local_timer_handler(const irq_handler_t handler)
{
#ifdef USE_APIC
	if (lapic_addr) {
		/* Using APIC, it is configured in apic_idt_init() */
		BOOT_VERBOSE(printf("Using LAPIC timer as tick source\n"));
	} else
#endif
	{
		/* Using PIC, Initialize the CLOCK's interrupt hook. */
		pic_timer_hook.proc_nr_e = NONE;
		pic_timer_hook.irq = CLOCK_IRQ;

		put_irq_handler(&pic_timer_hook, CLOCK_IRQ, handler);
	}

	return 0;
}

PUBLIC void cycles_accounting_init(void)
{
#ifdef CONFIG_SMP
	unsigned cpu = cpuid;
#endif

	read_tsc_64(get_cpu_var_ptr(cpu, tsc_ctr_switch));

	make_zero64(get_cpu_var(cpu, cpu_last_tsc));
	make_zero64(get_cpu_var(cpu, cpu_last_idle));
}
Exemplo n.º 6
0
/*===========================================================================*
 *			kmain 	                             		*
 *===========================================================================*/
void kmain(kinfo_t *local_cbi)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;

  /* save a global copy of the boot parameters */
  memcpy(&kinfo, local_cbi, sizeof(kinfo));
  memcpy(&kmess, kinfo.kmess, sizeof(kmess));

#ifdef __arm__
  /* We want to initialize serial before we do any output */
  omap3_ser_init();
#endif
  /* We can talk now */
  printf("MINIX booting\n");

  /* Kernel may use bits of main memory before VM is started */
  kernel_may_alloc = 1;

  assert(sizeof(kinfo.boot_procs) == sizeof(image));
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

  cstart();

  BKL_LOCK();
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

   if(NR_BOOT_MODULES != kinfo.mbi.mods_count)
   	panic("expecting %d boot processes/modules, found %d",
		NR_BOOT_MODULES, kinfo.mbi.mods_count);

  /* Set up proc table entries for processes in boot image. */
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	if(i < NR_TASKS)			/* name (tasks only) */
		strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name));

	if(i >= NR_TASKS) {
		/* Remember this so it can be passed to VM */
		multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS];
		ip->start_addr = mb_mod->mod_start;
		ip->len = mb_mod->mod_end - mb_mod->mod_start;
	}
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) ||
		proc_nr == VM_PROC_NR);
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
	    if(proc_nr == VM_PROC_NR) {
                priv(rp)->s_flags = VM_F;
                priv(rp)->s_trap_mask = SRV_T;
		ipc_to_m = SRV_M;
		kcalls = SRV_KC;
                priv(rp)->s_sig_mgr = SELF;
                rp->p_priority = SRV_Q;
                rp->p_quantum_size_ms = SRV_QT;
	    }
	    else if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else {
	    	assert(isrootsysn(proc_nr));
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}

	/* Arch-specific state initialization. */
	arch_boot_proc(ip, rp);

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* Process isn't scheduled until VM has set up a pagetable for it. */
	if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) {
		rp->p_rts_flags |= RTS_VMINHIBIT;
		rp->p_rts_flags |= RTS_BOOTINHIBIT;
	}

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	DEBUGEXTRA(("done\n"));
  }

  /* update boot procs info for VM */
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  arch_post_init();

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* System and processes initialization */
  memory_init();
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

  /* The bootstrap phase is over, so we can add the physical
   * memory used for it to the free list.
   */
  add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len);

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
}
Exemplo n.º 7
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC int main(void)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;
  size_t argsz;			/* size of arguments passed to crtso on stack */

  BKL_LOCK();
   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

  /* Set up proc table entries for processes in boot image.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.
   */

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	make_zero64(rp->p_cpu_time_left);
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr));
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Priviliges for kernel tasks. */
            if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Priviliges for the root system process. */
            else if(isrootsysn(proc_nr)) {
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }
            /* Priviliges for ordinary process. */
            else {
		NOT_REACHABLE;
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}
	rp->p_memmap[T].mem_vir  = ABS2CLICK(ip->memmap.text_vaddr);
	rp->p_memmap[T].mem_phys = ABS2CLICK(ip->memmap.text_paddr);
	rp->p_memmap[T].mem_len  = ABS2CLICK(ip->memmap.text_bytes);
	rp->p_memmap[D].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr);
	rp->p_memmap[D].mem_phys = ABS2CLICK(ip->memmap.data_paddr);
	rp->p_memmap[D].mem_len  = ABS2CLICK(ip->memmap.data_bytes);
	rp->p_memmap[S].mem_phys = ABS2CLICK(ip->memmap.data_paddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_vir  = ABS2CLICK(ip->memmap.data_vaddr +
					     ip->memmap.data_bytes +
					     ip->memmap.stack_bytes);
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = ip->memmap.entry;
	rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down three words
	 * to give crtso.s something to use as "argc", "argv" and "envp".
	 */
	if (isusern(proc_nr)) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		argsz = 3 * sizeof(reg_t);
		rp->p_reg.sp -= argsz;
		phys_memset(rp->p_reg.sp - 
			(rp->p_memmap[S].mem_vir << CLICK_SHIFT) +
			(rp->p_memmap[S].mem_phys << CLICK_SHIFT), 
			0, argsz);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(ip->flags & PROC_FULLVM)
		rp->p_rts_flags |= RTS_VMINHIBIT;

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	alloc_segments(rp);
	DEBUGEXTRA(("done\n"));
  }

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* Architecture-dependent initialization. */
  DEBUGEXTRA(("arch_init()... "));
  arch_init();
  DEBUGEXTRA(("done\n"));

  /* System and processes initialization */
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  BOOT_VERBOSE(printf("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  BOOT_VERBOSE(printf("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
  return 1;
}