Exemplo n.º 1
0
// return the radiance of a specific direction
// note : there are one factor makes the method biased.
//		there is a limitation on the number of vertexes in the path
Spectrum PathTracing::Li( const Ray& ray , const PixelSample& ps ) const
{
	Spectrum	L = 0.0f;
	Spectrum	throughput = 1.0f;

	int			bounces = 0;
	Ray	r = ray;
	while(true)
	{
		Intersection inter;

		// get the intersection between the ray and the scene
		// if it's a light , accumulate the radiance and break
		if( false == scene.GetIntersect( r , &inter ) )
		{
			if( bounces == 0 )
				return scene.Le( r );
			break;
		}

		if( bounces == 0 ) L+=inter.Le(-r.m_Dir);

		// make sure there is intersected primitive
		Sort_Assert( inter.primitive != 0 );

		// evaluate the light
		Bsdf*			bsdf = inter.primitive->GetMaterial()->GetBsdf(&inter);
		float			light_pdf = 0.0f;
		LightSample		light_sample = (bounces==0)?ps.light_sample[0]:LightSample(true);
		BsdfSample		bsdf_sample = (bounces==0)?ps.bsdf_sample[0]:BsdfSample(true);
		const Light*	light = scene.SampleLight( light_sample.t , &light_pdf );
		if( light_pdf > 0.0f )
			L += throughput * EvaluateDirect(	r  , scene , light , inter , light_sample , 
												bsdf_sample , BXDF_TYPE(BXDF_ALL) ) / light_pdf;

		// sample the next direction using bsdf
		float		path_pdf;
		Vector		wi;
		BXDF_TYPE	bxdf_type;
		Spectrum f;
		BsdfSample	_bsdf_sample = (bounces==0)?ps.bsdf_sample[1]:BsdfSample(true);
		f = bsdf->sample_f( -r.m_Dir , wi , _bsdf_sample , &path_pdf , BXDF_ALL , &bxdf_type );
		if( f.IsBlack() || path_pdf == 0.0f )
			break;

		// update path weight
		throughput *= f * AbsDot( wi , inter.normal ) / path_pdf;

		if( throughput.GetIntensity() == 0.0f )
			break;
		if( bounces > 4 )
		{
			float continueProperbility = min( 0.5f , throughput.GetIntensity() );
			if( sort_canonical() > continueProperbility )
				break;
			throughput /= continueProperbility;
		}

		r.m_Ori = inter.intersect;
		r.m_Dir = wi;
		r.m_fMin = 0.001f;

		++bounces;

		// note :	the following code makes the method biased
		//			'path_per_pixel' could be set very large to reduce the side-effect.
		if( bounces >= max_recursive_depth )
			break;
	}

	return L;
}
Exemplo n.º 2
0
// private method of li
Spectrum InstantRadiosity::_li( const Ray& r , bool ignoreLe , float* first_intersect_dist ) const
{
	// return if it is larger than the maximum depth
    if( r.m_Depth > max_recursive_depth )
		return 0.0f;

	// get intersection from camera ray
	Intersection ip;
	if( false == scene.GetIntersect( r , &ip ) )
		return ignoreLe?0.0f:scene.Le( r );

	// eavluate light path less than two vertices
	Spectrum radiance = ignoreLe?0.0f:ip.Le( -r.m_Dir );
	unsigned light_num = scene.LightNum();
	for( unsigned i = 0 ; i < light_num ; ++i )
	{
		const Light* light = scene.GetLight(i);
		radiance += EvaluateDirect( r , scene , light , ip , LightSample(true) , BsdfSample(true) , BXDF_TYPE( BXDF_ALL ) );
	}
	
	if( first_intersect_dist )
		*first_intersect_dist = ip.t;

	// pick a virtual light source randomly
	const unsigned lps_id = min( m_nLightPathSet - 1 , (int)(sort_canonical() * m_nLightPathSet) );
	list<VirtualLightSource> vps = m_pVirtualLightSources[lps_id];

	Bsdf*	bsdf = ip.primitive->GetMaterial()->GetBsdf(&ip);

	// evaluate indirect illumination
	Spectrum indirectIllum;
	list<VirtualLightSource>::const_iterator it = vps.begin();
	while( it != vps.end() )
	{
		if( r.m_Depth + it->depth > max_recursive_depth )
		{
			++it;
			continue;
		}

		Vector	delta = ip.intersect - it->intersect.intersect;
		float	sqrLen = delta.SquaredLength();
		float	len = sqrt( sqrLen );
		Vector	n_delta = delta / len;

		Bsdf* bsdf1 = it->intersect.primitive->GetMaterial()->GetBsdf(&(it->intersect));

		float		gterm = AbsDot( n_delta , ip.normal ) * AbsDot( n_delta , it->intersect.normal ) / max( m_fMinSqrDist , sqrLen );
		Spectrum	f0 = bsdf->f( -r.m_Dir , -n_delta );
		Spectrum	f1 = bsdf1->f( n_delta , it->wi );

		Spectrum	contr = gterm * f0 * f1 * it->power;
		if( !contr.IsBlack() )
		{
			Visibility vis(scene);
			vis.ray = Ray( it->intersect.intersect , n_delta , 0 , 0.001f , len - 0.001f );

			if( vis.IsVisible() )
				indirectIllum += contr;
		}

		++it;
	}
	radiance += indirectIllum / (float)m_nLightPaths;

	if( m_fMinDist > 0.0f )
	{
		Vector	wi;
		float	bsdf_pdf;
		Spectrum f = bsdf->sample_f( -r.m_Dir , wi , BsdfSample( true ) , &bsdf_pdf );

		if( !f.IsBlack() && bsdf_pdf != 0.0f )
		{
			PixelSample ps;
			float gather_dist;
			Ray gather_ray( ip.intersect , wi , r.m_Depth + 1 , 0.001f , m_fMinDist - 0.001f );
			Spectrum li = _li( gather_ray , true , &gather_dist );

			if( !li.IsBlack() )
			{
				float dgterm = AbsDot( wi , ip.normal ) * max( 0.0f , 1.0f - gather_dist * gather_dist / m_fMinSqrDist );
				radiance += f * li * dgterm / bsdf_pdf;
			}
		}
	}

	return radiance;
}
Exemplo n.º 3
0
// radiance along a specific ray direction
Spectrum DirectLight::Li( const Ray& r , const PixelSample& ps ) const
{
	if( r.m_Depth > max_recursive_depth )
		return 0.0f;

	// get the intersection between the ray and the scene
	Intersection ip;
	// evaluate light directly
	if( false == scene.GetIntersect( r , &ip ) )
		return scene.Le( r );

	Spectrum li = ip.Le( -r.m_Dir );

	// eavluate direct light
	unsigned light_num = scene.LightNum();
	for( unsigned i = 0 ; i < light_num ; ++i )
	{
		const Light* light = scene.GetLight(i);
		li += EvaluateDirect( r , scene , light , ip , LightSample(true) , BsdfSample(true), BXDF_TYPE( BXDF_ALL ) );
	}

	return li;
}