Exemplo n.º 1
0
bool initialise_aux_tasks()
{
	if((gChangeCoeffTask = Bela_createAuxiliaryTask(&check_coeff, 90, "bela-check-coeff")) == 0)
		return false;

	if((gInputTask = Bela_createAuxiliaryTask(&read_input, 50, "bela-read-input")) == 0)
		return false;

	rt_printf("Cut-off frequency: %f\n", gCutFreq);
	rt_printf("Press 'a' <enter> to start playing the sample, 's' to stop\n");
	rt_printf("      'z' <enter> to low down cut-off freq by 100 Hz, 'x' to raise it\n");
	rt_printf("Press 'q' <enter> or ctrl-C to quit\n");

	return true;
}
Exemplo n.º 2
0
bool setup(BelaContext *context, void *userData)
{
	updatePll=Bela_createAuxiliaryTask(&updatePllFunction, 91, "update PLL");
	for(int n=0; n<delayLength; n++){
		delay[n]=0;
	}
	return true; 
}
Exemplo n.º 3
0
bool initialise_trigger()
{
	if((gTriggerSamplesTask = Bela_createAuxiliaryTask(&trigger_samples, 50, "bela-trigger-samples")) == 0)
		return false;

	rt_printf("Press 'a' <enter> to trigger sample,\n"
			  "      's' <enter> to stop the current playing sample\n"
			  "      'q' <enter> or ctrl-C to quit\n");

	return true;
}
Exemplo n.º 4
0
bool setup(BelaContext *context, void *userData)
{
    // Check that we have the same number of inputs and outputs.
	if(context->audioInChannels != context->audioOutChannels ||
			context->analogInChannels != context-> analogOutChannels){
		printf("Error: for this project, you need the same number of input and output channels.\n");
		return false;
	}
	updatePll=Bela_createAuxiliaryTask(&updatePllFunction, 91, "update PLL");
	for(int n=0; n<delayLength; n++){
		delay[n]=0;
	}
	Bela_scheduleAuxiliaryTask(updatePll);
	return true; 
}
Exemplo n.º 5
0
// setup() is called once before the audio rendering starts.
// Use it to perform any initialisation and allocation which is dependent
// on the period size or sample rate.
//
// userData holds an opaque pointer to a data structure that was passed
// in from the call to initAudio().
//
// Return true on success; returning false halts the program.
bool setup(BelaContext *context, void *userData)
{
	srandom(time(NULL));

	if(context->audioOutChannels != 2) {
		rt_printf("Error: this example needs stereo audio enabled\n");
		return false;
	}

	// Initialise the sine wavetable
	if(posix_memalign((void **)&gWavetable, 8, (gWavetableLength + 1) * sizeof(float))) {
		rt_printf("Error allocating wavetable\n");
		return false;
	}
	for(int n = 0; n < gWavetableLength + 1; n++)
		gWavetable[n] = sinf(2.0 * M_PI * (float)n / (float)gWavetableLength);

	// Allocate the other buffers
	if(posix_memalign((void **)&gPhases, 16, gNumOscillators * sizeof(float))) {
		rt_printf("Error allocating phase buffer\n");
		return false;
	}
	if(posix_memalign((void **)&gFrequencies, 16, gNumOscillators * sizeof(float))) {
		rt_printf("Error allocating frequency buffer\n");
		return false;
	}
	if(posix_memalign((void **)&gAmplitudes, 16, gNumOscillators * sizeof(float))) {
		rt_printf("Error allocating amplitude buffer\n");
		return false;
	}
	if(posix_memalign((void **)&gDFrequencies, 16, gNumOscillators * sizeof(float))) {
		rt_printf("Error allocating frequency derivative buffer\n");
		return false;
	}
	if(posix_memalign((void **)&gDAmplitudes, 16, gNumOscillators * sizeof(float))) {
		rt_printf("Error allocating amplitude derivative buffer\n");
		return false;
	}

	// Initialise buffer contents

	float freq = kMinimumFrequency;
	float increment = (kMaximumFrequency - kMinimumFrequency) / (float)gNumOscillators;

	for(int n = 0; n < gNumOscillators; n++) {
		gPhases[n] = 0.0;

		if(context->analogFrames == 0) {
			// Random frequencies when used without matrix
			gFrequencies[n] = kMinimumFrequency + (kMaximumFrequency - kMinimumFrequency) * ((float)random() / (float)RAND_MAX);
		}
		else {
			// Constant spread of frequencies when used with matrix
			gFrequencies[n] = freq;
			freq += increment;
		}

		// For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
		gFrequencies[n] *= (float)gWavetableLength / context->audioSampleRate;
		gAmplitudes[n] = ((float)random() / (float)RAND_MAX) / (float)gNumOscillators;
		gDFrequencies[n] = gDAmplitudes[n] = 0.0;
	}

	increment = 0;
	freq = 440.0;

	for(int n = 0; n < gNumOscillators; n++) {
		// Update the frequencies to a regular spread, plus a small amount of randomness
		// to avoid weird phase effects
		float randScale = 0.99 + .02 * (float)random() / (float)RAND_MAX;
		float newFreq = freq * randScale;

		// For efficiency, frequency is expressed in change in wavetable position per sample, not Hz or radians
		gFrequencies[n] = newFreq * (float)gWavetableLength / context->audioSampleRate;

		freq += increment;
	}

	// Initialise auxiliary tasks
	if((gFrequencyUpdateTask = Bela_createAuxiliaryTask(&recalculate_frequencies, 85, "bela-update-frequencies")) == 0)
		return false;

	//for(int n = 0; n < gNumOscillators; n++)
	//	rt_printf("%f\n", gFrequencies[n]);

	gAudioSampleRate = context->audioSampleRate;
	gSampleCount = 0;

	return true;
}
Exemplo n.º 6
0
void OSCClient::createAuxTasks(){
    char name [30];
    sprintf (name, "OSCSendTask %i", port);
    OSCSendTask = Bela_createAuxiliaryTask(sendQueue, BELA_AUDIO_PRIORITY-5, name, this, true);
}
Exemplo n.º 7
0
void Midi::staticConstructor(){
	staticConstructed = true;
	midiInputTask = Bela_createAuxiliaryTask(Midi::midiInputLoop, 50, "MidiInput");
	midiOutputTask = Bela_createAuxiliaryTask(Midi::midiOutputLoop, 50, "MidiOutupt");
}