Exemplo n.º 1
0
void Model::CreatePipelineState()
{
	Microsoft::WRL::ComPtr<ID3DBlob> VertexShader;
	Microsoft::WRL::ComPtr<ID3DBlob> PixelShader;

	LoadAndCompileShader(VertexShader, PixelShader);

	std::array<D3D12_INPUT_ELEMENT_DESC, 2> InputElementDesc
	{ {
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	} };

	D3D12_GRAPHICS_PIPELINE_STATE_DESC PipelineStateDesc = {};
	PipelineStateDesc.InputLayout = { InputElementDesc.data(), static_cast<UINT>(InputElementDesc.size()) };
	PipelineStateDesc.pRootSignature = RootSignature.Get();
	PipelineStateDesc.VS = CD3DX12_SHADER_BYTECODE(VertexShader.Get());
	PipelineStateDesc.PS = CD3DX12_SHADER_BYTECODE(PixelShader.Get());
	PipelineStateDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	PipelineStateDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	PipelineStateDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
	PipelineStateDesc.SampleMask = UINT_MAX;
	PipelineStateDesc.SampleDesc.Count = 1;
	PipelineStateDesc.NumRenderTargets = 1;
	PipelineStateDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	PipelineStateDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
	PipelineStateDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;

	Utility::ThrowOnFail(DeviceContext.GetDevice()->CreateGraphicsPipelineState(&PipelineStateDesc, IID_PPV_ARGS(&PipelineState)));
}
Exemplo n.º 2
0
	  GraphicsPipelineStateDesc GraphicsPipelineStateDesc::Simple(
		  const D3D12_INPUT_LAYOUT_DESC & inputLayout,
		  const RootSignature & rootSig,
		  const Shader & vs, const Shader & ps)
	  {
		  ID3DBlob* vsBlob = vs.GetBlob();
		  ID3DBlob* psBlob = ps.GetBlob();
		  GraphicsPipelineStateDesc psoDesc;
		  ZeroMemory(&psoDesc, sizeof(psoDesc));
		  psoDesc.InputLayout = inputLayout;
		  psoDesc.pRootSignature = rootSig.Get();
		  psoDesc.VS = { reinterpret_cast<BYTE*>(vsBlob->GetBufferPointer()), vsBlob->GetBufferSize() };
		  psoDesc.PS = { reinterpret_cast<BYTE*>(psBlob->GetBufferPointer()), psBlob->GetBufferSize() };
		  /*
		  psoDesc.RasterizerState.FillMode = D3D12_FILL_MODE_SOLID;
		  psoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_BACK;
		  psoDesc.RasterizerState.FrontCounterClockwise = FALSE;
		  psoDesc.RasterizerState.DepthBias = D3D12_DEFAULT_DEPTH_BIAS;
		  psoDesc.RasterizerState.DepthBiasClamp = D3D12_DEFAULT_DEPTH_BIAS_CLAMP;
		  psoDesc.RasterizerState.SlopeScaledDepthBias = D3D12_DEFAULT_SLOPE_SCALED_DEPTH_BIAS;
		  psoDesc.RasterizerState.DepthClipEnable = TRUE;
		  psoDesc.RasterizerState.MultisampleEnable = FALSE;
		  psoDesc.RasterizerState.AntialiasedLineEnable = FALSE;
		  psoDesc.RasterizerState.ForcedSampleCount = 0;
		  psoDesc.RasterizerState.ConservativeRaster = D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF;
		  */

		  psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);

		  psoDesc.BlendState.AlphaToCoverageEnable = FALSE;
		  psoDesc.BlendState.IndependentBlendEnable = FALSE;
		  const D3D12_RENDER_TARGET_BLEND_DESC defaultRenderTargetBlendDesc =
		  {
			  FALSE,FALSE,
			  D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
			  D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
			  D3D12_LOGIC_OP_NOOP,
			  D3D12_COLOR_WRITE_ENABLE_ALL,
		  };
		  
		  for (UINT i = 0; i < D3D12_SIMULTANEOUS_RENDER_TARGET_COUNT; ++i)
		  {
			  psoDesc.BlendState.RenderTarget[i] = defaultRenderTargetBlendDesc;
		  }

		  psoDesc.DepthStencilState.DepthEnable = FALSE;
		  psoDesc.DepthStencilState.StencilEnable = FALSE;
		  psoDesc.SampleMask = UINT_MAX;
		  psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		  psoDesc.NumRenderTargets = 1;
		  psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
		  psoDesc.SampleDesc.Count = 1;

		  return psoDesc;
	  }
Exemplo n.º 3
0
Pipeline::Pipeline() :
    m_pPipelineState( nullptr )
{
    m_pipelineDesc = {};
    m_pipelineDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
    m_pipelineDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
    m_pipelineDesc.DepthStencilState.DepthEnable = false;
    m_pipelineDesc.DepthStencilState.StencilEnable = false;
    m_pipelineDesc.SampleMask = UINT_MAX;
    m_pipelineDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_PATCH;
    m_pipelineDesc.NumRenderTargets = 1;
    m_pipelineDesc.RTVFormats[0] = DXGI_FORMAT_B8G8R8A8_UNORM;
    m_pipelineDesc.SampleDesc.Count = 1;
}
Exemplo n.º 4
0
void TextureStore::init() {
	// Create an empty root signature.
	{
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(xapp().device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&rootSignature)));
	}
	D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
	{
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	};
	// Describe and create the graphics pipeline state object (PSO).
	D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
	psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
	psoDesc.pRootSignature = rootSignature.Get();
	psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	psoDesc.DepthStencilState.DepthEnable = FALSE;
	psoDesc.DepthStencilState.StencilEnable = FALSE;
	psoDesc.SampleMask = UINT_MAX;
	psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	psoDesc.NumRenderTargets = 1;
	psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	psoDesc.SampleDesc.Count = 1;
	//ThrowIfFailed(device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&pipelineState)));
#include "CompiledShaders/PostVS.h"
//#include "CompiledShaders/PostPS.h"
	// test shade library functions
	//{
	//D3DLoadModule() uses ID3D11Module
	//ComPtr<ID3DBlob> vShader;
	//ThrowIfFailed(D3DReadFileToBlob(L"", &vShader));
	psoDesc.VS = { binShader_PostVS, sizeof(binShader_PostVS) };
	ThrowIfFailed(xapp().device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&pipelineState)));
	ThrowIfFailed(xapp().device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&commandAllocator)));
	ThrowIfFailed(xapp().device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, commandAllocator.Get(), pipelineState.Get(), IID_PPV_ARGS(&commandList)));
	ThrowIfFailed(xapp().device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&updateFrameData.fence)));
	updateFrameData.fence->SetName(L"fence_texture_update");
	updateFrameData.fenceValue = 0;
	updateFrameData.fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
	if (updateFrameData.fenceEvent == nullptr) {
		ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
	}
}
Exemplo n.º 5
0
void WorldObjectEffect::createRootSigAndPSO(ComPtr<ID3D12RootSignature> &sig, ComPtr<ID3D12PipelineState> &pso)
{
	// Define the vertex input layout.
	D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
	{
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		//{ "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		//{ "NORMAL", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		//{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	};

	// Describe and create the graphics pipeline state object (PSO).
	CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT);
	blendDesc.RenderTarget[0].BlendEnable = TRUE;
	blendDesc.RenderTarget[0].SrcBlend = D3D12_BLEND_SRC_ALPHA;
	blendDesc.RenderTarget[0].DestBlend = D3D12_BLEND_INV_SRC_ALPHA;//D3D12_BLEND_ONE;
	blendDesc.RenderTarget[0].SrcBlendAlpha = D3D12_BLEND_ZERO;
	blendDesc.RenderTarget[0].DestBlendAlpha = D3D12_BLEND_ZERO;

	D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
	psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
	psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	psoDesc.BlendState = blendDesc;
	psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
	psoDesc.SampleMask = UINT_MAX;
	psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	psoDesc.NumRenderTargets = 1;
	psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
	psoDesc.SampleDesc.Count = 1;

	psoDesc.VS = { binShader_ObjectVS, sizeof(binShader_ObjectVS) };
	psoDesc.PS = { binShader_ObjectPS, sizeof(binShader_ObjectPS) };
	ThrowIfFailed(xapp().device->CreateRootSignature(0, binShader_ObjectVS, sizeof(binShader_ObjectVS), IID_PPV_ARGS(&sig)));
	sig.Get()->SetName(L"Object_root_signature");
	psoDesc.pRootSignature = sig.Get();
	ThrowIfFailed(xapp().device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&pso)));
	pso.Get()->SetName(L"state_objecteffect_init");
}
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
	// Create a root signature consisting of a descriptor table with a single CBV.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);
	
		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	LoadSizeDependentResources();

	// Create/update the vertex buffer.
	{
		// Define the geometry for a thin quad that will animate across the screen.
		const float x = QuadWidth / 2.0f;
		const float y = QuadHeight / 2.0f;
		Vertex quadVertices[] =
		{
			{ { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_vertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		m_vertexBufferUpload->Unmap(0, nullptr);

		m_commandList->CopyBufferRegion(m_vertexBuffer.Get(), 0, m_vertexBufferUpload.Get(), 0, vertexBufferSize);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		NAME_D3D12_OBJECT(m_constantBuffer);

		// Describe and create constant buffer views.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

		CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart());

		for (UINT n = 0; n < FrameCount; n++)
		{
			m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

			cbvDesc.BufferLocation += sizeof(SceneConstantBuffer);
			cpuHandle.Offset(m_cbvDescriptorSize);
		}

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		ZeroMemory(&m_constantBufferData, sizeof(m_constantBufferData));

		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData));
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
Exemplo n.º 7
0
void GltfPbr::CreatePipeline(ID3D12Device* pDevice, UINT node, std::vector<std::string> semanticNames, std::vector<D3D12_INPUT_ELEMENT_DESC> layout, PBRPrimitives *pPrimitive)
{
    //=================================================================================================
    // let vertex shader know what buffers are present
    // The Shader Code glTF20_EX.hlsl has if defs that are enable using these attributes when compiled
    // and ref by the D3D12_GRAPHICS_PIPELINE_STATE_DESC 
    //=================================================================================================
    bool Has_Normals = false;

    std::map<std::string, std::string> attributeDefines;
    for (unsigned int i = 0; i < layout.size(); i++)
    {
        layout[i].SemanticName = semanticNames[i].c_str();
        attributeDefines[std::string("HAS_") + layout[i].SemanticName] = "1";

        if (semanticNames[i].compare("NORMAL") == 0) Has_Normals = true;

    }

    // Compile shaders
    //
    ID3DBlob *pBlobShaderVert, *pBlobShaderPixel;
    {
        // build macro structure
        //
        std::vector<D3D_SHADER_MACRO> macros;
        CompileMacros(&attributeDefines, &macros);
        CompileMacros(&pPrimitive->m_pMaterial->m_defines, &macros);
        macros.push_back(D3D_SHADER_MACRO{ NULL, NULL });

        ID3DBlob *pError;
        D3DCompileFromFile(L"./plugins/shaders/glTF20_EX.hlsl", macros.data(), nullptr, "mainVS", "vs_5_0", 0, 0, &pBlobShaderVert, &pError);
        D3DCompileFromFile(L"./plugins/shaders/glTF20_EX.hlsl", macros.data(), nullptr, "mainPS", "ps_5_0", 0, 0, &pBlobShaderPixel, &pError);
        if (pError != NULL)
        {
            char *msg = (char *)pError->GetBufferPointer();
            MessageBoxA(0, msg, "", 0);
        }
    }

    // Create root signature
    //
    {
        CD3DX12_DESCRIPTOR_RANGE DescRange[4];
        DescRange[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);		// b0 <- per frame
        DescRange[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, pPrimitive->m_pMaterial->m_textureCount, 0);		// t0 <- per material
        DescRange[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 1);		// b1 <- per material parameters
        DescRange[3].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 5, 0);	// s0 <- samplers

        CD3DX12_ROOT_PARAMETER RTSlot[4];
        RTSlot[0].InitAsDescriptorTable(1, &DescRange[0], D3D12_SHADER_VISIBILITY_ALL);
        RTSlot[1].InitAsDescriptorTable(1, &DescRange[1], D3D12_SHADER_VISIBILITY_PIXEL);
        RTSlot[2].InitAsDescriptorTable(1, &DescRange[2], D3D12_SHADER_VISIBILITY_ALL);
        RTSlot[3].InitAsDescriptorTable(1, &DescRange[3], D3D12_SHADER_VISIBILITY_PIXEL);

        // the root signature contains 3 slots to be used
        CD3DX12_ROOT_SIGNATURE_DESC descRootSignature = CD3DX12_ROOT_SIGNATURE_DESC();
        descRootSignature.NumParameters = 4;
        descRootSignature.pParameters = RTSlot;
        descRootSignature.NumStaticSamplers = 0;
        descRootSignature.pStaticSamplers = NULL;

        // deny uneccessary access to certain pipeline stages   
        descRootSignature.Flags = D3D12_ROOT_SIGNATURE_FLAG_NONE
            | D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT
            //| D3D12_ROOT_SIGNATURE_FLAG_DENY_VERTEX_SHADER_ROOT_ACCESS
            | D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS
            | D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS
            | D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;
            //| D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

        ID3DBlob *pOutBlob, *pErrorBlob = NULL;
        ThrowIfFailed(D3D12SerializeRootSignature(&descRootSignature, D3D_ROOT_SIGNATURE_VERSION_1, &pOutBlob, &pErrorBlob));
        ThrowIfFailed(
            pDevice->CreateRootSignature(
                node,
                pOutBlob->GetBufferPointer(),
                pOutBlob->GetBufferSize(),
                IID_PPV_ARGS(&pPrimitive->m_RootSignature))
        );
        pPrimitive->m_RootSignature->SetName(L"OnCreatePrimitiveColorPass");

        pOutBlob->Release();
        if (pErrorBlob)
            pErrorBlob->Release();
    }

    D3D12_RENDER_TARGET_BLEND_DESC blendingOpaque = D3D12_RENDER_TARGET_BLEND_DESC
    {
        FALSE,FALSE,
        D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
        D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
        D3D12_LOGIC_OP_NOOP,
        D3D12_COLOR_WRITE_ENABLE_ALL,
    };

    D3D12_RENDER_TARGET_BLEND_DESC blendingBlend = D3D12_RENDER_TARGET_BLEND_DESC
    {
        TRUE,FALSE,
        D3D12_BLEND_SRC_ALPHA, D3D12_BLEND_INV_SRC_ALPHA, D3D12_BLEND_OP_ADD,
        D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
        D3D12_LOGIC_OP_NOOP,
        D3D12_COLOR_WRITE_ENABLE_ALL,
    };

    // Create a PSO description
    //
    if (!pBlobShaderVert || !pBlobShaderPixel)
    {
        throw 1;
    }

    D3D12_GRAPHICS_PIPELINE_STATE_DESC descPso = {};
    
    descPso.InputLayout = { layout.data(), (UINT)layout.size() };
    descPso.pRootSignature = pPrimitive->m_RootSignature.Get();
    descPso.VS = { reinterpret_cast<BYTE*>(pBlobShaderVert->GetBufferPointer()), pBlobShaderVert->GetBufferSize() };
    descPso.PS = { reinterpret_cast<BYTE*>(pBlobShaderPixel->GetBufferPointer()), pBlobShaderPixel->GetBufferSize() };
    descPso.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
    descPso.RasterizerState.CullMode = D3D12_CULL_MODE_FRONT;

    // Decide on default view based on attributes available
    if (m_pGLTFData)
    {
        if(m_pGLTFData->isBinFile)
            descPso.RasterizerState.FillMode = D3D12_FILL_MODE_WIREFRAME;
        else {
            if (Has_Normals)
            {
                descPso.RasterizerState.FillMode = D3D12_FILL_MODE_SOLID;
            }
            else
                descPso.RasterizerState.FillMode = D3D12_FILL_MODE_WIREFRAME;
        }
    }
    else 
    {
        if (Has_Normals)
        {
            descPso.RasterizerState.FillMode = D3D12_FILL_MODE_SOLID;
        }
        else
            descPso.RasterizerState.FillMode = D3D12_FILL_MODE_WIREFRAME;
    }

    descPso.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
    descPso.BlendState.IndependentBlendEnable = TRUE;
    descPso.BlendState.RenderTarget[0] = blendingBlend;
    descPso.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
    descPso.DepthStencilState.DepthFunc = D3D12_COMPARISON_FUNC_LESS;
    descPso.SampleMask = UINT_MAX;
    descPso.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
    descPso.NumRenderTargets = 1;
    descPso.RTVFormats[0] = DXGI_FORMAT_R16G16B16A16_UNORM;
    descPso.DSVFormat = DXGI_FORMAT_D32_FLOAT;
    descPso.SampleDesc.Count = 4;
    descPso.NodeMask = node;
    descPso.Flags = D3D12_PIPELINE_STATE_FLAG_NONE;
    ThrowIfFailed(
        pDevice->CreateGraphicsPipelineState(&descPso, IID_PPV_ARGS(&pPrimitive->m_PipelineRender))
    );

    // create samplers if not initialized (this should happen once)
    if (m_sampler.GetSize()==0)
    {
        m_pResourceViewHeaps->AllocSamplerDescriptor(5, &m_sampler);

        //for pbr materials
        D3D12_SAMPLER_DESC SamplerDesc;
        ZeroMemory(&SamplerDesc, sizeof(SamplerDesc));
        SamplerDesc.Filter = D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT;
        SamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.BorderColor[0] = 0.0f;
        SamplerDesc.BorderColor[1] = 0.0f;
        SamplerDesc.BorderColor[2] = 0.0f;
        SamplerDesc.BorderColor[3] = 0.0f;
        SamplerDesc.MinLOD = 0.0f;
        SamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
        SamplerDesc.MipLODBias = 0;
        SamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
        SamplerDesc.MaxAnisotropy = 1;
        pDevice->CreateSampler(&SamplerDesc, m_sampler.GetCPU(0));


        // diffuse env map sampler
        ZeroMemory(&SamplerDesc, sizeof(SamplerDesc));
        SamplerDesc.Filter = D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT;
        SamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.BorderColor[0] = 0.0f;
        SamplerDesc.BorderColor[1] = 0.0f;
        SamplerDesc.BorderColor[2] = 0.0f;
        SamplerDesc.BorderColor[3] = 0.0f;
        SamplerDesc.MinLOD = 0.0f;
        SamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
        SamplerDesc.MipLODBias = 0;
        SamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
        SamplerDesc.MaxAnisotropy = 1;
        pDevice->CreateSampler(&SamplerDesc, m_sampler.GetCPU(1));

        // specular env map sampler
        ZeroMemory(&SamplerDesc, sizeof(SamplerDesc));
        SamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
        SamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.BorderColor[0] = 0.0f;
        SamplerDesc.BorderColor[1] = 0.0f;
        SamplerDesc.BorderColor[2] = 0.0f;
        SamplerDesc.BorderColor[3] = 0.0f;
        SamplerDesc.MinLOD = 0.0f;
        SamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
        SamplerDesc.MipLODBias = 0;
        SamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
        SamplerDesc.MaxAnisotropy = 1;
        pDevice->CreateSampler(&SamplerDesc, m_sampler.GetCPU(2));

        // specular BRDF lut sampler
        ZeroMemory(&SamplerDesc, sizeof(SamplerDesc));
        SamplerDesc.Filter = D3D12_FILTER_MIN_MAG_LINEAR_MIP_POINT;
        SamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
        SamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
        SamplerDesc.BorderColor[0] = 0.0f;
        SamplerDesc.BorderColor[1] = 0.0f;
        SamplerDesc.BorderColor[2] = 0.0f;
        SamplerDesc.BorderColor[3] = 0.0f;
        SamplerDesc.MinLOD = 0.0f;
        SamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
        SamplerDesc.MipLODBias = 0;
        SamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
        SamplerDesc.MaxAnisotropy = 1;
        pDevice->CreateSampler(&SamplerDesc, m_sampler.GetCPU(3));

        // specular BRDF lut sampler
        D3D12_SAMPLER_DESC samplerShadow = {
            D3D12_FILTER_COMPARISON_MIN_MAG_LINEAR_MIP_POINT,
            D3D12_TEXTURE_ADDRESS_MODE_CLAMP,
            D3D12_TEXTURE_ADDRESS_MODE_CLAMP,
            D3D12_TEXTURE_ADDRESS_MODE_CLAMP,
            0.0f,
            1u,
            D3D12_COMPARISON_FUNC_LESS_EQUAL,
            { 0.0f, 0.0f, 0.0f, 0.0f },
            0.0f,
            D3D12_FLOAT32_MAX
        };

        pDevice->CreateSampler(&samplerShadow, m_sampler.GetCPU(4));
    }

    pPrimitive->m_sampler = &m_sampler;
}
Exemplo n.º 8
0
void loadAssets()
{
	//
	// handles to vert and pixel shaders
	//

	ComPtr<ID3DBlob> blobShaderVert, blobShaderPixel;

	//
	// compile shaders
	//

	D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "VShader", "vs_5_0", 0, 0, blobShaderVert.GetAddressOf(), nullptr);
	D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "PShader", "ps_5_0", 0, 0, blobShaderPixel.GetAddressOf(), nullptr);

	//
	// create input layout
	//

	D3D12_INPUT_ELEMENT_DESC layout[] =
	{
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_PER_VERTEX_DATA, 0 },
		{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_PER_VERTEX_DATA, 0 }
	};
	UINT numElements = sizeof(layout) / sizeof(layout[0]);

	//
	// create an empty root signature
	//

	ComPtr<ID3DBlob> pOutBlob, pErrorBlob;
	D3D12_ROOT_SIGNATURE_DESC descRootSignature;
	descRootSignature.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);
	D3D12SerializeRootSignature(&descRootSignature, D3D_ROOT_SIGNATURE_VERSION_1, pOutBlob.GetAddressOf(), pErrorBlob.GetAddressOf());
	mDevice->CreateRootSignature(0, pOutBlob->GetBufferPointer(), pOutBlob->GetBufferSize(), IID_PPV_ARGS(mRootSignature.GetAddressOf()));

	//
	// create a PSO description
	//

	D3D12_GRAPHICS_PIPELINE_STATE_DESC descPso;
	ZeroMemory(&descPso, sizeof(descPso));
	descPso.InputLayout = { layout, numElements };
	descPso.pRootSignature = mRootSignature.Get();
	descPso.VS = { reinterpret_cast<BYTE*>(blobShaderVert->GetBufferPointer()), blobShaderVert->GetBufferSize() };
	descPso.PS = { reinterpret_cast<BYTE*>(blobShaderPixel->GetBufferPointer()), blobShaderPixel->GetBufferSize() };
	descPso.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	descPso.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	descPso.DepthStencilState.DepthEnable = FALSE;
	descPso.DepthStencilState.StencilEnable = FALSE;
	descPso.SampleMask = UINT_MAX;
	descPso.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	descPso.NumRenderTargets = 1;
	descPso.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	descPso.SampleDesc.Count = 1;

	//
	// create the actual PSO
	//

	mDevice->CreateGraphicsPipelineState(&descPso, IID_PPV_ARGS(mPSO.GetAddressOf()));

	//
	// create descriptor heap
	//

	D3D12_DESCRIPTOR_HEAP_DESC descHeap = {};
	descHeap.NumDescriptors = 1;
	descHeap.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
	descHeap.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
	mDevice->CreateDescriptorHeap(&descHeap, IID_PPV_ARGS(mDescriptorHeap.GetAddressOf()));

	//
	// create command list
	//

	mDevice->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, mCommandAllocator.Get(), mPSO.Get(), IID_PPV_ARGS(mCommandList.GetAddressOf()));

	//
	// create backbuffer/rendertarget
	//

	mSwapChain->GetBuffer(0, IID_PPV_ARGS(mRenderTarget.GetAddressOf()));
	mDevice->CreateRenderTargetView(mRenderTarget.Get(), nullptr, mDescriptorHeap->GetCPUDescriptorHandleForHeapStart());

	//
	// set the viewport
	//

	mViewPort =
	{
		0.0f,
		0.0f,
		static_cast<float>(mWidth),
		static_cast<float>(mHeight),
		0.0f,
		1.0f
	};

	//
	// create scissor rectangle
	//

	mRectScissor = { 0, 0, mWidth, mHeight };

	//
	// create geometry for a triangle
	//

	VERTEX triangleVerts[] =
	{
		{ 0.0f, 0.5f, 0.0f,{ 1.0f, 0.0f, 0.0f, 1.0f } },
		{ 0.45f, -0.5, 0.0f,{ 0.0f, 1.0f, 0.0f, 1.0f } },
		{ -0.45f, -0.5f, 0.0f,{ 0.0f, 0.0f, 1.0f, 1.0f } }
	};

	//
	// actually create the vert buffer
	// Note: using upload heaps to transfer static data like vert buffers is not recommended.
	// Every time the GPU needs it, the upload heap will be marshalled over.  Please read up on Default Heap usage.
	// An upload heap is used here for code simplicity and because there are very few verts to actually transfer
	//

	mDevice->CreateCommittedResource(
		&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
		D3D12_HEAP_FLAG_NONE,
		&CD3DX12_RESOURCE_DESC::Buffer(3 * sizeof(VERTEX)),
		D3D12_RESOURCE_STATE_GENERIC_READ,
		nullptr,    // Clear value
		IID_PPV_ARGS(mBufVerts.GetAddressOf()));

	//
	// copy the triangle data to the vertex buffer
	//

	UINT8* dataBegin;
	mBufVerts->Map(0, nullptr, reinterpret_cast<void**>(&dataBegin));
	memcpy(dataBegin, triangleVerts, sizeof(triangleVerts));
	mBufVerts->Unmap(0, nullptr);

	//
	// create vertex buffer view
	//

	mDescViewBufVert.BufferLocation = mBufVerts->GetGPUVirtualAddress();
	mDescViewBufVert.StrideInBytes = sizeof(VERTEX);
	mDescViewBufVert.SizeInBytes = sizeof(triangleVerts);

	//
	// create fencing object
	//

	mDevice->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(mFence.GetAddressOf()));
	mCurrentFence = 1;

	//
	// close the command list and use it to execute the initial GPU setup
	//

	mCommandList->Close();
	ID3D12CommandList* ppCommandLists[] = { mCommandList.Get() };
	mCommandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	//
	// create event handle
	//

	mHandleEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);

	//
	// wait for the command list to execute; we are reusing the same command list in our main loop but for now, 
	// we just want to wait for setup to complete before continuing
	//

	waitForGPU();
}
void CrossNodeResources::LoadAssets()
{
    // Create the root signatures.
    // Root signatures may be shared across GPU nodes.
    {
        D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

        // This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
        featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

        if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
        {
            featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
        }

        // Create a root signature for rendering the triangle scene.
        {
            CD3DX12_DESCRIPTOR_RANGE1 sceneRanges[1];
            sceneRanges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);

            CD3DX12_ROOT_PARAMETER1 sceneRootParameters[2];
            sceneRootParameters[0].InitAsDescriptorTable(1, &sceneRanges[0], D3D12_SHADER_VISIBILITY_VERTEX);
            sceneRootParameters[1].InitAsConstants(1, 1, 0, D3D12_SHADER_VISIBILITY_VERTEX);

            CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC sceneRootSignatureDesc;
            sceneRootSignatureDesc.Init_1_1(_countof(sceneRootParameters), sceneRootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

            ComPtr<ID3DBlob> signature;
            ComPtr<ID3DBlob> error;
            ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&sceneRootSignatureDesc, featureData.HighestVersion, &signature, &error));
            ThrowIfFailed(m_device->CreateRootSignature(Settings::SharedNodeMask, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_sceneRootSignature)));
        }

        // Create a root signature for the post-process pass.
        {
            CD3DX12_DESCRIPTOR_RANGE1 postRanges[2];
            postRanges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, Settings::SceneHistoryCount, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC_WHILE_SET_AT_EXECUTE);
            postRanges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);

            CD3DX12_ROOT_PARAMETER1 postRootParameters[3];
            postRootParameters[0].InitAsDescriptorTable(1, &postRanges[0], D3D12_SHADER_VISIBILITY_PIXEL);
            postRootParameters[1].InitAsDescriptorTable(1, &postRanges[1], D3D12_SHADER_VISIBILITY_PIXEL);
            postRootParameters[2].InitAsConstants(2, 0, 0, D3D12_SHADER_VISIBILITY_PIXEL);

            CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC postRootSignatureDesc;
            postRootSignatureDesc.Init_1_1(_countof(postRootParameters), postRootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

            ComPtr<ID3DBlob> signature;
            ComPtr<ID3DBlob> error;
            ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&postRootSignatureDesc, featureData.HighestVersion, &signature, &error));
            ThrowIfFailed(m_device->CreateRootSignature(Settings::SharedNodeMask, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_postRootSignature)));
        }
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    // Pipeline states may be shared across GPU nodes.
    {
        // Define the vertex input layout for the triangle scene.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        // Describe and create the graphics pipeline state objects (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_sceneRootSignature.Get();
        psoDesc.VS = { g_SceneVS, sizeof(g_SceneVS) };
        psoDesc.PS = { g_ScenePS, sizeof(g_ScenePS) };
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
        psoDesc.SampleDesc.Count = 1;
        psoDesc.NodeMask = Settings::SharedNodeMask;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_scenePipelineState)));

        // Define the vertex input layout for the post-process fullscreen quad.
        D3D12_INPUT_ELEMENT_DESC postInputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        // Describe and create the PSO for the post-process pass.
        D3D12_GRAPHICS_PIPELINE_STATE_DESC postPsoDesc = {};
        postPsoDesc.InputLayout = { postInputElementDescs, _countof(postInputElementDescs) };
        postPsoDesc.pRootSignature = m_postRootSignature.Get();
        postPsoDesc.VS = { g_PostVS, sizeof(g_PostVS) };
        postPsoDesc.PS = { g_PostPS, sizeof(g_PostPS) };
        postPsoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        postPsoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        postPsoDesc.DepthStencilState.DepthEnable = FALSE;
        postPsoDesc.DepthStencilState.StencilEnable = FALSE;
        postPsoDesc.SampleMask = UINT_MAX;
        postPsoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        postPsoDesc.NumRenderTargets = 1;
        postPsoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        postPsoDesc.SampleDesc.Count = 1;
        postPsoDesc.NodeMask = Settings::SharedNodeMask;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&postPsoDesc, IID_PPV_ARGS(&m_postPipelineState)));
    }

    // Create and map the constant buffers.
    // Upload heaps live in system memory and can be made visible to all GPU nodes.
    {
        const UINT constantBufferDataSize = Settings::TriangleCount * Settings::SceneConstantBufferFrames * sizeof(SceneConstantBuffer);

        D3D12_HEAP_PROPERTIES uploadHeapProps = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD);
        uploadHeapProps.VisibleNodeMask = Settings::SharedNodeMask;

        ThrowIfFailed(m_device->CreateCommittedResource(
                          &uploadHeapProps,
                          D3D12_HEAP_FLAG_NONE,
                          &CD3DX12_RESOURCE_DESC::Buffer(constantBufferDataSize),
                          D3D12_RESOURCE_STATE_GENERIC_READ,
                          nullptr,
                          IID_PPV_ARGS(&m_sceneConstantBuffer)));

        // Map the constant buffers. We don't unmap this until the app closes.
        // Keeping things mapped for the lifetime of the resource is okay.
        ThrowIfFailed(m_sceneConstantBuffer->Map(0, nullptr, reinterpret_cast<void**>(&m_mappedConstantBuffer)));
        ZeroMemory(m_mappedConstantBuffer, constantBufferDataSize);
    }
}
Exemplo n.º 10
0
void DirectX12Render::DirectX12Render::InitializeAssets()
{
	//Create the root sig
	CD3DX12_ROOT_SIGNATURE_DESC RootDesc;

	RootDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

	ComPtr<ID3DBlob> Signature;
	ComPtr<ID3DBlob> Error;

	ThrowFail(D3D12SerializeRootSignature(&RootDesc, D3D_ROOT_SIGNATURE_VERSION_1, &Signature, &Error), TEXT("Root Signature Failed to Create"));
	ThrowFail(Device->CreateRootSignature(0, Signature->GetBufferPointer(), Signature->GetBufferSize(), IID_PPV_ARGS(&RootSignature)), TEXT("Root Signature Failed to Create"));

	ComPtr<ID3DBlob> VertexShader;
	ComPtr<ID3DBlob> PixelShader;
	//Shader Debugging code
#if defined(_DEBUG)
	UINT CompileFlags = 1 << 0 | 1 << 2;
#else
	UINT CompileFlags = 0;
#endif

	ThrowFail(D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "VSMain", "vs_5_0", CompileFlags, 0, &VertexShader, nullptr), TEXT("Failed to Compile Vertex Shader"));
	ThrowFail(D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "PSMain", "ps_5_0", CompileFlags, 0, &PixelShader, nullptr), TEXT("Failed to Compile Pixel Shader"));

	D3D12_INPUT_ELEMENT_DESC InputElementDesc[] =
	{
		{"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0},
		{"COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	};

	//Create the Pipeline State Object

	D3D12_GRAPHICS_PIPELINE_STATE_DESC PSO = {};
	PSO.InputLayout = { InputElementDesc, _countof(InputElementDesc) };
	PSO.pRootSignature = RootSignature.Get();
	PSO.VS = { reinterpret_cast<UINT8*>(VertexShader->GetBufferPointer()), VertexShader->GetBufferSize() };
	PSO.PS = { reinterpret_cast<UINT8*>(PixelShader->GetBufferPointer()), PixelShader->GetBufferSize() };
	PSO.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	PSO.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	PSO.DepthStencilState.DepthEnable = false;
	PSO.DepthStencilState.StencilEnable = false;
	PSO.SampleMask = UINT_MAX;
	PSO.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	PSO.NumRenderTargets = 1;
	PSO.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	PSO.SampleDesc.Count = 1;
	ThrowFail(Device->CreateGraphicsPipelineState(&PSO, IID_PPV_ARGS(&Pipeline)), TEXT("Failed to create Pipeline"));

	//Create Command list
	ThrowFail(Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, CommandAllocator.Get(), Pipeline.Get(), IID_PPV_ARGS(&CommandList)), TEXT("Command List Creation Failed"));

	ThrowFail(CommandList->Close(), TEXT("Command List Failed to Close"));

	//Create a fence to sync CPU to GPU
	ThrowFail(Device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&Fence)), TEXT("Failed to create fence"));

	FenceHandle = CreateEvent(nullptr, FALSE, FALSE, nullptr);
	if (FenceHandle == nullptr)
	{
		ThrowFail(HRESULT_FROM_WIN32(GetLastError()), TEXT("Failed to get Last Error, I know..."));
	}


}
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
    // Create an empty root signature.
    {
        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
        NAME_D3D12_OBJECT(m_rootSignature);
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;
        ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Describe and create the graphics pipeline state object (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
        NAME_D3D12_OBJECT(m_pipelineState);
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
    NAME_D3D12_OBJECT(m_commandList);

    LoadSizeDependentResources();

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command
        // list in our main loop but for now, we just want to wait for setup to
        // complete before continuing.
        WaitForGpu();
    }
}
// Load the assets.
HRESULT VolumetricAnimation::LoadAssets()
{
	HRESULT	hr;

	// Create a root signature consisting of a descriptor table with a CBV SRV and a sampler.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[3];
		CD3DX12_ROOT_PARAMETER rootParameters[3];

		ranges[0].Init( D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0 );
		ranges[1].Init( D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0 );
		ranges[2].Init( D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0 );
		rootParameters[RootParameterCBV].InitAsDescriptorTable( 1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL );
		rootParameters[RootParameterSRV].InitAsDescriptorTable( 1, &ranges[1], D3D12_SHADER_VISIBILITY_PIXEL );
		rootParameters[RootParameterUAV].InitAsDescriptorTable( 1, &ranges[2], D3D12_SHADER_VISIBILITY_ALL );

		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		// Allow input layout and deny unnecessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;
	
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init( _countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags );

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		V( D3D12SerializeRootSignature( &rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error ) );
		if ( error ) PRINTERROR( reinterpret_cast< const char* >( error->GetBufferPointer() ) );

		VRET( m_device->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS( &m_graphicsRootSignature ) ) );
		DXDebugName( m_graphicsRootSignature );

		// Create compute signature. Must change visibility for the SRV.
		rootParameters[RootParameterSRV].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc( _countof( rootParameters ), rootParameters, 0, nullptr );
		VRET( D3D12SerializeRootSignature( &computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error ) );

		VRET( m_device->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS( &m_computeRootSignature ) ) );
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;

		UINT compileFlags = 0;

		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "vsmain", "vs_5_0", compileFlags, 0, &vertexShader ) );
		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "psmain", "ps_5_0", compileFlags, 0, &pixelShader ) );
		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "csmain", "cs_5_0", compileFlags, 0, &computeShader ) );
		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc( D3D12_DEFAULT );
		depthStencilDesc.DepthEnable = true;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
		depthStencilDesc.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
		depthStencilDesc.StencilEnable = FALSE;

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof( inputElementDescs ) };
		psoDesc.pRootSignature = m_graphicsRootSignature.Get();
		psoDesc.VS = { reinterpret_cast< UINT8* >( vertexShader->GetBufferPointer() ), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast< UINT8* >( pixelShader->GetBufferPointer() ), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC( D3D12_DEFAULT );
		psoDesc.BlendState = CD3DX12_BLEND_DESC( D3D12_DEFAULT );
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;
		VRET( m_device->CreateGraphicsPipelineState( &psoDesc, IID_PPV_ARGS( &m_pipelineState ) ) );
		DXDebugName( m_pipelineState );

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = { reinterpret_cast< UINT8* >( computeShader->GetBufferPointer() ), computeShader->GetBufferSize() };

		VRET( m_device->CreateComputePipelineState( &computePsoDesc, IID_PPV_ARGS( &m_computeState ) ) );
		DXDebugName( m_computeState );
	}

	// Create the compute command list.
	VRET( m_device->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_COMPUTE, m_computeCmdAllocator.Get(),m_computeState.Get(), IID_PPV_ARGS( &m_computeCmdList ) ) );
	DXDebugName( m_computeCmdList );

	VRET( m_computeCmdList->Close() );

	// Create the graphics command list.
	VRET( m_device->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_graphicCmdAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS( &m_graphicCmdList ) ) );
	DXDebugName( m_graphicCmdList );

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> volumeBufferUploadHeap;

	// Create the volumeBuffer.
	{
		UINT volumeBufferSize = m_volumeDepth*m_volumeHeight*m_volumeWidth * 4 * sizeof( UINT8 );

		D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer( volumeBufferSize, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS );
		D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer( volumeBufferSize );

		VRET( m_device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ),D3D12_HEAP_FLAG_NONE,
												 &bufferDesc,D3D12_RESOURCE_STATE_COPY_DEST,nullptr,IID_PPV_ARGS( &m_volumeBuffer ) ) );

		const UINT64 uploadBufferSize = GetRequiredIntermediateSize( m_volumeBuffer.Get(), 0, 1 );

		// Create the GPU upload buffer.
		VRET( m_device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ),D3D12_HEAP_FLAG_NONE,
												 &uploadBufferDesc,D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr,IID_PPV_ARGS( &volumeBufferUploadHeap ) ) );

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		UINT8* volumeBuffer = ( UINT8* ) malloc( volumeBufferSize );
		memset( volumeBuffer, 64, volumeBufferSize );
		//float radius = m_volumeHeight / 2.f;
		float a = m_volumeWidth / 2.f;
		float b = m_volumeHeight / 2.f;
		float c = m_volumeDepth / 2.f;
		float radius = sqrt( a*a + b*b + c*c );

		for ( UINT z = 0; z < m_volumeDepth; z++ )
			for ( UINT y = 0; y < m_volumeHeight; y++ )
				for ( UINT x = 0; x < m_volumeWidth; x++ )
				{
					float _x = x - m_volumeWidth / 2.f;
					float _y = y - m_volumeHeight / 2.f;
					float _z = z - m_volumeDepth / 2.f;
					//float currentRaidus =abs(_x)+abs(_y)+abs(_z);
					float currentRaidus = sqrt( _x*_x + _y*_y + _z*_z );
					float scale = currentRaidus *3.f / radius;
					UINT idx = 4 - (UINT)floor( scale );
					UINT interm = ( UINT ) ( 192 * scale +0.5f );
					UINT8 col = interm % 192+1;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 0] += col * m_constantBufferData.colVal[idx].x;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 1] += col * m_constantBufferData.colVal[idx].y;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 2] += col * m_constantBufferData.colVal[idx].z;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 3] = m_constantBufferData.colVal[idx].w;
				}
		D3D12_SUBRESOURCE_DATA volumeBufferData = {};
		volumeBufferData.pData = &volumeBuffer[0];
		volumeBufferData.RowPitch = volumeBufferSize;
		volumeBufferData.SlicePitch = volumeBufferData.RowPitch;

		UpdateSubresources( m_graphicCmdList.Get(), m_volumeBuffer.Get(), volumeBufferUploadHeap.Get(), 0, 0, 1, &volumeBufferData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_volumeBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS ) );

		// Describe and create a SRV for the volumeBuffer.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Buffer.FirstElement = 0;
		srvDesc.Buffer.NumElements = m_volumeDepth*m_volumeHeight*m_volumeWidth;
		srvDesc.Buffer.StructureByteStride = 4 * sizeof( UINT8 );
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE srvHandle( m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart(), RootParameterSRV, m_cbvsrvuavDescriptorSize );
		m_device->CreateShaderResourceView( m_volumeBuffer.Get(), &srvDesc, srvHandle );

		// Describe and create a UAV for the volumeBuffer.
		D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
		uavDesc.Format = DXGI_FORMAT_UNKNOWN;
		uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
		uavDesc.Buffer.FirstElement = 0;
		uavDesc.Buffer.NumElements = m_volumeWidth*m_volumeHeight*m_volumeDepth;
		uavDesc.Buffer.StructureByteStride = 4 * sizeof( UINT8 );
		uavDesc.Buffer.CounterOffsetInBytes = 0;
		uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle( m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart(), RootParameterUAV, m_cbvsrvuavDescriptorSize );
		m_device->CreateUnorderedAccessView( m_volumeBuffer.Get(), nullptr, &uavDesc, uavHandle );
		free( volumeBuffer );
	}

	// Create the vertex buffer.

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	{
		// Define the geometry for a triangle.
		Vertex cubeVertices[] =
		{
			{ XMFLOAT3( -128.f, -128.f, -128.f ) },
			{ XMFLOAT3( -128.f, -128.f,  128.f ) },
			{ XMFLOAT3( -128.f,  128.f, -128.f ) },
			{ XMFLOAT3( -128.f,  128.f,  128.f ) },
			{ XMFLOAT3( 128.f, -128.f, -128.f )},
			{ XMFLOAT3( 128.f, -128.f,  128.f )},
			{ XMFLOAT3( 128.f,  128.f, -128.f )},
			{ XMFLOAT3( 128.f,  128.f,  128.f )},
		};

		const UINT vertexBufferSize = sizeof( cubeVertices );

		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( vertexBufferSize ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &vertexBufferUpload ) ) );
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( vertexBufferSize ), D3D12_RESOURCE_STATE_COPY_DEST,
												 nullptr, IID_PPV_ARGS( &m_vertexBuffer ) ) );
		DXDebugName( m_vertexBuffer );
		
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast< UINT8* >( cubeVertices );
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexBufferSize;

		UpdateSubresources<1>( m_graphicCmdList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, 
																				  D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER ));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof( Vertex );
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the index buffer

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> indexBufferUpload;
	{
		uint16_t cubeIndices[] =
		{
			0,2,1, 1,2,3,  4,5,6, 5,7,6,  0,1,5, 0,5,4,  2,6,7, 2,7,3,  0,4,6, 0,6,2,  1,3,7, 1,7,5,
		};

		const UINT indexBufferSize = sizeof( cubeIndices );

		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( indexBufferSize ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &indexBufferUpload ) ) );
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( indexBufferSize ), D3D12_RESOURCE_STATE_COPY_DEST,
												 nullptr, IID_PPV_ARGS( &m_indexBuffer ) ) );
		DXDebugName( m_indexBuffer );

		D3D12_SUBRESOURCE_DATA indexData = {};
		indexData.pData = reinterpret_cast< UINT8* >( cubeIndices );
		indexData.RowPitch = indexBufferSize;
		indexData.SlicePitch = indexBufferSize;

		UpdateSubresources<1>( m_graphicCmdList.Get(), m_indexBuffer.Get(), indexBufferUpload.Get(), 0, 0, 1, &indexData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, 
																				  D3D12_RESOURCE_STATE_INDEX_BUFFER ) );

		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.SizeInBytes = sizeof( cubeIndices );
		m_indexBufferView.Format = DXGI_FORMAT_R16_UINT;
	}

	// Create the constant buffer
	{
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( 1024 * 64 ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &m_constantBuffer ) ) );
		DXDebugName( m_constantBuffer );

		// Describe and create a constant buffer view.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = ( sizeof( ConstantBuffer ) + 255 ) & ~255;	// CB size is required to be 256-byte aligned.
		m_device->CreateConstantBufferView( &cbvDesc, m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart() );

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange( 0, 0 );		// We do not intend to read from this resource on the CPU.
		VRET( m_constantBuffer->Map( 0, &readRange, reinterpret_cast< void** >( &m_pCbvDataBegin ) ) );
		memcpy( m_pCbvDataBegin, &m_constantBufferData, sizeof( m_constantBufferData ) );
	}

	// Close the command list and execute it to begin the initial GPU setup.
	VRET( m_graphicCmdList->Close() );
	ID3D12CommandList* ppCommandLists[] = { m_graphicCmdList.Get() };
	m_graphicCmdQueue->ExecuteCommandLists( _countof( ppCommandLists ), ppCommandLists );

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		VRET( m_device->CreateFence( 0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS( &m_fence ) ) );
		DXDebugName( m_fence );
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent( nullptr, FALSE, FALSE, nullptr );
		if ( m_fenceEvent == nullptr )
		{
			VRET( HRESULT_FROM_WIN32( GetLastError() ) );
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGraphicsCmd();
	}


	XMVECTORF32 vecEye = { 500.0f, 500.0f, -500.0f };
	XMVECTORF32 vecAt = { 0.0f, 0.0f, 0.0f };
	m_camera.SetViewParams( vecEye, vecAt );
	m_camera.SetEnablePositionMovement( true );
	m_camera.SetButtonMasks( MOUSE_RIGHT_BUTTON, MOUSE_WHEEL, MOUSE_LEFT_BUTTON );

	return S_OK;
}
// Load the sample assets.
void D3D12HeterogeneousMultiadapter::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_ROOT_PARAMETER rootParameters[2];
		rootParameters[0].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_VERTEX);
		rootParameters[1].InitAsConstantBufferView(1, 0, D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_devices[Primary]->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

		CD3DX12_ROOT_PARAMETER blurRootParameters[3];
		blurRootParameters[0].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_PIXEL);
		blurRootParameters[1].InitAsDescriptorTable(_countof(ranges), ranges, D3D12_SHADER_VISIBILITY_PIXEL);
		blurRootParameters[2].InitAsConstantBufferView(1, 0, D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_STATIC_SAMPLER_DESC staticPointSampler(0);
		staticPointSampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		staticPointSampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_STATIC_SAMPLER_DESC staticLinearSampler(1);
		staticLinearSampler.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		staticLinearSampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		D3D12_STATIC_SAMPLER_DESC staticSamplers[] = { staticPointSampler, staticLinearSampler };
		rootSignatureDesc.Init(_countof(blurRootParameters), blurRootParameters, _countof(staticSamplers), staticSamplers, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_devices[Secondary]->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_blurRootSignature)));
	}

	// Create the pipeline states, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> vertexShaderBlur;
		ComPtr<ID3DBlob> pixelShaderBlurU;
		ComPtr<ID3DBlob> pixelShaderBlurV;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VShader", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PShader", "ps_5_0", compileFlags, 0, &pixelShader, &error));

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "VSSimpleBlur", "vs_5_0", compileFlags, 0, &vertexShaderBlur, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "PSSimpleBlurU", "ps_5_0", compileFlags, 0, &pixelShaderBlurU, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"blurShaders.hlsl").c_str(), nullptr, nullptr, "PSSimpleBlurV", "ps_5_0", compileFlags, 0, &pixelShaderBlurV, &error));

		// Define the vertex input layouts.
		const D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		const D3D12_INPUT_ELEMENT_DESC blurInputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe and create the graphics pipeline state objects (PSOs).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_devices[Primary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		psoDesc.InputLayout = { blurInputElementDescs, _countof(blurInputElementDescs) };
		psoDesc.pRootSignature = m_blurRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShaderBlur.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShaderBlurU.Get());
		psoDesc.DepthStencilState.DepthEnable = false;
		psoDesc.DSVFormat = DXGI_FORMAT_UNKNOWN;
		ThrowIfFailed(m_devices[Secondary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_blurPipelineStates[0])));

		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShaderBlurV.Get());
		ThrowIfFailed(m_devices[Secondary]->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_blurPipelineStates[1])));
	}

	// Create the command lists.
	ThrowIfFailed(m_devices[Primary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_directCommandAllocators[Primary][m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_directCommandLists[Primary])));
	ThrowIfFailed(m_devices[Primary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COPY, m_copyCommandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_copyCommandList)));
	ThrowIfFailed(m_copyCommandList->Close());

	ThrowIfFailed(m_devices[Secondary]->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_directCommandAllocators[Secondary][m_frameIndex].Get(), m_blurPipelineStates[0].Get(), IID_PPV_ARGS(&m_directCommandLists[Secondary])));

	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	ComPtr<ID3D12Resource> fullscreenQuadVertexBufferUpload;

	// Create the vertex buffer for the primary adapter.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, TriangleHalfWidth, TriangleDepth } },
			{ { TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } },
			{ { -TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_directCommandLists[Primary].Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_directCommandLists[Primary]->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(triangleVertices);
	}

	// Create the vertex buffer for the secondary adapter.
	{
		// Define the geometry for a fullscreen triangle.
		VertexPositionUV quadVertices[] =
		{
			{ { -1.0f, -1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f } },	// Bottom left.
			{ { -1.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } },	// Top left.
			{ { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, 0.0f } },	// Bottom right.
			{ { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f } },		// Top right.
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_fullscreenQuadVertexBuffer)));

		ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&fullscreenQuadVertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_directCommandLists[Secondary].Get(), m_fullscreenQuadVertexBuffer.Get(), fullscreenQuadVertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_directCommandLists[Secondary]->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_fullscreenQuadVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_fullscreenQuadVertexBufferView.BufferLocation = m_fullscreenQuadVertexBuffer->GetGPUVirtualAddress();
		m_fullscreenQuadVertexBufferView.StrideInBytes = sizeof(VertexPositionUV);
		m_fullscreenQuadVertexBufferView.SizeInBytes = sizeof(quadVertices);
	}

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		const CD3DX12_CLEAR_VALUE clearValue(DXGI_FORMAT_D32_FLOAT, 1.0f, 0);

		ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&clearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		m_devices[Primary]->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Create the constant buffers.
	{
		{
			const UINT64 constantBufferSize = sizeof(ConstantBufferData) * MaxTriangleCount * FrameCount;

			ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(constantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_constantBuffer)));

			// Setup constant buffer data.
			for (UINT n = 0; n < MaxTriangleCount; n++)
			{
				m_constantBufferData[n].velocity = XMFLOAT4(GetRandomFloat(0.01f, 0.02f), 0.0f, 0.0f, 0.0f);
				m_constantBufferData[n].offset = XMFLOAT4(GetRandomFloat(-5.0f, -1.5f), GetRandomFloat(-1.0f, 1.0f), GetRandomFloat(0.0f, 2.0f), 0.0f);
				m_constantBufferData[n].color = XMFLOAT4(GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), 1.0f);
				XMStoreFloat4x4(&m_constantBufferData[n].projection, XMMatrixTranspose(XMMatrixPerspectiveFovLH(XM_PIDIV4, m_aspectRatio, 0.01f, 20.0f)));
			}

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
			memcpy(m_pCbvDataBegin, &m_constantBufferData[0], constantBufferSize / FrameCount);
		}

		{
			const UINT64 workloadConstantBufferSize = sizeof(WorkloadConstantBufferData) * FrameCount;

			ThrowIfFailed(m_devices[Primary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(workloadConstantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_workloadConstantBuffer)));

			// Setup constant buffer data.
			m_workloadConstantBufferData.loopCount = m_psLoopCount;

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_workloadConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pWorkloadCbvDataBegin)));
			memcpy(m_pWorkloadCbvDataBegin, &m_workloadConstantBufferData, workloadConstantBufferSize / FrameCount);
		}

		{
			const UINT64 blurWorkloadConstantBufferSize = sizeof(WorkloadConstantBufferData) * FrameCount;

			ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(blurWorkloadConstantBufferSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_blurWorkloadConstantBuffer)));

			// Setup constant buffer data.
			m_blurWorkloadConstantBufferData.loopCount = m_blurPSLoopCount;

			// Map the constant buffer. We don't unmap this until the app closes.
			// Keeping things mapped for the lifetime of the resource is okay.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_blurWorkloadConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pBlurWorkloadCbvDataBegin)));
			memcpy(m_pBlurWorkloadCbvDataBegin, &m_blurWorkloadConstantBufferData, blurWorkloadConstantBufferSize / FrameCount);
		}

		{
			ThrowIfFailed(m_devices[Secondary]->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(sizeof(BlurConstantBufferData)),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_blurConstantBuffer)));

			// Map the constant buffer.
			CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
			ThrowIfFailed(m_blurConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pBlurCbvDataBegin)));

			// Setup constant buffer data.
			m_pBlurCbvDataBegin[0].offset = 0.5f;
			m_pBlurCbvDataBegin[0].textureDimensions.x = static_cast<float>(m_width);
			m_pBlurCbvDataBegin[0].textureDimensions.y = static_cast<float>(m_height);

			// Unmap the constant buffer because we don't update this again.
			// If we ever do, it should be buffered by the number of frames like other constant buffers.
			const CD3DX12_RANGE emptyRange(0, 0);
			m_blurConstantBuffer->Unmap(0, &emptyRange);
			m_pBlurCbvDataBegin = nullptr;
		}
	}

	// Close the command lists and execute them to begin the vertex buffer copies into the default heaps.
	for (UINT i = 0; i < GraphicsAdaptersCount; i++)
	{
		ThrowIfFailed(m_directCommandLists[i]->Close());
		ID3D12CommandList* ppCommandLists[] = { m_directCommandLists[i].Get() };
		m_directCommandQueues[i]->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	// We use a cross-adapter fence for handling Signals and Waits between adapters.
	// We use regular fences for things that don't need to be cross adapter because they don't need the additional overhead associated with being cross-adapter.
	{
		// Fence used to control CPU pacing.
		ThrowIfFailed(m_devices[Secondary]->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_frameFence)));

		// Fence used by the primary adapter to signal its copy queue that it has completed rendering.
		// When this is signaled, the primary adapter's copy queue can begin copying to the cross-adapter shared resource.
		ThrowIfFailed(m_devices[Primary]->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_renderFence)));	

		// Cross-adapter shared fence used by both adapters.
		// Used by the primary adapter to signal the secondary adapter that it has completed copying to the cross-adapter shared resource.
		// When this is signaled, the secondary adapter can begin its work.
		ThrowIfFailed(m_devices[Primary]->CreateFence(0, D3D12_FENCE_FLAG_SHARED | D3D12_FENCE_FLAG_SHARED_CROSS_ADAPTER, IID_PPV_ARGS(&m_crossAdapterFences[Primary]))); 

		// For now, require GENERIC_ALL access.
		HANDLE fenceHandle = nullptr;
		ThrowIfFailed(m_devices[Primary]->CreateSharedHandle(
			m_crossAdapterFences[Primary].Get(),
			nullptr,
			GENERIC_ALL,
			nullptr,
			&fenceHandle));

		HRESULT openSharedHandleResult = m_devices[Secondary]->OpenSharedHandle(fenceHandle, IID_PPV_ARGS(&m_crossAdapterFences[Secondary]));

		// We can close the handle after opening the cross-adapter shared fence.
		CloseHandle(fenceHandle);

		ThrowIfFailed(openSharedHandleResult);

		for (UINT i = 0; i < GraphicsAdaptersCount; i++)
		{
			// Create an event handle to use for frame synchronization.
			m_fenceEvents[i] = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
			if (m_fenceEvents == nullptr)
			{
				ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
			}

			// Wait for the command list to execute; we are reusing the same command 
			// list in our main loop but for now, we just want to wait for setup to 
			// complete before continuing.
			WaitForGpu(static_cast<GraphicsAdapter>(i));
		}
	}
}
// Load the sample assets.
void D3D12ExecuteIndirect::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_ROOT_PARAMETER rootParameters[GraphicsRootParametersCount];
		rootParameters[Cbv].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_VERTEX);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

		// Create compute signature.
		CD3DX12_DESCRIPTOR_RANGE ranges[2];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 0);
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

		CD3DX12_ROOT_PARAMETER computeRootParameters[ComputeRootParametersCount];
		computeRootParameters[SrvUavTable].InitAsDescriptorTable(2, ranges);
		computeRootParameters[RootConstants].InitAsConstants(4, 0);

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc;
		computeRootSignatureDesc.Init(_countof(computeRootParameters), computeRootParameters);

		ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"compute.hlsl").c_str(), nullptr, nullptr, "CSMain", "cs_5_0", compileFlags, 0, &computeShader, &error));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe and create the graphics pipeline state objects (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = { reinterpret_cast<UINT8*>(computeShader->GetBufferPointer()), computeShader->GetBufferSize() };

		ThrowIfFailed(m_device->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(&m_computeState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COMPUTE, m_computeCommandAllocators[m_frameIndex].Get(), m_computeState.Get(), IID_PPV_ARGS(&m_computeCommandList)));
	ThrowIfFailed(m_computeCommandList->Close());

	// Note: ComPtr's are CPU objects but these resources need to stay in scope until
	// the command list that references them has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resources are not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	ComPtr<ID3D12Resource> commandBufferUpload;

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, TriangleHalfWidth, TriangleDepth } },
			{ { TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } },
			{ { -TriangleHalfWidth, -TriangleHalfWidth, TriangleDepth } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(triangleVertices);
	}

	// Create the depth stencil view.
	{
		D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
		depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
		depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
		depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

		D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
		depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
		depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
		depthOptimizedClearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&depthOptimizedClearValue,
			IID_PPV_ARGS(&m_depthStencil)
			));

		m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Create the constant buffers.
	{
		const UINT constantBufferDataSize = TriangleResourceCount * sizeof(ConstantBufferData);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(constantBufferDataSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.SizeInBytes = sizeof(ConstantBufferData);

		// Create constant buffer views to access the upload buffer.
		for (UINT n = 0; n < TriangleCount; n++)
		{
			m_constantBufferData[n].velocity = XMFLOAT4(GetRandomFloat(0.01f, 0.02f), 0.0f, 0.0f, 0.0f);
			m_constantBufferData[n].offset = XMFLOAT4(GetRandomFloat(-5.0f, -1.5f), GetRandomFloat(-1.0f, 1.0f), GetRandomFloat(0.0f, 2.0f), 0.0f);
			m_constantBufferData[n].color = XMFLOAT4(GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), GetRandomFloat(0.5f, 1.0f), 1.0f);
			XMStoreFloat4x4(&m_constantBufferData[n].projection, XMMatrixTranspose(XMMatrixPerspectiveFovLH(XM_PIDIV4, m_aspectRatio, 0.01f, 20.0f)));
		}

		// Map the constant buffers. We don't unmap this until the app closes.
		// Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData[0], TriangleCount * sizeof(ConstantBufferData));

		// Create shader resource views (SRV) of the constant buffers for the
		// compute shader to read from.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Buffer.NumElements = TriangleCount;
		srvDesc.Buffer.StructureByteStride = sizeof(ConstantBufferData);
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE cbvSrvHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), CbvSrvOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			srvDesc.Buffer.FirstElement = frame * TriangleCount;
			m_device->CreateShaderResourceView(m_constantBuffer.Get(), &srvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}
	}

	// Create the command signature used for indirect drawing.
	{
		// Each command consists of a CBV update and a DrawInstanced call.
		D3D12_INDIRECT_ARGUMENT_DESC argumentDescs[2] = {};
		argumentDescs[0].Type = D3D12_INDIRECT_ARGUMENT_TYPE_CONSTANT_BUFFER_VIEW;
		argumentDescs[0].ConstantBufferView.RootParameterIndex = Cbv;
		argumentDescs[1].Type = D3D12_INDIRECT_ARGUMENT_TYPE_DRAW;

		D3D12_COMMAND_SIGNATURE_DESC commandSignatureDesc = {};
		commandSignatureDesc.pArgumentDescs = argumentDescs;
		commandSignatureDesc.NumArgumentDescs = _countof(argumentDescs);
		commandSignatureDesc.ByteStride = sizeof(IndirectCommand);

		ThrowIfFailed(m_device->CreateCommandSignature(&commandSignatureDesc, m_rootSignature.Get(), IID_PPV_ARGS(&m_commandSignature)));
	}

	// Create the command buffers and UAVs to store the results of the compute work.
	{
		std::vector<IndirectCommand> commands;
		commands.resize(TriangleResourceCount);
		const UINT commandBufferSize = CommandBufferSizePerFrame * FrameCount;

		D3D12_RESOURCE_DESC commandBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(commandBufferSize);
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&commandBufferDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_commandBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(commandBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&commandBufferUpload)));

		D3D12_GPU_VIRTUAL_ADDRESS gpuAddress = m_constantBuffer->GetGPUVirtualAddress();
		UINT commandIndex = 0;

		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			for (UINT n = 0; n < TriangleCount; n++)
			{
				commands[commandIndex].cbv = gpuAddress;
				commands[commandIndex].drawArguments.VertexCountPerInstance = 3;
				commands[commandIndex].drawArguments.InstanceCount = 1;
				commands[commandIndex].drawArguments.StartVertexLocation = 0;
				commands[commandIndex].drawArguments.StartInstanceLocation = 0;

				commandIndex++;
				gpuAddress += sizeof(ConstantBufferData);
			}
		}

		// Copy data to the intermediate upload heap and then schedule a copy
		// from the upload heap to the command buffer.
		D3D12_SUBRESOURCE_DATA commandData = {};
		commandData.pData = reinterpret_cast<UINT8*>(&commands[0]);
		commandData.RowPitch = commandBufferSize;
		commandData.SlicePitch = commandData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_commandBuffer.Get(), commandBufferUpload.Get(), 0, 0, 1, &commandData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_commandBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_NON_PIXEL_SHADER_RESOURCE));

		// Create SRVs for the command buffers.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Buffer.NumElements = TriangleCount;
		srvDesc.Buffer.StructureByteStride = sizeof(IndirectCommand);
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE commandsHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), CommandsOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			srvDesc.Buffer.FirstElement = frame * TriangleCount;
			m_device->CreateShaderResourceView(m_commandBuffer.Get(), &srvDesc, commandsHandle);
			commandsHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}

		// Create the unordered access views (UAVs) that store the results of the compute work.
		CD3DX12_CPU_DESCRIPTOR_HANDLE processedCommandsHandle(m_cbvSrvUavHeap->GetCPUDescriptorHandleForHeapStart(), ProcessedCommandsOffset, m_cbvSrvUavDescriptorSize);
		for (UINT frame = 0; frame < FrameCount; frame++)
		{
			// Allocate a buffer large enough to hold all of the indirect commands
			// for a single frame as well as a UAV counter.
			commandBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(CommandBufferSizePerFrame + sizeof(UINT), D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS);
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&commandBufferDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_processedCommandBuffers[frame])));

			D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
			uavDesc.Format = DXGI_FORMAT_UNKNOWN;
			uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
			uavDesc.Buffer.FirstElement = 0;
			uavDesc.Buffer.NumElements = TriangleCount;
			uavDesc.Buffer.StructureByteStride = sizeof(IndirectCommand);
			uavDesc.Buffer.CounterOffsetInBytes = CommandBufferSizePerFrame;
			uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;

			m_device->CreateUnorderedAccessView(
				m_processedCommandBuffers[frame].Get(),
				m_processedCommandBuffers[frame].Get(),
				&uavDesc,
				processedCommandsHandle);

			processedCommandsHandle.Offset(CbvSrvUavDescriptorCountPerFrame, m_cbvSrvUavDescriptorSize);
		}

		// Allocate a buffer that can be used to reset the UAV counters and initialize
		// it to 0.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(UINT)),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_processedCommandBufferCounterReset)));

		UINT8* pMappedCounterReset = nullptr;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_processedCommandBufferCounterReset->Map(0, &readRange, reinterpret_cast<void**>(&pMappedCounterReset)));
		ZeroMemory(pMappedCounterReset, sizeof(UINT));
		m_processedCommandBufferCounterReset->Unmap(0, nullptr);
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_computeFence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
// Load the sample assets.
void D3D12SmallResources::LoadAssets()
{
	// Create a root signature consisting of a single CBV parameter.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_VERTEX_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

		CD3DX12_STATIC_SAMPLER_DESC samplerDesc(0, D3D12_FILTER_MIN_MAG_MIP_LINEAR);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &samplerDesc, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
		NAME_D3D12_OBJECT(m_rootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state objects (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
		NAME_D3D12_OBJECT(m_pipelineState);
	}

	// Create the command lists.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
	NAME_D3D12_OBJECT(m_commandList);

	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_COPY, m_copyCommandAllocator.Get(), nullptr, IID_PPV_ARGS(&m_copyCommandList)));
	ThrowIfFailed(m_copyCommandList->Close());
	NAME_D3D12_OBJECT(m_copyCommandList);

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;

	// Create the vertex buffer.
	{
		// Create quads for all of the images that will be generated and drawn to the screen.
		Vertex quadVertices[TextureCount * 4];
		UINT index = 0;
		float offsetX = 0.15f;
		float marginX = offsetX / 10.0f;;
		float startX = (GridWidth / 2.0f) * -(offsetX + marginX) + marginX / 2.0f;
		float offsetY = offsetX * m_aspectRatio;
		float marginY = offsetY / 10.0f;
		float y = (GridHeight / 2.0f) * (offsetY + marginY) - marginY / 2.0f;
		for (UINT row = 0; row < GridHeight; row++)
		{
			float x = startX;
			for (UINT column = 0; column < GridWidth; column++)
			{
				quadVertices[index++] = { { x, y - offsetY, 0.0f }, { 0.0f, 0.0f } };
				quadVertices[index++] = { { x, y, 0.0f }, { 0.0f, 1.0f } };
				quadVertices[index++] = { { x + offsetX, y - offsetY, 0.0f }, { 1.0f, 0.0f } };
				quadVertices[index++] = { { x + offsetX, y, 0.0f }, { 1.0f, 1.0f } };
				x += offsetX + marginX;
			}
			y -= offsetY + marginY;
		}
		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		NAME_D3D12_OBJECT(m_vertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = sizeof(quadVertices);
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}

	CreateTextures();
}
Exemplo n.º 16
0
		void SampleRenderer::Initialize()
		{
			m_RenderQueue = new ::Dispatch::WorkQueue("RenderQueue", ::Concurrency::ThreadPriority::High);
			m_RenderQueue->Loop();
			isInitialized = false;

			float aspectRatio = 1900.f/700;
			float fovAngleY = 70.0f * XM_PI / 180.0f;

			if (aspectRatio < 1.0f)
			{
				fovAngleY *= 2.0f;
			}

			XMMATRIX perspectiveMatrix = XMMatrixPerspectiveFovRH(fovAngleY, aspectRatio, 0.01f, 100.0f);
			XMStoreFloat4x4(&m_MVP.projection, XMMatrixTranspose(perspectiveMatrix));

			static const XMVECTORF32 eye = { 0.0f, 0.7f, 1.5f, 0.0f };
			static const XMVECTORF32 at = { 0.0f, -0.1f, 0.0f, 0.0f };
			static const XMVECTORF32 up = { 0.0f, 1.0f, 0.0f, 0.0f };
			XMStoreFloat4x4(&m_MVP.model, XMMatrixTranspose(XMMatrixRotationY(1.57)));
			XMStoreFloat4x4(&m_MVP.view, XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up)));

			auto d3dDevice = gD3DDevice->GetD3DDevice();


			CD3DX12_ROOT_PARAMETER parameter[3];

			CD3DX12_DESCRIPTOR_RANGE range;
			range.Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
			parameter[0].InitAsDescriptorTable(1, &range, D3D12_SHADER_VISIBILITY_VERTEX);

			CD3DX12_DESCRIPTOR_RANGE range2;
			range2.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
			parameter[1].InitAsDescriptorTable(1, &range2, D3D12_SHADER_VISIBILITY_PIXEL);

			CD3DX12_DESCRIPTOR_RANGE range3;
			range3.Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 1, 0);
			parameter[2].InitAsDescriptorTable(1, &range3, D3D12_SHADER_VISIBILITY_PIXEL);

			D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
				D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
				D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
				D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
				D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
				D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

			CD3DX12_ROOT_SIGNATURE_DESC descRootSignature;
			descRootSignature.Init(3, parameter, 0, nullptr, rootSignatureFlags);

			PtrBlob pSignature, pError;
			ThrowIfFailed(D3D12SerializeRootSignature(&descRootSignature, D3D_ROOT_SIGNATURE_VERSION_1, pSignature.GetInitReference(), pError.GetInitReference()));
			ThrowIfFailed(d3dDevice->CreateRootSignature(0, pSignature->GetBufferPointer(), pSignature->GetBufferSize(), IID_PPV_ARGS(m_RootSignature.GetInitReference())));
			
			m_CopyQueue = new CopyQueue_tr(d3dDevice);
			m_CopyQueue->StartLoop();


			m_RenderQueue->Queue(::Dispatch::Bind([this, d3dDevice]() {
				m_VS.Load("/Data/Test/Test.vso");
				m_PS.Load("/Data/Test/Test.pso");

				static const D3D12_INPUT_ELEMENT_DESC inputLayout[] =
				{
					{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
					{ "COLOR", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
				};

				D3D12_GRAPHICS_PIPELINE_STATE_DESC state = {};
				state.InputLayout = { inputLayout, _countof(inputLayout) };
				state.pRootSignature = m_RootSignature;
				state.VS = { m_VS.GetBlob()->GetBufferPointer(), m_VS.GetBlob()->GetBufferSize() };
				state.PS = { m_PS.GetBlob()->GetBufferPointer(), m_PS.GetBlob()->GetBufferSize() };
				state.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
				state.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
				state.DepthStencilState.DepthEnable = FALSE;
				state.DepthStencilState.StencilEnable = FALSE;
				state.SampleMask = UINT_MAX;
				state.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
				state.NumRenderTargets = 1;
				state.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
				state.SampleDesc.Count = 1;

				ThrowIfFailed(d3dDevice->CreateGraphicsPipelineState(&state, IID_PPV_ARGS(m_PipeLineState.GetInitReference())));

				LogUtil::Out("Renderer", ::Concurrency::Thread::GetCurrentThreadName());

			}));

			m_RenderQueue->Queue(::Dispatch::Bind([this, d3dDevice]() {
				ThrowIfFailed(d3dDevice->CreateCommandList(1, D3D12_COMMAND_LIST_TYPE_DIRECT, gD3DDevice->GetCommandAllocator(), m_PipeLineState, IID_PPV_ARGS(m_CmdList.GetInitReference())));

				D3D12_DESCRIPTOR_HEAP_DESC heapDesc = {};
				heapDesc.NumDescriptors = DeviceManager::GetFrameCount();
				heapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
				heapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
				ThrowIfFailed(d3dDevice->CreateDescriptorHeap(&heapDesc, IID_PPV_ARGS(m_CBVHeap.GetInitReference())));
				m_CBVHeap->SetName(L"Constant Buffer Heap");
				
				m_samplerHeap.Create(d3dDevice, D3D12_DESCRIPTOR_HEAP_TYPE::D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER, 1, true);
				D3D12_SAMPLER_DESC samplerDesc = {};
				samplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
				samplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
				samplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
				samplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
				samplerDesc.MipLODBias = 0.0f;
				samplerDesc.MaxAnisotropy = 1;
				samplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
				samplerDesc.MinLOD = 0;
				samplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
				d3dDevice->CreateSampler(&samplerDesc, m_samplerHeap.hCPU(0));

				m_CubeMesh = new CubeMesh(d3dDevice, m_CmdList);

				this->m_CopyQueue->SubmitTexture(L"\\Data\\Test\\seafloor2bc1.dds", m_CubeMesh);

				m_CBO = new UniformBuffer<ModelViewProjectionConstantBuffer>("ModeViewMatrix", d3dDevice, 1U);
				m_CBO->CreateOnHeap(m_CBVHeap, d3dDevice);

				m_ConstantBuffer = m_CBO->Map();
				ZeroMemory(m_ConstantBuffer, DeviceManager::GetFrameCount() * m_CBO->sAlignedConstantBufferSize);

				ThrowIfFailed(m_CmdList->Close());
				ID3D12CommandList* ppCommandLists[] = { m_CmdList };
				gD3DDevice->GetCommandQueue()->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);
				gD3DDevice->WaitForGPU();

				isInitialized = true; 
			}));
		}
Exemplo n.º 17
0
void AppTest::LoadAssets()
{
	//Load and compile the shaders
	D3D12Shader vertShader = D3D12Shader(ShaderType::Vertex, L"TestShader.hlsl", "VS");
	D3D12Shader pixelShader = D3D12Shader(ShaderType::Pixel, L"TestShader.hlsl", "PS");

	std::vector<ShaderMacro> macros;
	macros.push_back({ "BOXCOLOR", "float4(1.0f, 1.0f, 1.0f, 1.0f)" });

	vertShader.Compile(&macros[0], static_cast<uint32_t>(macros.size()));
	pixelShader.Compile(&macros[0], static_cast<uint32_t>(macros.size()));

	D3D12_INPUT_ELEMENT_DESC layout[] =
	{
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA , 0}
	};

	UINT numElements = ARRAYSIZE(layout);

	//Create root signiture with one root constant buffer view

	D3D12_ROOT_PARAMETER param;
	D3D12_DESCRIPTOR_RANGE descriptorRange = {};

	if (UseRootLevelCBV)
	{
		param.ParameterType = D3D12_ROOT_PARAMETER_TYPE_CBV;
		param.ShaderVisibility = D3D12_SHADER_VISIBILITY_VERTEX;
		param.Descriptor = { 0, 0 };
	}
	else
	{
		//Used for if you need non root level constant buffer views
		//This is somewhat slower than switching out a root level CBV
		descriptorRange.BaseShaderRegister = 0;
		descriptorRange.NumDescriptors = 1;
		descriptorRange.OffsetInDescriptorsFromTableStart = 0;
		descriptorRange.RangeType = D3D12_DESCRIPTOR_RANGE_TYPE_CBV;
		descriptorRange.RegisterSpace = 0;

		param.ParameterType = D3D12_ROOT_PARAMETER_TYPE_DESCRIPTOR_TABLE;
		param.ShaderVisibility = D3D12_SHADER_VISIBILITY_VERTEX;
		param.DescriptorTable.NumDescriptorRanges = 1;
		param.DescriptorTable.pDescriptorRanges = &descriptorRange;
	}

	ComPtr<ID3D10Blob> pOutBlob, pErrorBlob;
	D3D12_ROOT_SIGNATURE_DESC rootSigDesc;
	rootSigDesc.NumParameters = 1;
	rootSigDesc.pParameters = &param;
	rootSigDesc.NumStaticSamplers = 0;
	rootSigDesc.pStaticSamplers = nullptr;
	rootSigDesc.Flags = D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT;
	CHK(D3D12SerializeRootSignature(&rootSigDesc, D3D_ROOT_SIGNATURE_VERSION_1, pOutBlob.GetAddressOf(), pErrorBlob.GetAddressOf()));
	CHK(Device->CreateRootSignature(0, pOutBlob->GetBufferPointer(), pOutBlob->GetBufferSize(), IID_PPV_ARGS(RootSignature.GetAddressOf())));

	//Create the PSO

	D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc;
	ZeroMemory(&psoDesc, sizeof(psoDesc));
	psoDesc.InputLayout = { layout, numElements };
	psoDesc.pRootSignature = RootSignature.Get();
	psoDesc.VS = { reinterpret_cast<BYTE*>(vertShader.GetByteCodePtr()), vertShader.GetSize() };
	psoDesc.PS = { reinterpret_cast<BYTE*>(pixelShader.GetByteCodePtr()), pixelShader.GetSize() };
	psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);;
	psoDesc.RasterizerState.FrontCounterClockwise = true; //Using RH coordinate system
	psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	psoDesc.DepthStencilState.DepthEnable = true;
	psoDesc.DepthStencilState.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
	psoDesc.DepthStencilState.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
	psoDesc.DepthStencilState.StencilEnable = false;
	psoDesc.SampleMask = UINT_MAX;
	psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	psoDesc.NumRenderTargets = 1;
	psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
	psoDesc.SampleDesc.Count = 1;
	psoDesc.SampleDesc.Quality = 0;

	CHK(Device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(PSO.GetAddressOf())));

	//Create descriptor heap
	D3D12_DESCRIPTOR_HEAP_DESC descHeapDesc = {};
	descHeapDesc.NumDescriptors = 1;
	descHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
	descHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;

	CHK(Device->CreateDescriptorHeap(&descHeapDesc, IID_PPV_ARGS(DescriptorHeap.GetAddressOf())));

	D3D12_DESCRIPTOR_HEAP_DESC DSVDescHeapDesc = {};
	DSVDescHeapDesc.NumDescriptors = 1;
	DSVDescHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_DSV;
	DSVDescHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;

	CHK(Device->CreateDescriptorHeap(&DSVDescHeapDesc, IID_PPV_ARGS(DSVDescriptorHeap.GetAddressOf())));

	CHK(Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, CommandAllocator.Get(), PSO.Get(), IID_PPV_ARGS(CommandList.GetAddressOf())));

	//Create the command lists for each thread
	for (unsigned int i = 0; i < ThreadCount; i++)
	{
		CHK(Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, CommandAllocatorArray[i].Get(), PSO.Get(), IID_PPV_ARGS(CommandListArray[i].GetAddressOf())));
		CommandListArray[i].Get()->Close();
	}

	//Create back buffer and render target

	CHK(SwapChain->GetBuffer(0, IID_PPV_ARGS(RenderTarget.GetAddressOf())));
	Device->CreateRenderTargetView(RenderTarget.Get(), nullptr, DescriptorHeap->GetCPUDescriptorHandleForHeapStart());

	Viewport.TopLeftX = 0.0f;
	Viewport.TopLeftY = 0.0f;
	Viewport.Width = static_cast<float>(ViewportWidth);
	Viewport.Height = static_cast<float>(ViewportHeight);
	Viewport.MinDepth = 0.0f;
	Viewport.MaxDepth = 1.0f;

	RectScissor.left = 0;
	RectScissor.top = 0;
	RectScissor.right = ViewportWidth;
	RectScissor.bottom = ViewportHeight;

	//Create depth buffer
	D3D12_RESOURCE_DESC depthResDesc = CD3DX12_RESOURCE_DESC::Tex2D(
		DXGI_FORMAT_R32_TYPELESS,
		ViewportWidth,
		ViewportHeight,
		1, 1, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL, D3D12_TEXTURE_LAYOUT_UNKNOWN);

	D3D12_CLEAR_VALUE dsvClearValue;
	dsvClearValue.Format = DXGI_FORMAT_D32_FLOAT;
	dsvClearValue.DepthStencil.Depth = 1.0f;
	dsvClearValue.DepthStencil.Stencil = 0;

	CHK(Device->CreateCommittedResource(
		&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
		D3D12_HEAP_FLAG_NONE,
		&depthResDesc,
		D3D12_RESOURCE_STATE_DEPTH_WRITE,
		&dsvClearValue,
		IID_PPV_ARGS(DepthBufferTexture.GetAddressOf())));
	DepthBufferTexture->SetName(L"Depth Buffer");

	D3D12_DEPTH_STENCIL_VIEW_DESC dsvDesc = {};
	dsvDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
	dsvDesc.Format = DXGI_FORMAT_D32_FLOAT;
	dsvDesc.Texture2D.MipSlice = 0;
	dsvDesc.Flags = D3D12_DSV_FLAG_NONE;
	Device->CreateDepthStencilView(DepthBufferTexture.Get(), &dsvDesc, DSVDescriptorHeap->GetCPUDescriptorHandleForHeapStart());

	//Allocate buffer for all constant buffers
	PerObjectConstantBuffers.Init(BoxCount, sizeof(CBPerObject), Device.Get());

	//Create the constant buffer descriptor heap and populate it
	if (!UseRootLevelCBV)
	{
		ConstantBufferDescriptorHeap = std::make_unique<D3D12RHIDescriptorHeap>(BoxCount, D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV, true);

		HRESULT hr = ConstantBufferDescriptorHeap->Init(Device.Get());

		assert(SUCCEEDED(hr));

		D3D12_CONSTANT_BUFFER_VIEW_DESC constantBufferViewDesc = {};
		constantBufferViewDesc.SizeInBytes = PerObjectConstantBuffers.GetAlignedStride();
		D3D12_CPU_DESCRIPTOR_HANDLE cpuDescriptorHandle;

		for (unsigned int i = 0; i < BoxCount; i++)
		{
			cpuDescriptorHandle.ptr = reinterpret_cast<size_t>(ConstantBufferDescriptorHeap->GetDescriptorCPUPtr(i));
			constantBufferViewDesc.BufferLocation = PerObjectConstantBuffers.GetGPUHandle(i);
			Device->CreateConstantBufferView(&constantBufferViewDesc, cpuDescriptorHandle);
		}
	}

	//Generate mesh
	GeometryGenerator::SimpleMesh shapeMesh;
	
	GeometryGenerator::CreateBox(1.0f, 1.0f, 1.0f, shapeMesh);
	//GeometryGenerator::CreateSphere(1.0f, 10, 10, shapeMesh);

	IndexCount = static_cast<uint32_t>(shapeMesh.Indices.size());

	//Copy vertex data to buffer
	//This should be put into its own job system using the copy engine eventually
	Device->CreateCommittedResource(
		&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
		D3D12_HEAP_FLAG_NONE,
		&CD3DX12_RESOURCE_DESC::Buffer(sizeof(GeometryGenerator::SimpleVertex) * shapeMesh.Vertices.size()),
		D3D12_RESOURCE_STATE_GENERIC_READ,
		nullptr,
		IID_PPV_ARGS(VertBuffer.GetAddressOf()));

	Device->CreateCommittedResource(
		&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
		D3D12_HEAP_FLAG_NONE,
		&CD3DX12_RESOURCE_DESC::Buffer(sizeof(uint32_t) * shapeMesh.Indices.size()),
		D3D12_RESOURCE_STATE_GENERIC_READ,
		nullptr,
		IID_PPV_ARGS(IndexBuffer.GetAddressOf()));

	UINT8* dataBegin;
	VertBuffer->Map(0, nullptr, reinterpret_cast<void**>(&dataBegin));
	memcpy(dataBegin, &shapeMesh.Vertices[0], sizeof(GeometryGenerator::SimpleVertex) * shapeMesh.Vertices.size());
	VertBuffer->Unmap(0, nullptr);

	IndexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&dataBegin));
	memcpy(dataBegin, &shapeMesh.Indices[0], sizeof(uint32_t) * shapeMesh.Indices.size());
	IndexBuffer->Unmap(0, nullptr);

	//Create vertex buffer view

	DescViewBufVert.BufferLocation = VertBuffer->GetGPUVirtualAddress();
	DescViewBufVert.StrideInBytes = sizeof(GeometryGenerator::SimpleVertex);
	DescViewBufVert.SizeInBytes = static_cast<UINT>(sizeof(GeometryGenerator::SimpleVertex) * shapeMesh.Vertices.size());

	DescViewBufIndex.BufferLocation = IndexBuffer->GetGPUVirtualAddress();
	DescViewBufIndex.Format = DXGI_FORMAT_R32_UINT;
	DescViewBufIndex.SizeInBytes = static_cast<UINT>(sizeof(uint32_t) * shapeMesh.Indices.size());

	//Create fencing object

	Device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(Fence.GetAddressOf()));
	CurrentFence = 1;

	//Initialize bundles for drawing
	if (UseBundles)
	{
		InitBundles();
	}

	//Close the command list and use it to execute the GPU setup
	CommandList->Close();
	ID3D12CommandList* ppCommandLists[] = { CommandList.Get() };
	CommandQueue->ExecuteCommandLists(1, ppCommandLists);

	HandleEvent = CreateEventEx(nullptr, false, false, EVENT_ALL_ACCESS);

	WaitForGPU();
}
Exemplo n.º 18
0
bool D3DClass::Initialize(int screenHeight, int screenWidth, HWND hwnd, bool vsync, bool fullscreen)
{
	D3D_FEATURE_LEVEL featureLevel;
	HRESULT result;
	D3D12_COMMAND_QUEUE_DESC commandQueueDesc;
	IDXGIFactory4* factory;
	IDXGIAdapter* adapter;
	IDXGIOutput* adapterOutput;
	unsigned int numModes, i, numerator, denominator, renderTargetViewDescriptorSize;
	unsigned long long stringLength;
	DXGI_MODE_DESC* displayModeList;
	DXGI_ADAPTER_DESC adapterDesc;
	DXGI_SWAP_CHAIN_DESC swapChainDesc;
	IDXGISwapChain* swapChain;
	D3D12_DESCRIPTOR_HEAP_DESC renderTargetViewHeapDesc;
	D3D12_CPU_DESCRIPTOR_HANDLE renderTargetViewHandle;


	// Store the vsync setting.
	m_vsync_enabled = vsync;

	// Set the feature level to DirectX 12.1 to enable using all the DirectX 12 features.
	// Note: Not all cards support full DirectX 12, this feature level may need to be reduced on some cards to 12.0.
	featureLevel = D3D_FEATURE_LEVEL_11_0;

	// Create the Direct3D 12 device.
	result = D3D12CreateDevice(NULL, featureLevel, __uuidof(ID3D12Device), (void**)&m_device);
	if (FAILED(result))
	{
		MessageBox(hwnd, L"Could not create a DirectX 12.1 device.  The default video card does not support DirectX 12.1.", L"DirectX Device Failure", MB_OK);
		return false;
	}

	// Initialize the description of the command queue.
	ZeroMemory(&commandQueueDesc, sizeof(commandQueueDesc));

	// Set up the description of the command queue.
	commandQueueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
	commandQueueDesc.Priority = D3D12_COMMAND_QUEUE_PRIORITY_NORMAL;
	commandQueueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
	commandQueueDesc.NodeMask = 0;

	// Create the command queue.
	m_device->CreateCommandQueue(&commandQueueDesc, __uuidof(ID3D12CommandQueue), (void**)&m_commandQueue);

	// Create a DirectX graphics interface factory.
	CreateDXGIFactory1(__uuidof(IDXGIFactory4), (void**)&factory);

	// Use the factory to create an adapter for the primary graphics interface (video card).
	factory->EnumAdapters(0, &adapter);

	// Enumerate the primary adapter output (monitor).
	adapter->EnumOutputs(0, &adapterOutput);


	// Get the number of modes that fit the DXGI_FORMAT_R8G8B8A8_UNORM display format for the adapter output (monitor).
	adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL);

	// Create a list to hold all the possible display modes for this monitor/video card combination.
	displayModeList = new DXGI_MODE_DESC[numModes];

	// Now fill the display mode list structures.
	adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList);

	// Now go through all the display modes and find the one that matches the screen height and width.
	// When a match is found store the numerator and denominator of the refresh rate for that monitor.
	for (i = 0; i<numModes; i++)
	{
		if (displayModeList[i].Height == (unsigned int)screenHeight)
		{
			if (displayModeList[i].Width == (unsigned int)screenWidth)
			{
				numerator = displayModeList[i].RefreshRate.Numerator;
				denominator = displayModeList[i].RefreshRate.Denominator;
			}
		}
	}

	// Get the adapter (video card) description.
	adapter->GetDesc(&adapterDesc);

	// Store the dedicated video card memory in megabytes.
	m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024);

	// Convert the name of the video card to a character array and store it.
	wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128);

	// Release the display mode list.
	delete[] displayModeList;
	displayModeList = nullptr;

	// Release the adapter output.
	adapterOutput->Release();
	adapterOutput = nullptr;

	// Release the adapter.
	adapter->Release();
	adapter = nullptr;

	// Initialize the swap chain description.
	ZeroMemory(&swapChainDesc, sizeof(swapChainDesc));

	// Set the swap chain to use double buffering.
	swapChainDesc.BufferCount = 2;

	// Set the height and width of the back buffers in the swap chain.
	swapChainDesc.BufferDesc.Height = screenHeight;
	swapChainDesc.BufferDesc.Width = screenWidth;

	// Set a regular 32-bit surface for the back buffers.
	swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

	// Set the usage of the back buffers to be render target outputs.
	swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;

	// Set the swap effect to discard the previous buffer contents after swapping.
	swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;

	// Set the handle for the window to render to.
	swapChainDesc.OutputWindow = hwnd;

	// Set to full screen or windowed mode.
    swapChainDesc.Windowed = !fullscreen;

	// Set the refresh rate of the back buffer.
	if (m_vsync_enabled)
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator;
	}
	else
	{
		swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
		swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
	}

	// Turn multisampling off.
	swapChainDesc.SampleDesc.Count = 1;
	swapChainDesc.SampleDesc.Quality = 0;

	// Set the scan line ordering and scaling to unspecified.
	swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
	swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;

	// Don't set the advanced flags.
	swapChainDesc.Flags = 0;

	// Finally create the swap chain using the swap chain description.	
	factory->CreateSwapChain(m_commandQueue, &swapChainDesc, &swapChain);

	// Next upgrade the IDXGISwapChain to a IDXGISwapChain3 interface and store it in a private member variable named m_swapChain.
	// This will allow us to use the newer functionality such as getting the current back buffer index.
	swapChain->QueryInterface(__uuidof(IDXGISwapChain3), (void**)&m_swapChain);

	// Clear pointer to original swap chain interface since we are using version 3 instead (m_swapChain).
	swapChain = nullptr;

	// Release the factory now that the swap chain has been created.
	factory->Release();
	factory = nullptr;

	// Initialize the render target view heap description for the two back buffers.
	ZeroMemory(&renderTargetViewHeapDesc, sizeof(renderTargetViewHeapDesc));

	// Set the number of descriptors to two for our two back buffers.  Also set the heap tyupe to render target views.
	renderTargetViewHeapDesc.NumDescriptors = 2;
	renderTargetViewHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
	renderTargetViewHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;

	// Create the render target view heap for the back buffers.
	m_device->CreateDescriptorHeap(&renderTargetViewHeapDesc, __uuidof(ID3D12DescriptorHeap), (void**)&m_renderTargetViewHeap);

	// Get a handle to the starting memory location in the render target view heap to identify where the render target views will be located for the two back buffers.
	renderTargetViewHandle = m_renderTargetViewHeap->GetCPUDescriptorHandleForHeapStart();

	// Get the size of the memory location for the render target view descriptors.
	renderTargetViewDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_RTV);

	// Get a pointer to the first back buffer from the swap chain.
	m_swapChain->GetBuffer(0, __uuidof(ID3D12Resource), (void**)&m_backBufferRenderTarget[0]);

	// Create a render target view for the first back buffer.
	m_device->CreateRenderTargetView(m_backBufferRenderTarget[0], NULL, renderTargetViewHandle);

	// Increment the view handle to the next descriptor location in the render target view heap.
	renderTargetViewHandle.ptr += renderTargetViewDescriptorSize;

	// Get a pointer to the second back buffer from the swap chain.
    m_swapChain->GetBuffer(1, __uuidof(ID3D12Resource), (void**)&m_backBufferRenderTarget[1]);

	// Create a render target view for the second back buffer.
	m_device->CreateRenderTargetView(m_backBufferRenderTarget[1], NULL, renderTargetViewHandle);

	// Finally get the initial index to which buffer is the current back buffer.
	m_bufferIndex = m_swapChain->GetCurrentBackBufferIndex();

	// Create a command allocator.
	m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, __uuidof(ID3D12CommandAllocator), (void**)&m_commandAllocator);

	// Create a fence for GPU synchronization.
	m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, __uuidof(ID3D12Fence), (void**)&m_fence);

	// Create an event object for the fence.
	m_fenceEvent = CreateEvent(nullptr, false, false, nullptr);

	// Initialize the starting fence value. 
	m_fenceValue = 1;

    CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
    rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

    ID3DBlob* signature;
    ID3DBlob* error;

    D3D12SerializeRootSignature(
        &rootSignatureDesc, 
        D3D_ROOT_SIGNATURE_VERSION_1, 
        &signature, 
        &error);
    m_device->CreateRootSignature(
        0, 
        signature->GetBufferPointer(), 
        signature->GetBufferSize(), 
        IID_PPV_ARGS(&m_rootSignature));

    //Create pipeline state, load and compiler shaders.
    
    //Note here to change D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION for debug
    UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;

    D3DReadFileToBlob(L"DefaultVS.cso", &m_vertexShader);
    D3DReadFileToBlob(L"DefaultHS.cso", &m_hullShader);
    D3DReadFileToBlob(L"DefaultDS.cso", &m_domainShader);
    D3DReadFileToBlob(L"DefaultPS.cso", &m_pixelShader);

    std::array<D3D12_INPUT_ELEMENT_DESC, 2> inputElementDescs = 
    {
        D3D12_INPUT_ELEMENT_DESC{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        D3D12_INPUT_ELEMENT_DESC{ "COLOR", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
    };

    D3D12_GRAPHICS_PIPELINE_STATE_DESC pipelineDesc = {};
    pipelineDesc.InputLayout = { inputElementDescs.data() , (UINT)inputElementDescs.size() };
    pipelineDesc.pRootSignature = m_rootSignature;
    pipelineDesc.VS = { m_vertexShader->GetBufferPointer(), m_vertexShader->GetBufferSize() };
    pipelineDesc.PS = { m_pixelShader->GetBufferPointer(), m_pixelShader->GetBufferSize() };
    pipelineDesc.HS = { m_hullShader->GetBufferPointer(), m_hullShader->GetBufferSize() };
    pipelineDesc.DS = { m_domainShader->GetBufferPointer(), m_domainShader->GetBufferSize() };
    pipelineDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT_WIREFRAME);
    pipelineDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
    pipelineDesc.DepthStencilState.DepthEnable = false;
    pipelineDesc.DepthStencilState.StencilEnable = false;
    pipelineDesc.SampleMask = UINT_MAX;
    pipelineDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_PATCH;
    pipelineDesc.NumRenderTargets = 1;
    pipelineDesc.RTVFormats[0] = DXGI_FORMAT_B8G8R8A8_UNORM;
    pipelineDesc.SampleDesc.Count = 1;
    m_device->CreateGraphicsPipelineState(&pipelineDesc, IID_PPV_ARGS(&m_pipelineState));

    // Create a basic command list.
    m_device->CreateCommandList(
        0, 
        D3D12_COMMAND_LIST_TYPE_DIRECT, 
        m_commandAllocator, 
        m_pipelineState, 
        IID_PPV_ARGS(&m_commandList));

    // Initially we need to close the command list during initialization as it is created in a recording state.
    m_commandList->Close();

    Vertex triangleVertices[] =
    {
        { { 0.0f, 0.5f, 0.f }, { 1.f, 0.f, 0.f, 1.f } },
        { { 0.5f, -0.5f, 0.f },{ 0.f, 1.f, 0.f, 1.f } },
        { { -0.5f, -0.5f, 0.f },{ 0.f, 0.f, 1.f, 1.f } },
    };

    const UINT vertexBufferSize = sizeof(triangleVertices);

    m_device->CreateCommittedResource(
        &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
        D3D12_HEAP_FLAG_NONE,
        &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
        D3D12_RESOURCE_STATE_GENERIC_READ,
        nullptr,
        IID_PPV_ARGS(&m_vertexBuffer));

    UINT8* pVertexDataBegin;
    CD3DX12_RANGE readRange(0, 0);
    m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin));
    memcpy(pVertexDataBegin, triangleVertices, vertexBufferSize);
    m_vertexBuffer->Unmap(0, nullptr);

    m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
    m_vertexBufferView.StrideInBytes = sizeof(Vertex);
    m_vertexBufferView.SizeInBytes = vertexBufferSize;

    m_viewport.Height = screenHeight;
    m_viewport.Width = screenWidth;
    m_viewport.MaxDepth = 1000.f;
    m_viewport.MinDepth = 0.1f;
    m_viewport.TopLeftX = 0.f;
    m_viewport.TopLeftY = 0.f;

    m_scissorRect.left = 0;
    m_scissorRect.right = screenWidth;
    m_scissorRect.top = 0;
    m_scissorRect.bottom = screenHeight;

    unsigned long long fenceToWaitFor = m_fenceValue;
    m_commandQueue->Signal(m_fence, fenceToWaitFor);
    m_fenceValue++;

    // Wait until the GPU is done rendering.
    if (m_fence->GetCompletedValue() < fenceToWaitFor)
    {
        m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent);
        WaitForSingleObject(m_fenceEvent, INFINITE);
    }

	return true;
}
// Load the sample assets.
void D3D12PredicationQueries::LoadAssets()
{
    // Create a root signature consisting of a single CBV parameter.
    {
        D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

        // This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
        featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

        if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
        {
            featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
        }

        CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
        CD3DX12_ROOT_PARAMETER1 rootParameters[1];

        ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
        rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

        // Allow input layout and deny uneccessary access to certain pipeline stages.
        D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
            D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

        CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
        NAME_D3D12_OBJECT(m_rootSignature);
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Enable alpha blending so we can visualize the occlusion query results.
        CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT);
        blendDesc.RenderTarget[0] =
        {
            TRUE, FALSE,
            D3D12_BLEND_SRC_ALPHA, D3D12_BLEND_INV_SRC_ALPHA, D3D12_BLEND_OP_ADD,
            D3D12_BLEND_ONE, D3D12_BLEND_ZERO, D3D12_BLEND_OP_ADD,
            D3D12_LOGIC_OP_NOOP,
            D3D12_COLOR_WRITE_ENABLE_ALL,
        };

        // Describe and create the graphics pipeline state objects (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(vertexShader.Get());
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(pixelShader.Get());
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = blendDesc;
        psoDesc.DepthStencilState = CD3DX12_DEPTH_STENCIL_DESC(D3D12_DEFAULT);
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
        NAME_D3D12_OBJECT(m_pipelineState);

        // Disable color writes and depth writes for the occlusion query's state.
        psoDesc.BlendState.RenderTarget[0].RenderTargetWriteMask = 0;
        psoDesc.DepthStencilState.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_queryState)));
        NAME_D3D12_OBJECT(m_queryState);
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));
    NAME_D3D12_OBJECT(m_commandList);

    // Note: ComPtr's are CPU objects but this resource needs to stay in scope until
    // the command list that references it has finished executing on the GPU.
    // We will flush the GPU at the end of this method to ensure the resource is not
    // prematurely destroyed.
    ComPtr<ID3D12Resource> vertexBufferUpload;

    // Create the vertex buffer.
    {
        // Create geometry for two quads and a bounding box for the occlusion query.
        // Geometry will be rendered back-to-front to support transparency in the scene.
        Vertex quadVertices[] =
        {
            // Far quad - in practice this would be a complex geometry.
            { { -0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { -0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
            { { 0.25f, 0.25f * m_aspectRatio, 0.5f }, { 1.0f, 1.0f, 1.0f, 1.0f } },

            // Near quad.
            { { -0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } },
            { { -0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 0.65f } },
            { { 0.5f, -0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } },
            { { 0.5f, 0.35f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f, 0.0f, 0.65f } },

            // Far quad bounding box used for occlusion query (offset slightly to avoid z-fighting).
            { { -0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { -0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, 0.25f * m_aspectRatio, 0.4999f }, { 0.0f, 0.0f, 0.0f, 1.0f } },
        };

        const UINT vertexBufferSize = sizeof(quadVertices);

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_COPY_DEST,
            nullptr,
            IID_PPV_ARGS(&m_vertexBuffer)));

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&vertexBufferUpload)));

        NAME_D3D12_OBJECT(m_vertexBuffer);

        // Copy data to the intermediate upload heap and then schedule a copy 
        // from the upload heap to the vertex buffer.
        D3D12_SUBRESOURCE_DATA vertexData = {};
        vertexData.pData = reinterpret_cast<UINT8*>(quadVertices);
        vertexData.RowPitch = vertexBufferSize;
        vertexData.SlicePitch = vertexData.RowPitch;

        UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
        m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

        // Initialize the vertex buffer view.
        m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_vertexBufferView.StrideInBytes = sizeof(Vertex);
        m_vertexBufferView.SizeInBytes = sizeof(quadVertices);
    }

    // Create the constant buffers.
    {
        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(FrameCount * sizeof(m_constantBufferData)),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&m_constantBuffer)));

        NAME_D3D12_OBJECT(m_constantBuffer);

        // Map and initialize the constant buffer. We don't unmap this until the
        // app closes. Keeping things mapped for the lifetime of the resource is okay.
        CD3DX12_RANGE readRange(0, 0);        // We do not intend to read from this resource on the CPU.
        ThrowIfFailed(m_constantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
        ZeroMemory(m_pCbvDataBegin, FrameCount * sizeof(m_constantBufferData));

        // Create constant buffer views to access the upload buffer.
        CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvHeap->GetCPUDescriptorHandleForHeapStart());
        D3D12_GPU_VIRTUAL_ADDRESS gpuAddress = m_constantBuffer->GetGPUVirtualAddress();

        D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
        cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

        for (UINT n = 0; n < FrameCount; n++)
        {
            cbvDesc.BufferLocation = gpuAddress;

            m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

            cpuHandle.Offset(m_cbvSrvDescriptorSize);
            gpuAddress += cbvDesc.SizeInBytes;
            cbvDesc.BufferLocation = gpuAddress;

            m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

            cpuHandle.Offset(m_cbvSrvDescriptorSize);
            gpuAddress += cbvDesc.SizeInBytes;
        }
    }

    // Create the depth stencil view.
    {
        D3D12_DEPTH_STENCIL_VIEW_DESC depthStencilDesc = {};
        depthStencilDesc.Format = DXGI_FORMAT_D32_FLOAT;
        depthStencilDesc.ViewDimension = D3D12_DSV_DIMENSION_TEXTURE2D;
        depthStencilDesc.Flags = D3D12_DSV_FLAG_NONE;

        D3D12_CLEAR_VALUE depthOptimizedClearValue = {};
        depthOptimizedClearValue.Format = DXGI_FORMAT_D32_FLOAT;
        depthOptimizedClearValue.DepthStencil.Depth = 1.0f;
        depthOptimizedClearValue.DepthStencil.Stencil = 0;

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Tex2D(DXGI_FORMAT_D32_FLOAT, m_width, m_height, 1, 0, 1, 0, D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL),
            D3D12_RESOURCE_STATE_DEPTH_WRITE,
            &depthOptimizedClearValue,
            IID_PPV_ARGS(&m_depthStencil)
            ));

        NAME_D3D12_OBJECT(m_depthStencil);

        m_device->CreateDepthStencilView(m_depthStencil.Get(), &depthStencilDesc, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
    }

    // Create the query result buffer.
    {
        D3D12_RESOURCE_DESC queryResultDesc = CD3DX12_RESOURCE_DESC::Buffer(8);
        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &queryResultDesc,
            D3D12_RESOURCE_STATE_PREDICATION,
            nullptr,
            IID_PPV_ARGS(&m_queryResult)
            ));

        NAME_D3D12_OBJECT(m_queryResult);
    }

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command 
        // list in our main loop but for now, we just want to wait for setup to 
        // complete before continuing.
        WaitForGpu();
    }
}
// Load the sample assets.
void D3D1211on12::LoadAssets()
{
	// Create an empty root signature.
	{
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_d3d12Device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_d3d12Device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	ThrowIfFailed(m_d3d12Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Create D2D/DWrite objects for rendering text.
	{
		ThrowIfFailed(m_d2dDeviceContext->CreateSolidColorBrush(D2D1::ColorF(D2D1::ColorF::Black), &m_textBrush));
		ThrowIfFailed(m_dWriteFactory->CreateTextFormat(
			L"Verdana",
			NULL,
			DWRITE_FONT_WEIGHT_NORMAL,
			DWRITE_FONT_STYLE_NORMAL,
			DWRITE_FONT_STRETCH_NORMAL,
			50,
			L"en-us",
			&m_textFormat
			));
		ThrowIfFailed(m_textFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_CENTER));
		ThrowIfFailed(m_textFormat->SetParagraphAlignment(DWRITE_PARAGRAPH_ALIGNMENT_CENTER));
	}

	ComPtr<ID3D12Resource> vertexBufferUpload;

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		ThrowIfFailed(m_d3d12Device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		ThrowIfFailed(m_d3d12Device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&vertexBufferUpload)));

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast<UINT8*>(triangleVertices);
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Close the command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_d3d12Device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(m_fence.GetAddressOf())));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGpu();
	}
}
Exemplo n.º 21
0
void dx::initialise()
{
   gDX.activeContextState = nullptr;
   gDX.activeDisplayList = nullptr;
   gDX.activeDisplayListSize = 0;
   gDX.activeDisplayListOffset = 0;
   for (auto i = 0; i < GX2_NUM_MRT_BUFFER; ++i) {
      gDX.activeColorBuffer[i] = nullptr;
   }
   gDX.activeDepthBuffer = nullptr;
   

   gDX.state.primitiveRestartIdx = 0xFFFFFFFF;


   gDX.viewport.Width = static_cast<float>(platform::ui::getWindowWidth());
   gDX.viewport.Height = static_cast<float>(platform::ui::getWindowHeight());
   gDX.viewport.MaxDepth = 1.0f;

   gDX.scissorRect.right = static_cast<LONG>(platform::ui::getWindowWidth());
   gDX.scissorRect.bottom = static_cast<LONG>(platform::ui::getWindowHeight());

   // Enable the D3D12 debug layer.
   {
      ComPtr<ID3D12Debug> debugController;
      if (SUCCEEDED(D3D12GetDebugInterface(IID_PPV_ARGS(&debugController))))
      {
         debugController->EnableDebugLayer();
      }
   }

   ComPtr<IDXGIFactory4> factory;
   ThrowIfFailed(CreateDXGIFactory1(IID_PPV_ARGS(&factory)));

   // Always use WARP for now...
   static const bool USE_WARP_DEVICE = true;
   if (USE_WARP_DEVICE)
   {
      ComPtr<IDXGIAdapter> warpAdapter;
      ThrowIfFailed(factory->EnumWarpAdapter(IID_PPV_ARGS(&warpAdapter)));

      ThrowIfFailed(D3D12CreateDevice(
         warpAdapter.Get(),
         D3D_FEATURE_LEVEL_11_0,
         IID_PPV_ARGS(&gDX.device)
         ));
   } else
   {
      ThrowIfFailed(D3D12CreateDevice(
         nullptr,
         D3D_FEATURE_LEVEL_11_0,
         IID_PPV_ARGS(&gDX.device)
         ));
   }

   // Describe and create the command queue.
   D3D12_COMMAND_QUEUE_DESC queueDesc = {};
   queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
   queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;

   ThrowIfFailed(gDX.device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&gDX.commandQueue)));

   // Describe and create the swap chain.
   DXGI_SWAP_CHAIN_DESC swapChainDesc = {};
   swapChainDesc.BufferCount = gDX.FrameCount;
   swapChainDesc.BufferDesc.Width = platform::ui::getWindowWidth();
   swapChainDesc.BufferDesc.Height = platform::ui::getWindowHeight();
   swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
   swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
   swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_DISCARD;
   swapChainDesc.OutputWindow = reinterpret_cast<HWND>(platform::ui::getWindowHandle());
   swapChainDesc.SampleDesc.Count = 1;
   swapChainDesc.Windowed = TRUE;

   ComPtr<IDXGISwapChain> swapChain;
   ThrowIfFailed(factory->CreateSwapChain(
      gDX.commandQueue.Get(),		// Swap chain needs the queue so that it can force a flush on it.
      &swapChainDesc,
      &swapChain
      ));

   ThrowIfFailed(swapChain.As(&gDX.swapChain));

   gDX.frameIndex = gDX.swapChain->GetCurrentBackBufferIndex();

   // Create descriptor heaps.
   {
      // Describe and create a render target view (RTV) descriptor heap.
      D3D12_DESCRIPTOR_HEAP_DESC rtvHeapDesc = {};
      rtvHeapDesc.NumDescriptors = gDX.FrameCount + 128;
      rtvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_RTV;
      rtvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
      gDX.rtvHeap = new DXHeap(gDX.device.Get(), rtvHeapDesc);

      // Describe and create a depth stencil view (DSV) descriptor heap.
      D3D12_DESCRIPTOR_HEAP_DESC dsvHeapDesc = {};
      dsvHeapDesc.NumDescriptors = 128;
      dsvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_DSV;
      dsvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_NONE;
      gDX.dsvHeap = new DXHeap(gDX.device.Get(), dsvHeapDesc);

      // Describe and create a constant buffer view (CBV), Shader resource
      // view (SRV), and unordered access view (UAV) descriptor heap.
      D3D12_DESCRIPTOR_HEAP_DESC srvHeapDesc = {};
      srvHeapDesc.NumDescriptors = 2048;
      srvHeapDesc.Type = D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV;
      srvHeapDesc.Flags = D3D12_DESCRIPTOR_HEAP_FLAG_SHADER_VISIBLE;
      gDX.srvHeap = new DXHeap(gDX.device.Get(), srvHeapDesc);
   }

   // Create frame resources.
   {
      // Create a RTV for each frame.
      for (UINT n = 0; n < gDX.FrameCount; n++)
      {
         ThrowIfFailed(gDX.swapChain->GetBuffer(n, IID_PPV_ARGS(&gDX.renderTargets[n])));

         gDX.scanbufferRtv[n] = gDX.rtvHeap->alloc();
         gDX.device->CreateRenderTargetView(gDX.renderTargets[n].Get(), nullptr, *gDX.scanbufferRtv[n]);
      }
   }

   // Create command allocators.
   {
      for (UINT n = 0; n < gDX.FrameCount; n++)
      {
         ThrowIfFailed(gDX.device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&gDX.commandAllocator[n])));
      }
   }

   // Create the root signature.
   {
      CD3DX12_DESCRIPTOR_RANGE ranges[GX2_NUM_SAMPLERS];
      CD3DX12_ROOT_PARAMETER rootParameters[GX2_NUM_SAMPLERS + GX2_NUM_UNIFORMBLOCKS];
      uint32_t paramIdx = 0;
      for (auto i = 0; i < GX2_NUM_UNIFORMBLOCKS; ++i) {
         gDX.cbvIndex[i] = paramIdx;
         rootParameters[paramIdx++].InitAsConstantBufferView(i, 0, D3D12_SHADER_VISIBILITY_ALL);
      }
      for (auto i = 0; i < GX2_NUM_SAMPLERS; ++i) {
         gDX.srvIndex[i] = paramIdx;
         ranges[i].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, i);
         rootParameters[paramIdx++].InitAsDescriptorTable(1, &ranges[i], D3D12_SHADER_VISIBILITY_ALL);
      }

      D3D12_STATIC_SAMPLER_DESC samplers[GX2_NUM_SAMPLERS];
      for (int i = 0; i < GX2_NUM_SAMPLERS; ++i) {
         auto &sampler = samplers[i] = {};
         sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
         sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
         sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
         sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
         sampler.MipLODBias = 0;
         sampler.MaxAnisotropy = 0;
         sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
         sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
         sampler.MinLOD = 0.0f;
         sampler.MaxLOD = D3D12_FLOAT32_MAX;
         sampler.ShaderRegister = i;
         sampler.RegisterSpace = 0;
         sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;
      }

      CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
      rootSignatureDesc.Init(_countof(rootParameters), rootParameters, GX2_NUM_SAMPLERS, samplers, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

      ComPtr<ID3DBlob> signature;
      ComPtr<ID3DBlob> error;
      ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
      ThrowIfFailed(gDX.device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&gDX.rootSignature)));
   }

   // Create the pipeline state, which includes compiling and loading shaders.
   {
      ComPtr<ID3DBlob> vertexShader;
      ComPtr<ID3DBlob> pixelShader;

#ifdef _DEBUG
      // Enable better shader debugging with the graphics debugging tools.
      UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
      UINT compileFlags = 0;
#endif

      ThrowIfFailed(D3DCompileFromFile(L"resources/shaders/screendraw.hlsl", nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
      ThrowIfFailed(D3DCompileFromFile(L"resources/shaders/screendraw.hlsl", nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

      // Define the vertex input layout.
      D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
      {
         { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
         { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
      };

      {
         D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
         psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
         psoDesc.pRootSignature = gDX.rootSignature.Get();
         psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
         psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
         psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
         psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
         psoDesc.DepthStencilState.DepthEnable = FALSE;
         psoDesc.DepthStencilState.StencilEnable = FALSE;
         psoDesc.SampleMask = UINT_MAX;
         psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
         psoDesc.NumRenderTargets = 1;
         psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
         psoDesc.SampleDesc.Count = 1;
         ThrowIfFailed(gDX.device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&gDX.emuPipelineState)));
      }
   }

   gDX.pipelineMgr = new DXPipelineMgr();

   // Create the command list.
   gDX.frameIndex = gDX.swapChain->GetCurrentBackBufferIndex();

   ThrowIfFailed(gDX.device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, gDX.commandAllocator[gDX.frameIndex].Get(), gDX.emuPipelineState.Get(), IID_PPV_ARGS(&gDX.commandList)));



   {
#define SCREENSPACE(x, y) { -1 + ((x) / (float)platform::ui::getWindowWidth()) * 2, 1 - ((y) / (float)platform::ui::getWindowHeight()) * 2, 0.0f }
      float tvX = 0;
      float tvY = 0;
      float tvWidth = static_cast<float>(platform::ui::getTvWidth());
      float tvHeight = static_cast<float>(platform::ui::getTvHeight());
      float drcX = (tvWidth - static_cast<float>(platform::ui::getDrcWidth())) / 2.0f;
      float drcY = tvHeight;
      float drcWidth = static_cast<float>(platform::ui::getDrcWidth());
      float drcHeight = static_cast<float>(platform::ui::getDrcHeight());

      struct Vertex {
         XMFLOAT3 pos;
         XMFLOAT2 uv;
      } triangleVertices[] =
      {
         { SCREENSPACE(tvX, tvY + tvHeight),{ 0.0f, 1.0f } },
         { SCREENSPACE(tvX, tvY),{ 0.0f, 0.0f } },
         { SCREENSPACE(tvX + tvWidth, tvY + tvHeight),{ 1.0f, 1.0f } },
         { SCREENSPACE(tvX + tvWidth, tvY),{ 1.0f, 0.0f } },
         { SCREENSPACE(drcX, drcY + drcHeight),{ 0.0f, 1.0f } },
         { SCREENSPACE(drcX, drcY),{ 0.0f, 0.0f } },
         { SCREENSPACE(drcX + drcWidth, drcY + drcHeight),{ 1.0f, 1.0f } },
         { SCREENSPACE(drcX + drcWidth, drcY),{ 1.0f, 0.0f } },
      };

#undef SCREENSPACE

      const UINT vertexBufferSize = sizeof(triangleVertices);

      // Note: using upload heaps to transfer static data like vert buffers is not
      // recommended. Every time the GPU needs it, the upload heap will be marshalled
      // over. Please read up on Default Heap usage. An upload heap is used here for
      // code simplicity and because there are very few verts to actually transfer.
      ThrowIfFailed(gDX.device->CreateCommittedResource(
         &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
         D3D12_HEAP_FLAG_NONE,
         &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
         D3D12_RESOURCE_STATE_GENERIC_READ,
         nullptr,
         IID_PPV_ARGS(&gDX.vertexBuffer)));

      // Copy the triangle data to the vertex buffer.
      UINT8* pVertexDataBegin;
      ThrowIfFailed(gDX.vertexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&pVertexDataBegin)));
      memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
      gDX.vertexBuffer->Unmap(0, nullptr);

      // Initialize the vertex buffer view.
      gDX.vertexBufferView.BufferLocation = gDX.vertexBuffer->GetGPUVirtualAddress();
      gDX.vertexBufferView.StrideInBytes = sizeof(Vertex);
      gDX.vertexBufferView.SizeInBytes = vertexBufferSize;
   }

   // 10MB Temporary Vertex Buffer
   gDX.ppcVertexBuffer = new DXDynBuffer(gDX.device.Get(), 10 * 1024 * 1024);

   // Close the command list and execute it to begin the initial GPU setup.
   ThrowIfFailed(gDX.commandList->Close());
   ID3D12CommandList* ppCommandLists[] = { gDX.commandList.Get() };
   gDX.commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

   // Create synchronization objects.
   {
      ThrowIfFailed(gDX.device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&gDX.fence)));

      // Create an event handle to use for frame synchronization.
      gDX.fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
      if (gDX.fenceEvent == nullptr)
      {
         ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
      }

      // Wait for frame completion
      gDX.swapCount++;
      const uint64_t fenceValue = gDX.swapCount;
      ThrowIfFailed(gDX.commandQueue->Signal(gDX.fence.Get(), fenceValue));

      if (gDX.fence->GetCompletedValue() < gDX.swapCount)
      {
         ThrowIfFailed(gDX.fence->SetEventOnCompletion(gDX.swapCount, gDX.fenceEvent));
         WaitForSingleObject(gDX.fenceEvent, INFINITE);
      }
   }

   _beginFrame();
}
// Load the sample assets.
void D3D12HelloConstBuffers::LoadAssets()
{
	// Create a root signature consisting of a single CBV parameter.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Command lists are created in the recording state, but there is nothing
	// to record yet. The main loop expects it to be closed, so close it now.
	ThrowIfFailed(m_commandList->Close());

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		ThrowIfFailed(m_vertexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(1024 * 64),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		// Describe and create a constant buffer view.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = (sizeof(ConstantBuffer) + 255) & ~255;	// CB size is required to be 256-byte aligned.
		m_device->CreateConstantBufferView(&cbvDesc, m_cbvHeap->GetCPUDescriptorHandleForHeapStart());

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		ZeroMemory(&m_constantBufferData, sizeof(m_constantBufferData));
		ThrowIfFailed(m_constantBuffer->Map(0, nullptr, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData));
	}

	// Create and record the bundle.
	{
		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_BUNDLE, m_bundleAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_bundle)));
		m_bundle->SetDescriptorHeaps(1, m_cbvHeap.GetAddressOf());
		m_bundle->SetGraphicsRootSignature(m_rootSignature.Get());
		m_bundle->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
		m_bundle->IASetVertexBuffers(0, 1, &m_vertexBufferView);
		m_bundle->SetGraphicsRootDescriptorTable(0, m_cbvHeap->GetGPUDescriptorHandleForHeapStart());
		m_bundle->DrawInstanced(3, 1, 0, 0);
		ThrowIfFailed(m_bundle->Close());
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
Exemplo n.º 23
0
	void Triangle::init_shader(ComPtr<ID3D12Device> pD3D12Device)
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);
		// Allow input layout and deny uneccessary access to certain pipeline stages.
		
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		//Create a root signature
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);
		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error);
		pD3D12Device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_pRootSignature));

		//Create the pipeline state, which includes compiling and loading shaders
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		D3DCompileFromFile(L"triangle.vsh", nullptr, nullptr, "VS_MAIN", "vs_5_0", compileFlags, 0, &vertexShader, nullptr);
		D3DCompileFromFile(L"triangle.psh", nullptr, nullptr, "PS_MAIN", "ps_5_0", compileFlags, 0, &pixelShader, nullptr);
		
		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		//Descrbe and create the graphics pipeline state object (PSO)
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = {inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_pRootSignature.Get();
		psoDesc.VS = {vertexShader->GetBufferPointer(), vertexShader->GetBufferSize() };
		psoDesc.PS = {pixelShader->GetBufferPointer(), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;
		HRESULT res = pD3D12Device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pPipelineState));
		assert(res == S_OK);
	}
// Load the sample assets.
void D3D12nBodyGravity::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[2];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[RootParametersCount];
		rootParameters[RootParameterCB].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_ALL);
		rootParameters[RootParameterSRV].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);
		rootParameters[RootParameterUAV].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);

		// The rendering pipeline does not need the UAV parameter.
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters) - 1, rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

		// Create compute signature. Must change visibility for the SRV.
		rootParameters[RootParameterSRV].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc(_countof(rootParameters), rootParameters, 0, nullptr);
		ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));

		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
	}

	// Create the pipeline states, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> geometryShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		// Load and compile shaders.
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "VSParticleDraw", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "GSParticleDraw", "gs_5_0", compileFlags, 0, &geometryShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "PSParticleDraw", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"NBodyGravityCS.hlsl").c_str(), nullptr, nullptr, "CSMain", "cs_5_0", compileFlags, 0, &computeShader, nullptr));

		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe the blend and depth states.
		CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT);
		blendDesc.RenderTarget[0].BlendEnable = TRUE;
		blendDesc.RenderTarget[0].SrcBlend = D3D12_BLEND_SRC_ALPHA;
		blendDesc.RenderTarget[0].DestBlend = D3D12_BLEND_ONE;
		blendDesc.RenderTarget[0].SrcBlendAlpha = D3D12_BLEND_ZERO;
		blendDesc.RenderTarget[0].DestBlendAlpha = D3D12_BLEND_ZERO;

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc(D3D12_DEFAULT);
		depthStencilDesc.DepthEnable = FALSE;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO;

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.GS = { reinterpret_cast<UINT8*>(geometryShader->GetBufferPointer()), geometryShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = blendDesc;
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_POINT;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D24_UNORM_S8_UINT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = { reinterpret_cast<UINT8*>(computeShader->GetBufferPointer()), computeShader->GetBufferSize() };

		ThrowIfFailed(m_device->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(&m_computeState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	CreateVertexBuffer();
	CreateParticleBuffers();

	ComPtr<ID3D12Resource> constantBufferCSUpload;

	// Create the compute shader's constant buffer.
	{
		const UINT bufferSize = sizeof(ConstantBufferCS);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(bufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_constantBufferCS)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(bufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&constantBufferCSUpload)));

		ConstantBufferCS constantBufferCS = {};
		constantBufferCS.param[0] = ParticleCount;
		constantBufferCS.param[1] = int(ceil(ParticleCount / 128.0f));
		constantBufferCS.paramf[0] = 0.1f;
		constantBufferCS.paramf[1] = 1.0f;

		D3D12_SUBRESOURCE_DATA computeCBData = {};
		computeCBData.pData = reinterpret_cast<UINT8*>(&constantBufferCS);
		computeCBData.RowPitch = bufferSize;
		computeCBData.SlicePitch = computeCBData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_constantBufferCS.Get(), constantBufferCSUpload.Get(), 0, 0, 1, &computeCBData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_constantBufferCS.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));
	}

	// Create the geometry shader's constant buffer.
	{
		const UINT constantBufferGSSize = sizeof(ConstantBufferGS) * FrameCount;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(constantBufferGSSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBufferGS)
			));

		ThrowIfFailed(m_constantBufferGS->Map(0, nullptr, reinterpret_cast<void**>(&m_pConstantBufferGSData)));
		ZeroMemory(m_pConstantBufferGSData, constantBufferGSSize);
	}

	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_renderContextFenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_renderContextFence)));
		m_renderContextFenceValue++;

		m_renderContextFenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_renderContextFenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		WaitForRenderContext();
	}
}
// Load the sample assets.
void D3D12HelloTriangle::LoadAssets()
{
    // Create an empty root signature.
    {
        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Describe and create the graphics pipeline state object (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
        psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.SampleDesc.Count = 1;
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

    // Command lists are created in the recording state, but there is nothing
    // to record yet. The main loop expects it to be closed, so close it now.
    ThrowIfFailed(m_commandList->Close());

    // Create the vertex buffer.
    {
        // Define the geometry for a triangle.
        Vertex triangleVertices[] =
        {
            { { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
            { { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
        };

        const UINT vertexBufferSize = sizeof(triangleVertices);

        // Note: using upload heaps to transfer static data like vert buffers is not
        // recommended. Every time the GPU needs it, the upload heap will be marshalled
        // over. Please read up on Default Heap usage. An upload heap is used here for
        // code simplicity and because there are very few verts to actually transfer.
        ThrowIfFailed(m_device->CreateCommittedResource(
                          &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
                          D3D12_HEAP_FLAG_NONE,
                          &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
                          D3D12_RESOURCE_STATE_GENERIC_READ,
                          nullptr,
                          IID_PPV_ARGS(&m_vertexBuffer)));

        // Copy the triangle data to the vertex buffer.
        UINT8* pVertexDataBegin;
        CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
        ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
        memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
        m_vertexBuffer->Unmap(0, nullptr);

        // Initialize the vertex buffer view.
        m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_vertexBufferView.StrideInBytes = sizeof(Vertex);
        m_vertexBufferView.SizeInBytes = vertexBufferSize;
    }

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValue = 1;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command
        // list in our main loop but for now, we just want to wait for setup to
        // complete before continuing.
        WaitForPreviousFrame();
    }
}
// Load the sample assets.
void D3D12Multithreading::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[4]; // Perfomance TIP: Order from most frequent to least frequent.
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 1);		// 2 frequently changed diffuse + normal textures - using registers t1 and t2.
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);		// 1 frequently changed constant buffer.
		ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);		// 1 infrequently changed shadow texture - starting in register t0.
		ranges[3].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 2, 0);	// 2 static samplers.

		CD3DX12_ROOT_PARAMETER rootParameters[4];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);
		rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[3].InitAsDescriptorTable(1, &ranges[3], D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = D3DCOMPILE_OPTIMIZATION_LEVEL3;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		D3D12_INPUT_LAYOUT_DESC inputLayoutDesc;
		inputLayoutDesc.pInputElementDescs = SampleAssets::StandardVertexDescription;
		inputLayoutDesc.NumElements = _countof(SampleAssets::StandardVertexDescription);

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc(D3D12_DEFAULT);
		depthStencilDesc.DepthEnable = true;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
		depthStencilDesc.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
		depthStencilDesc.StencilEnable = FALSE;

		// Describe and create the PSO for rendering the scene.
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = inputLayoutDesc;
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		// Alter the description and create the PSO for rendering
		// the shadow map.  The shadow map does not use a pixel
		// shader or render targets.
		psoDesc.PS.pShaderBytecode = 0;
		psoDesc.PS.BytecodeLength = 0;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_UNKNOWN;
		psoDesc.NumRenderTargets = 0;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStateShadowMap)));
	}

	// Create temporary command list for initial GPU setup.
	ComPtr<ID3D12GraphicsCommandList> commandList;
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&commandList)));

	// Create render target views (RTVs).
	CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
	for (UINT i = 0; i < FrameCount; i++)
	{
		ThrowIfFailed(m_swapChain->GetBuffer(i, IID_PPV_ARGS(&m_renderTargets[i])));
		m_device->CreateRenderTargetView(m_renderTargets[i].Get(), nullptr, rtvHandle);
		rtvHandle.Offset(1, m_rtvDescriptorSize);
	}

	// Create the depth stencil.
	{
		CD3DX12_RESOURCE_DESC shadowTextureDesc(
			D3D12_RESOURCE_DIMENSION_TEXTURE2D,
			0,
			static_cast<UINT>(m_viewport.Width), 
			static_cast<UINT>(m_viewport.Height), 
			1,
			1,
			DXGI_FORMAT_D32_FLOAT,
			1, 
			0,
			D3D12_TEXTURE_LAYOUT_UNKNOWN,
			D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL | D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE);

		D3D12_CLEAR_VALUE clearValue;	// Performance tip: Tell the runtime at resource creation the desired clear value.
		clearValue.Format = DXGI_FORMAT_D32_FLOAT;
		clearValue.DepthStencil.Depth = 1.0f;
		clearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&shadowTextureDesc,
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&clearValue,
			IID_PPV_ARGS(&m_depthStencil)));

		// Create the depth stencil view.
		m_device->CreateDepthStencilView(m_depthStencil.Get(), nullptr, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Load scene assets.
	UINT fileSize = 0;
	UINT8* pAssetData;
	ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(SampleAssets::DataFileName).c_str(), &pAssetData, &fileSize));

	// Create the vertex buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_vertexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the vertex buffer.
			D3D12_SUBRESOURCE_DATA vertexData = {};
			vertexData.pData = pAssetData + SampleAssets::VertexDataOffset;
			vertexData.RowPitch = SampleAssets::VertexDataSize;
			vertexData.SlicePitch = vertexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy vertex buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_vertexBuffer.Get(), m_vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.SizeInBytes = SampleAssets::VertexDataSize;
		m_vertexBufferView.StrideInBytes = SampleAssets::StandardVertexStride;
	}

	// Create the index buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_indexBuffer)));

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_indexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the index buffer.
			D3D12_SUBRESOURCE_DATA indexData = {};
			indexData.pData = pAssetData + SampleAssets::IndexDataOffset;
			indexData.RowPitch = SampleAssets::IndexDataSize;
			indexData.SlicePitch = indexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy index buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_indexBuffer.Get(), m_indexBufferUpload.Get(), 0, 0, 1, &indexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_INDEX_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the index buffer view.
		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.SizeInBytes = SampleAssets::IndexDataSize;
		m_indexBufferView.Format = SampleAssets::StandardIndexFormat;
	}

	// Create shader resources.
	{
		// Get the CBV SRV descriptor size for the current device.
		const UINT cbvSrvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE cbvSrvHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart());

		{
			// Describe and create 2 null SRVs. Null descriptors are needed in order 
			// to achieve the effect of an "unbound" resource.
			D3D12_SHADER_RESOURCE_VIEW_DESC nullSrvDesc = {};
			nullSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			nullSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			nullSrvDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
			nullSrvDesc.Texture2D.MipLevels = 1;
			nullSrvDesc.Texture2D.MostDetailedMip = 0;
			nullSrvDesc.Texture2D.ResourceMinLODClamp = 0.0f;

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}

		// Create each texture and SRV descriptor.
		const UINT srvCount = _countof(SampleAssets::Textures);
		PIXBeginEvent(commandList.Get(), 0, L"Copy diffuse and normal texture data to default resources...");
		for (int i = 0; i < srvCount; i++)
		{
			// Describe and create a Texture2D.
			const SampleAssets::TextureResource &tex = SampleAssets::Textures[i];
			CD3DX12_RESOURCE_DESC texDesc(
				D3D12_RESOURCE_DIMENSION_TEXTURE2D,
				0,
				tex.Width, 
				tex.Height, 
				1,
				static_cast<UINT16>(tex.MipLevels),
				tex.Format,
				1, 
				0,
				D3D12_TEXTURE_LAYOUT_UNKNOWN,
				D3D12_RESOURCE_FLAG_NONE);

			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&texDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_textures[i])));

			{
				const UINT subresourceCount = texDesc.DepthOrArraySize * texDesc.MipLevels;
				UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_textures[i].Get(), 0, subresourceCount);
				ThrowIfFailed(m_device->CreateCommittedResource(
					&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
					D3D12_HEAP_FLAG_NONE,
					&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
					D3D12_RESOURCE_STATE_GENERIC_READ,
					nullptr,
					IID_PPV_ARGS(&m_textureUploads[i])));

				// Copy data to the intermediate upload heap and then schedule a copy 
				// from the upload heap to the Texture2D.
				D3D12_SUBRESOURCE_DATA textureData = {};
				textureData.pData = pAssetData + tex.Data->Offset;
				textureData.RowPitch = tex.Data->Pitch;
				textureData.SlicePitch = tex.Data->Size;

				UpdateSubresources(commandList.Get(), m_textures[i].Get(), m_textureUploads[i].Get(), 0, 0, subresourceCount, &textureData);
				commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_textures[i].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
			}

			// Describe and create an SRV.
			D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
			srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			srvDesc.Format = tex.Format;
			srvDesc.Texture2D.MipLevels = tex.MipLevels;
			srvDesc.Texture2D.MostDetailedMip = 0;
			srvDesc.Texture2D.ResourceMinLODClamp = 0.0f;
			m_device->CreateShaderResourceView(m_textures[i].Get(), &srvDesc, cbvSrvHandle);

			// Move to the next descriptor slot.
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}
		PIXEndEvent(commandList.Get());
	}

	free(pAssetData);

	// Create the samplers.
	{
		// Get the sampler descriptor size for the current device.
		const UINT samplerDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE samplerHandle(m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

		// Describe and create the wrapping sampler, which is used for 
		// sampling diffuse/normal maps.
		D3D12_SAMPLER_DESC wrapSamplerDesc = {};
		wrapSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		wrapSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.MinLOD = 0;
		wrapSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		wrapSamplerDesc.MipLODBias = 0.0f;
		wrapSamplerDesc.MaxAnisotropy = 1;
		wrapSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		wrapSamplerDesc.BorderColor[0] = wrapSamplerDesc.BorderColor[1] = wrapSamplerDesc.BorderColor[2] = wrapSamplerDesc.BorderColor[3] = 0;
		m_device->CreateSampler(&wrapSamplerDesc, samplerHandle);

		// Move the handle to the next slot in the descriptor heap.
		samplerHandle.Offset(samplerDescriptorSize);

		// Describe and create the point clamping sampler, which is 
		// used for the shadow map.
		D3D12_SAMPLER_DESC clampSamplerDesc = {};
		clampSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		clampSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.MipLODBias = 0.0f;
		clampSamplerDesc.MaxAnisotropy = 1;
		clampSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		clampSamplerDesc.BorderColor[0] = clampSamplerDesc.BorderColor[1] = clampSamplerDesc.BorderColor[2] = clampSamplerDesc.BorderColor[3] = 0;
		clampSamplerDesc.MinLOD = 0;
		clampSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		m_device->CreateSampler(&clampSamplerDesc, samplerHandle);
	}

	// Create lights.
	for (int i = 0; i < NumLights; i++)
	{
		// Set up each of the light positions and directions (they all start 
		// in the same place).
		m_lights[i].position = { 0.0f, 15.0f, -30.0f, 1.0f };
		m_lights[i].direction = { 0.0, 0.0f, 1.0f, 0.0f };
		m_lights[i].falloff = { 800.0f, 1.0f, 0.0f, 1.0f };
		m_lights[i].color = { 0.7f, 0.7f, 0.7f, 1.0f };

		XMVECTOR eye = XMLoadFloat4(&m_lights[i].position);
		XMVECTOR at = XMVectorAdd(eye, XMLoadFloat4(&m_lights[i].direction));
		XMVECTOR up = { 0, 1, 0 };

		m_lightCameras[i].Set(eye, at, up);
	}

	// Close the command list and use it to execute the initial GPU setup.
	ThrowIfFailed(commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create frame resources.
	for (int i = 0; i < FrameCount; i++)
	{
		m_frameResources[i] = new FrameResource(m_device.Get(), m_pipelineState.Get(), m_pipelineStateShadowMap.Get(), m_dsvHeap.Get(), m_cbvSrvHeap.Get(), &m_viewport, i);
		m_frameResources[i]->WriteConstantBuffers(&m_viewport, &m_camera, m_lightCameras, m_lights);
	}
	m_currentFrameResourceIndex = 0;
	m_pCurrentFrameResource = m_frameResources[m_currentFrameResourceIndex];

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.

		// Signal and increment the fence value.
		const UINT64 fenceToWaitFor = m_fenceValue;
		ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fenceToWaitFor));
		m_fenceValue++;

		// Wait until the fence is completed.
		ThrowIfFailed(m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent));
		WaitForSingleObject(m_fenceEvent, INFINITE);
	}
}
// Load the sample assets.
void D3D12HelloTexture::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[1];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 0.5f, 0.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		ThrowIfFailed(m_vertexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create an upload heap to load the texture onto the GPU. ComPtr's are CPU objects
	// but this heap needs to stay in scope until the GPU work is complete. We will
	// synchronize with the GPU at the end of this method before the ComPtr is destroyed.
	ComPtr<ID3D12Resource> textureUploadHeap;

	// Create the texture.
	{
		// Describe and create a Texture2D.
		D3D12_RESOURCE_DESC textureDesc = {};
		textureDesc.MipLevels = 1;
		textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
		textureDesc.Width = TextureWidth;
		textureDesc.Height = TextureHeight;
		textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
		textureDesc.DepthOrArraySize = 1;
		textureDesc.SampleDesc.Count = 1;
		textureDesc.SampleDesc.Quality = 0;
		textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&textureDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_texture)));

		const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_texture.Get(), 0, 1);

		// Create the GPU upload buffer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&textureUploadHeap)));

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		std::vector<UINT8> texture = GenerateTextureData();

		D3D12_SUBRESOURCE_DATA textureData = {};
		textureData.pData = &texture[0];
		textureData.RowPitch = TextureWidth * TexturePixelSize;
		textureData.SlicePitch = textureData.RowPitch * TextureHeight;

		UpdateSubresources(m_commandList.Get(), m_texture.Get(), textureUploadHeap.Get(), 0, 0, 1, &textureData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_texture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));

		// Describe and create a SRV for the texture.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = textureDesc.Format;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
		srvDesc.Texture2D.MipLevels = 1;
		m_device->CreateShaderResourceView(m_texture.Get(), &srvDesc, m_srvHeap->GetCPUDescriptorHandleForHeapStart());
	}
	
	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
void Application::CreatePSO()
{
	ComPtr<ID3DBlob> vertexShader, pixelShader;

#ifdef _DEBUG
	// Enable better shader debugging with the graphics debugging tools.
	UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
	UINT compileFlags = 0;
#endif

	ID3D10Blob* errorMessages;
	if (FAILED(D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, &errorMessages)))
	{
		if (errorMessages)
		{
			std::cout << static_cast<char*>(errorMessages->GetBufferPointer()) << std::endl;
			errorMessages->Release();
		}
		if (errorMessages)
			errorMessages->Release();

		CRITICAL_ERROR("Failed to compile vertex shader.");
	}
	if (FAILED(D3DCompileFromFile(L"shaders.hlsl", nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, &errorMessages)))
	{
		if (errorMessages)
		{
			std::cout << static_cast<char*>(errorMessages->GetBufferPointer()) << std::endl;
			errorMessages->Release();
		}
		if (errorMessages)
			errorMessages->Release();

		CRITICAL_ERROR("Failed to compile pixel shader.");
	}

	// Define the vertex input layout.
	D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
	{
		{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 8, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
	};

	// Describe and create the graphics pipeline state object (PSO).
	D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
	psoDesc.pRootSignature = rootSignature.Get();
	psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
	psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
	psoDesc.DS;
	psoDesc.HS;
	psoDesc.GS;
	psoDesc.StreamOutput;
	psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
	psoDesc.SampleMask = UINT_MAX;
	psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
	psoDesc.RasterizerState.CullMode = D3D12_CULL_MODE_NONE;
	psoDesc.DepthStencilState.DepthEnable = FALSE;
	psoDesc.DepthStencilState.StencilEnable = FALSE;
	psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
	psoDesc.IBStripCutValue = D3D12_INDEX_BUFFER_STRIP_CUT_VALUE_DISABLED;
	psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
	psoDesc.NumRenderTargets = 1;
	psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
	psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
	psoDesc.SampleDesc.Count = 1;
	psoDesc.CachedPSO;
	
	if(FAILED(device->GetD3D12Device()->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&pso))))
		CRITICAL_ERROR("Failed to PSO.");
}
Exemplo n.º 29
0
// Load the sample assets.
void D3D12HDR::LoadAssets()
{
    // Create a root signature containing root constants for brightness information
    // and the desired output curve as well as a SRV descriptor table pointing to the
    // intermediate render targets.
    {
        CD3DX12_DESCRIPTOR_RANGE ranges[1];
        ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 0);

        CD3DX12_ROOT_PARAMETER rootParameters[2];
        rootParameters[0].InitAsConstants(4, 0);
        rootParameters[1].InitAsDescriptorTable(1, &ranges[0]);

        D3D12_STATIC_SAMPLER_DESC sampler = {};
        sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
        sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
        sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
        sampler.MaxLOD = D3D12_FLOAT32_MAX;
        sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

        // Allow input layout and deny uneccessary access to certain pipeline stages.
        D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
            D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
            D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
    }

    // Create the pipeline state objects for the different views and render target formats
    // as well as the intermediate blend step.
    {
        // Create the pipeline state for the scene geometry.

        D3D12_INPUT_ELEMENT_DESC gradientElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        // Describe and create the graphics pipeline state objects (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { gradientElementDescs, _countof(gradientElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_gradientVS, sizeof(g_gradientVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_gradientPS, sizeof(g_gradientPS));
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = m_intermediateRenderTargetFormat;
        psoDesc.SampleDesc.Count = 1;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[GradientPSO])));

        // Create pipeline state for the color space triangles.

        D3D12_INPUT_ELEMENT_DESC colorElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        psoDesc.InputLayout = { colorElementDescs, _countof(colorElementDescs) };
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_paletteVS, sizeof(g_paletteVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_palettePS, sizeof(g_palettePS));
        psoDesc.RTVFormats[0] = m_intermediateRenderTargetFormat;

        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[PalettePSO])));

        // Create pipeline states for the final blend step.
        // There will be one for each swap chain format the sample supports.

        D3D12_INPUT_ELEMENT_DESC quadElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
        };

        psoDesc.InputLayout = { quadElementDescs, _countof(quadElementDescs) };
        psoDesc.VS = CD3DX12_SHADER_BYTECODE(g_presentVS, sizeof(g_presentVS));
        psoDesc.PS = CD3DX12_SHADER_BYTECODE(g_presentPS, sizeof(g_presentPS));
        psoDesc.RTVFormats[0] = m_swapChainFormats[_8];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present8bitPSO])));

        psoDesc.RTVFormats[0] = m_swapChainFormats[_10];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present10bitPSO])));

        psoDesc.RTVFormats[0] = m_swapChainFormats[_16];
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStates[Present16bitPSO])));
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), nullptr, IID_PPV_ARGS(&m_commandList)));

    // Create the vertex buffer.
    {
        // Create geometry for the different sections of the render target.
        GradientVertex gradientVertices[] =
        {
            // Upper strip. SDR Gradient from [0,1].

            { { -1.0f, 0.45f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { -1.0f, 0.55f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { 0.0f, 0.45f, 0.0f }, { 1.0f, 1.0f, 1.0f } },
            { { 0.0f, 0.55f, 0.0f }, { 1.0f, 1.0f, 1.0f } },

            // Lower strip. HDR Gradient from [0,9]. Perceptually, 9.0 is about 3 times as bright as 1.0. (See gradientPS.hlsl.)

            { { -1.0f, -0.55f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { -1.0f, -0.45f, 0.0f }, { 0.0f, 0.0f, 0.0f } },
            { { 0.0f, -0.55f, 0.0f }, { 3.0f, 3.0f, 3.0f } },
            { { 0.0f, -0.45f, 0.0f }, { 3.0f, 3.0f, 3.0f } },
        };

        // The vertices for the color space triangles are dependent on the size of the
        // render target and will not be loaded at this time. We'll leave a gap in the
        // buffer that will be filled in later.
        const UINT triangleVerticesSize = sizeof(TrianglesVertex) * TrianglesVertexCount;
        m_updateVertexBuffer = true;

        PresentVertex presentVertices[] =
        {
            // 1 triangle that fills the entire render target.

            { { -1.0f, -3.0f, 0.0f }, { 0.0f, 2.0f } },    // Bottom left
            { { -1.0f, 1.0f, 0.0f }, { 0.0f, 0.0f } },    // Top left
            { { 3.0f, 1.0f, 0.0f }, { 2.0f, 0.0f } },    // Top right
        };

        const UINT vertexBufferSize = sizeof(gradientVertices) + triangleVerticesSize + sizeof(presentVertices);

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER,
            nullptr,
            IID_PPV_ARGS(&m_vertexBuffer)));

        ThrowIfFailed(m_device->CreateCommittedResource(
            &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
            D3D12_HEAP_FLAG_NONE,
            &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
            D3D12_RESOURCE_STATE_GENERIC_READ,
            nullptr,
            IID_PPV_ARGS(&m_vertexBufferUpload)));

        // Copy data to the intermediate upload heap. It will be uploaded to the
        // DEFAULT buffer when the color space triangle vertices are updated.
        UINT8* mappedUploadHeap = nullptr;
        ThrowIfFailed(m_vertexBufferUpload->Map(0, &CD3DX12_RANGE(0, 0), reinterpret_cast<void**>(&mappedUploadHeap)));

        memcpy(mappedUploadHeap, gradientVertices, sizeof(gradientVertices));
        mappedUploadHeap += sizeof(gradientVertices) + triangleVerticesSize;
        memcpy(mappedUploadHeap, presentVertices, sizeof(presentVertices));

        m_vertexBufferUpload->Unmap(0, &CD3DX12_RANGE(0, 0));

        // Initialize the vertex buffer views.
        m_gradientVertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_gradientVertexBufferView.StrideInBytes = sizeof(GradientVertex);
        m_gradientVertexBufferView.SizeInBytes = sizeof(gradientVertices);

        m_trianglesVertexBufferView.BufferLocation = m_gradientVertexBufferView.BufferLocation + m_gradientVertexBufferView.SizeInBytes;
        m_trianglesVertexBufferView.StrideInBytes = sizeof(TrianglesVertex);
        m_trianglesVertexBufferView.SizeInBytes = triangleVerticesSize;

        m_presentVertexBufferView.BufferLocation = m_trianglesVertexBufferView.BufferLocation + m_trianglesVertexBufferView.SizeInBytes;
        m_presentVertexBufferView.StrideInBytes = sizeof(PresentVertex);
        m_presentVertexBufferView.SizeInBytes = sizeof(presentVertices);
    }

    LoadSizeDependentResources();

    // Close the command list and execute it to begin the vertex buffer copy into
    // the default heap.
    ThrowIfFailed(m_commandList->Close());
    ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
    m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValues[m_frameIndex]++;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command 
        // list in our main loop but for now, we just want to wait for setup to 
        // complete before continuing.
        WaitForGpu();
    }
}
// Load the sample assets.
void D3D12Fullscreen::LoadAssets()
{
	D3D12_FEATURE_DATA_ROOT_SIGNATURE featureData = {};

	// This is the highest version the sample supports. If CheckFeatureSupport succeeds, the HighestVersion returned will not be greater than this.
	featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_1;

	if (FAILED(m_device->CheckFeatureSupport(D3D12_FEATURE_ROOT_SIGNATURE, &featureData, sizeof(featureData))))
	{
		featureData.HighestVersion = D3D_ROOT_SIGNATURE_VERSION_1_0;
	}

	// Create a root signature consisting of a descriptor table with a single CBV.
	{
		CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
		CD3DX12_ROOT_PARAMETER1 rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0, 0, D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_sceneRootSignature)));
		NAME_D3D12_OBJECT(m_sceneRootSignature);
	}

	// Create a root signature consisting of a descriptor table with a SRV and a sampler.
	{
		CD3DX12_DESCRIPTOR_RANGE1 ranges[1];
		CD3DX12_ROOT_PARAMETER1 rootParameters[1];

		// We don't modify the SRV in the post-processing command list after
		// SetGraphicsRootDescriptorTable is executed on the GPU so we can use the default
		// range behavior: D3D12_DESCRIPTOR_RANGE_FLAG_DATA_STATIC_WHILE_SET_AT_EXECUTE
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		// Allow input layout and pixel shader access and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;

		// Create a sampler.
		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_VERSIONED_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init_1_1(_countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3DX12SerializeVersionedRootSignature(&rootSignatureDesc, featureData.HighestVersion, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_postRootSignature)));
		NAME_D3D12_OBJECT(m_postRootSignature);
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> sceneVertexShader;
		ComPtr<ID3DBlob> scenePixelShader;
		ComPtr<ID3DBlob> postVertexShader;
		ComPtr<ID3DBlob> postPixelShader;
		ComPtr<ID3DBlob> error;

#if defined(_DEBUG)
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &sceneVertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"sceneShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &scenePixelShader, &error));

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &postVertexShader, &error));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"postShaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &postPixelShader, &error));

		// Define the vertex input layouts.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};
		D3D12_INPUT_ELEMENT_DESC scaleInputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state objects (PSOs).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_sceneRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(sceneVertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(scenePixelShader.Get());
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_scenePipelineState)));
		NAME_D3D12_OBJECT(m_scenePipelineState);

		psoDesc.InputLayout = { scaleInputElementDescs, _countof(scaleInputElementDescs) };
		psoDesc.pRootSignature = m_postRootSignature.Get();
		psoDesc.VS = CD3DX12_SHADER_BYTECODE(postVertexShader.Get());
		psoDesc.PS = CD3DX12_SHADER_BYTECODE(postPixelShader.Get());

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_postPipelineState)));
		NAME_D3D12_OBJECT(m_postPipelineState);
	}

	// Single-use command allocator and command list for creating resources.
	ComPtr<ID3D12CommandAllocator> commandAllocator;
	ComPtr<ID3D12GraphicsCommandList> commandList;

	ThrowIfFailed(m_device->CreateCommandAllocator(D3D12_COMMAND_LIST_TYPE_DIRECT, IID_PPV_ARGS(&commandAllocator)));
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, commandAllocator.Get(), nullptr, IID_PPV_ARGS(&commandList)));

	// Create the command lists.
	{
		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_sceneCommandAllocators[m_frameIndex].Get(), m_scenePipelineState.Get(), IID_PPV_ARGS(&m_sceneCommandList)));
		NAME_D3D12_OBJECT(m_sceneCommandList);

		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_postCommandAllocators[m_frameIndex].Get(), m_postPipelineState.Get(), IID_PPV_ARGS(&m_postCommandList)));
		NAME_D3D12_OBJECT(m_postCommandList);

		// Close the command lists.
		ThrowIfFailed(m_sceneCommandList->Close());
		ThrowIfFailed(m_postCommandList->Close());
	}

	LoadSizeDependentResources();
	LoadSceneResolutionDependentResources();

	// Create/update the vertex buffer.
	ComPtr<ID3D12Resource> sceneVertexBufferUpload;
	{
		// Define the geometry for a thin quad that will animate across the screen.
		const float x = QuadWidth / 2.0f;
		const float y = QuadHeight / 2.0f;
		SceneVertex quadVertices[] =
		{
			{ { -x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { -x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, -y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } },
			{ { x, y, 1.0f }, { 1.0f, 1.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_sceneVertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&sceneVertexBufferUpload)));

		NAME_D3D12_OBJECT(m_sceneVertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(sceneVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		sceneVertexBufferUpload->Unmap(0, nullptr);

		commandList->CopyBufferRegion(m_sceneVertexBuffer.Get(), 0, sceneVertexBufferUpload.Get(), 0, vertexBufferSize);
		commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_sceneVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_sceneVertexBufferView.BufferLocation = m_sceneVertexBuffer->GetGPUVirtualAddress();
		m_sceneVertexBufferView.StrideInBytes = sizeof(SceneVertex);
		m_sceneVertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create/update the fullscreen quad vertex buffer.
	ComPtr<ID3D12Resource> postVertexBufferUpload;
	{
		// Define the geometry for a fullscreen quad.
		PostVertex quadVertices[] =
		{
			{ { -1.0f, -1.0f, 0.0f, 1.0f }, { 0.0f, 0.0f } },	// Bottom left.
			{ { -1.0f, 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f } },	// Top left.
			{ { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, 0.0f } },	// Bottom right.
			{ { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f } }		// Top right.
		};

		const UINT vertexBufferSize = sizeof(quadVertices);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_postVertexBuffer)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&postVertexBufferUpload)));

		NAME_D3D12_OBJECT(m_postVertexBuffer);

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the vertex buffer.
		UINT8* pVertexDataBegin;
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(postVertexBufferUpload->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, quadVertices, sizeof(quadVertices));
		postVertexBufferUpload->Unmap(0, nullptr);

		commandList->CopyBufferRegion(m_postVertexBuffer.Get(), 0, postVertexBufferUpload.Get(), 0, vertexBufferSize);
		commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_postVertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

		// Initialize the vertex buffer views.
		m_postVertexBufferView.BufferLocation = m_postVertexBuffer->GetGPUVirtualAddress();
		m_postVertexBufferView.StrideInBytes = sizeof(PostVertex);
		m_postVertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(sizeof(SceneConstantBuffer) * FrameCount),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_sceneConstantBuffer)));

		NAME_D3D12_OBJECT(m_sceneConstantBuffer);

		// Describe and create constant buffer views.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_sceneConstantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = sizeof(SceneConstantBuffer);

		CD3DX12_CPU_DESCRIPTOR_HANDLE cpuHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart(), 1, m_cbvSrvDescriptorSize);

		for (UINT n = 0; n < FrameCount; n++)
		{
			m_device->CreateConstantBufferView(&cbvDesc, cpuHandle);

			cbvDesc.BufferLocation += sizeof(SceneConstantBuffer);
			cpuHandle.Offset(m_cbvSrvDescriptorSize);
		}

		// Map and initialize the constant buffer. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
		ThrowIfFailed(m_sceneConstantBuffer->Map(0, &readRange, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_sceneConstantBufferData, sizeof(m_sceneConstantBufferData));
	}

	// Close the resource creation command list and execute it to begin the vertex buffer copy into
	// the default heap.
	ThrowIfFailed(commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValues[m_frameIndex], D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValues[m_frameIndex]++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute before continuing.
		WaitForGpu();
	}
}