Exemplo n.º 1
0
/*
 * ShardStorageType returns the shard storage type according to relation type.
 */
char
ShardStorageType(Oid relationId)
{
	char shardStorageType = 0;

	char relationType = get_rel_relkind(relationId);
	if (RegularTable(relationId))
	{
		shardStorageType = SHARD_STORAGE_TABLE;
	}
	else if (relationType == RELKIND_FOREIGN_TABLE)
	{
		bool cstoreTable = CStoreTable(relationId);
		if (cstoreTable)
		{
			shardStorageType = SHARD_STORAGE_COLUMNAR;
		}
		else
		{
			shardStorageType = SHARD_STORAGE_FOREIGN;
		}
	}
	else
	{
		ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("unexpected relation type: %c", relationType)));
	}

	return shardStorageType;
}
Exemplo n.º 2
0
/*
 * citus_total_relation_size accepts a table name and returns a distributed table
 * and its indexes' total relation size.
 */
Datum
citus_total_relation_size(PG_FUNCTION_ARGS)
{
	Oid relationId = PG_GETARG_OID(0);
	uint64 totalRelationSize = 0;
	char *tableSizeFunction = PG_TOTAL_RELATION_SIZE_FUNCTION;

	CheckCitusVersion(ERROR);

	if (CStoreTable(relationId))
	{
		tableSizeFunction = CSTORE_TABLE_SIZE_FUNCTION;
	}

	totalRelationSize = DistributedTableSize(relationId, tableSizeFunction);

	PG_RETURN_INT64(totalRelationSize);
}
Exemplo n.º 3
0
/*
 * CStoreProcessUtility is the hook for handling utility commands. This function
 * intercepts "COPY cstore_table FROM" statements, and redirectes execution to
 * CopyIntoCStoreTable function. For all other utility statements, the function
 * calls the previous utility hook or the standard utility command.
 */
static void
CStoreProcessUtility(Node *parseTree, const char *queryString,
					 ProcessUtilityContext context, ParamListInfo paramListInfo,
					 DestReceiver *destReceiver, char *completionTag)
{
	bool copyIntoCStoreTable = false;

	/* check if the statement is a "COPY cstore_table FROM ..." statement */
	if (nodeTag(parseTree) == T_CopyStmt)
	{
		CopyStmt *copyStatement = (CopyStmt *) parseTree;
		if (copyStatement->is_from && CStoreTable(copyStatement->relation))
		{
			copyIntoCStoreTable = true;
		}
	}

	if (copyIntoCStoreTable)
	{
		uint64 processed = CopyIntoCStoreTable((CopyStmt *) parseTree, queryString);
		if (completionTag != NULL)
		{
			snprintf(completionTag, COMPLETION_TAG_BUFSIZE,
					 "COPY " UINT64_FORMAT, processed);
		}
	}
	else if (PreviousProcessUtilityHook != NULL)
	{
		PreviousProcessUtilityHook(parseTree, queryString, context, paramListInfo,
								   destReceiver, completionTag);
	}
	else
	{
		standard_ProcessUtility(parseTree, queryString, context, paramListInfo,
								destReceiver, completionTag);
	}
}
Exemplo n.º 4
0
/*
 * master_create_empty_shard creates an empty shard for the given distributed
 * table. For this, the function first gets a list of candidate nodes, connects
 * to these nodes, and issues DDL commands on the nodes to create empty shard
 * placements. The function then updates metadata on the master node to make
 * this shard (and its placements) visible.
 */
Datum
master_create_empty_shard(PG_FUNCTION_ARGS)
{
	text *relationNameText = PG_GETARG_TEXT_P(0);
	char *relationName = text_to_cstring(relationNameText);
	Datum shardIdDatum = 0;
	int64 shardId = INVALID_SHARD_ID;
	List *ddlEventList = NULL;
	uint32 attemptableNodeCount = 0;
	uint32 liveNodeCount = 0;

	uint32 candidateNodeCount = 0;
	List *candidateNodeList = NIL;
	text *nullMinValue = NULL;
	text *nullMaxValue = NULL;
	char partitionMethod = 0;
	char storageType = SHARD_STORAGE_TABLE;

	Oid relationId = ResolveRelationId(relationNameText);
	char *relationOwner = TableOwner(relationId);

	EnsureTablePermissions(relationId, ACL_INSERT);
	CheckDistributedTable(relationId);

	if (CStoreTable(relationId))
	{
		storageType = SHARD_STORAGE_COLUMNAR;
	}

	partitionMethod = PartitionMethod(relationId);
	if (partitionMethod == DISTRIBUTE_BY_HASH)
	{
		ereport(ERROR, (errmsg("relation \"%s\" is a hash partitioned table",
							   relationName),
						errdetail("We currently don't support creating shards "
								  "on hash-partitioned tables")));
	}

	/* generate new and unique shardId from sequence */
	shardIdDatum = master_get_new_shardid(NULL);
	shardId = DatumGetInt64(shardIdDatum);

	/* get table DDL commands to replay on the worker node */
	ddlEventList = GetTableDDLEvents(relationId);

	/* if enough live nodes, add an extra candidate node as backup */
	attemptableNodeCount = ShardReplicationFactor;
	liveNodeCount = WorkerGetLiveNodeCount();
	if (liveNodeCount > ShardReplicationFactor)
	{
		attemptableNodeCount = ShardReplicationFactor + 1;
	}

	/* first retrieve a list of random nodes for shard placements */
	while (candidateNodeCount < attemptableNodeCount)
	{
		WorkerNode *candidateNode = WorkerGetCandidateNode(candidateNodeList);
		if (candidateNode == NULL)
		{
			ereport(ERROR, (errmsg("could only find %u of %u possible nodes",
								   candidateNodeCount, attemptableNodeCount)));
		}

		candidateNodeList = lappend(candidateNodeList, candidateNode);
		candidateNodeCount++;
	}

	CreateShardPlacements(shardId, ddlEventList, relationOwner,
						  candidateNodeList, 0, ShardReplicationFactor);

	InsertShardRow(relationId, shardId, storageType, nullMinValue, nullMaxValue);

	PG_RETURN_INT64(shardId);
}
Exemplo n.º 5
0
/*
 * master_append_table_to_shard appends the given table's contents to the given
 * shard, and updates shard metadata on the master node. If the function fails
 * to append table data to all shard placements, it doesn't update any metadata
 * and errors out. Else if the function fails to append table data to some of
 * the shard placements, it marks those placements as invalid. These invalid
 * placements will get cleaned up during shard rebalancing.
 */
Datum
master_append_table_to_shard(PG_FUNCTION_ARGS)
{
	uint64 shardId = PG_GETARG_INT64(0);
	text *sourceTableNameText = PG_GETARG_TEXT_P(1);
	text *sourceNodeNameText = PG_GETARG_TEXT_P(2);
	uint32 sourceNodePort = PG_GETARG_UINT32(3);
	char *sourceTableName = text_to_cstring(sourceTableNameText);
	char *sourceNodeName = text_to_cstring(sourceNodeNameText);

	char *shardName = NULL;
	List *shardPlacementList = NIL;
	List *succeededPlacementList = NIL;
	List *failedPlacementList = NIL;
	ListCell *shardPlacementCell = NULL;
	ListCell *failedPlacementCell = NULL;
	uint64 newShardSize = 0;
	uint64 shardMaxSizeInBytes = 0;
	float4 shardFillLevel = 0.0;
	char partitionMethod = 0;

	ShardInterval *shardInterval = LoadShardInterval(shardId);
	Oid relationId = shardInterval->relationId;
	bool cstoreTable = CStoreTable(relationId);

	char storageType = shardInterval->storageType;

	EnsureTablePermissions(relationId, ACL_INSERT);

	if (storageType != SHARD_STORAGE_TABLE && !cstoreTable)
	{
		ereport(ERROR, (errmsg("cannot append to shardId " UINT64_FORMAT, shardId),
						errdetail("The underlying shard is not a regular table")));
	}

	partitionMethod = PartitionMethod(relationId);
	if (partitionMethod == DISTRIBUTE_BY_HASH)
	{
		ereport(ERROR, (errmsg("cannot append to shardId " UINT64_FORMAT, shardId),
						errdetail("We currently don't support appending to shards "
								  "in hash-partitioned tables")));
	}

	/*
	 * We lock on the shardId, but do not unlock. When the function returns, and
	 * the transaction for this function commits, this lock will automatically
	 * be released. This ensures appends to a shard happen in a serial manner.
	 */
	LockShardResource(shardId, AccessExclusiveLock);

	/* if shard doesn't have an alias, extend regular table name */
	shardName = LoadShardAlias(relationId, shardId);
	if (shardName == NULL)
	{
		shardName = get_rel_name(relationId);
		AppendShardIdToName(&shardName, shardId);
	}

	shardPlacementList = FinalizedShardPlacementList(shardId);
	if (shardPlacementList == NIL)
	{
		ereport(ERROR, (errmsg("could not find any shard placements for shardId "
							   UINT64_FORMAT, shardId),
						errhint("Try running master_create_empty_shard() first")));
	}

	/* issue command to append table to each shard placement */
	foreach(shardPlacementCell, shardPlacementList)
	{
		ShardPlacement *shardPlacement = (ShardPlacement *) lfirst(shardPlacementCell);
		char *workerName = shardPlacement->nodeName;
		uint32 workerPort = shardPlacement->nodePort;
		List *queryResultList = NIL;

		StringInfo workerAppendQuery = makeStringInfo();
		appendStringInfo(workerAppendQuery, WORKER_APPEND_TABLE_TO_SHARD,
						 quote_literal_cstr(shardName),
						 quote_literal_cstr(sourceTableName),
						 quote_literal_cstr(sourceNodeName), sourceNodePort);

		/* inserting data should be performed by the current user */
		queryResultList = ExecuteRemoteQuery(workerName, workerPort, NULL,
											 workerAppendQuery);
		if (queryResultList != NIL)
		{
			succeededPlacementList = lappend(succeededPlacementList, shardPlacement);
		}
		else
		{
			failedPlacementList = lappend(failedPlacementList, shardPlacement);
		}
	}
Exemplo n.º 6
0
/*
 * master_get_table_metadata takes in a relation name, and returns partition
 * related metadata for the relation. These metadata are grouped and returned in
 * a tuple, and are used by the caller when creating new shards. The function
 * errors if given relation does not exist, or is not partitioned.
 */
Datum
master_get_table_metadata(PG_FUNCTION_ARGS)
{
	text *relationName = PG_GETARG_TEXT_P(0);
	Oid relationId = ResolveRelationId(relationName);

	DistTableCacheEntry *partitionEntry = NULL;
	TypeFuncClass resultTypeClass = 0;
	Datum partitionKeyExpr = 0;
	Datum partitionKey = 0;
	Datum metadataDatum = 0;
	HeapTuple metadataTuple = NULL;
	TupleDesc metadataDescriptor = NULL;
	uint64 shardMaxSizeInBytes = 0;
	char relationType = 0;
	char storageType = 0;
	Datum values[TABLE_METADATA_FIELDS];
	bool isNulls[TABLE_METADATA_FIELDS];

	/* find partition tuple for partitioned relation */
	partitionEntry = DistributedTableCacheEntry(relationId);

	/* create tuple descriptor for return value */
	resultTypeClass = get_call_result_type(fcinfo, NULL, &metadataDescriptor);
	if (resultTypeClass != TYPEFUNC_COMPOSITE)
	{
		ereport(ERROR, (errmsg("return type must be a row type")));
	}

	/* get decompiled expression tree for partition key */
	partitionKeyExpr =
		PointerGetDatum(cstring_to_text(partitionEntry->partitionKeyString));
	partitionKey = DirectFunctionCall2(pg_get_expr, partitionKeyExpr,
									   ObjectIdGetDatum(relationId));

	/* form heap tuple for table metadata */
	memset(values, 0, sizeof(values));
	memset(isNulls, false, sizeof(isNulls));

	shardMaxSizeInBytes = (int64) ShardMaxSize * 1024L;

	/* get storage type */
	relationType = get_rel_relkind(relationId);
	if (relationType == RELKIND_RELATION)
	{
		storageType = SHARD_STORAGE_TABLE;
	}
	else if (relationType == RELKIND_FOREIGN_TABLE)
	{
		bool cstoreTable = CStoreTable(relationId);
		if (cstoreTable)
		{
			storageType = SHARD_STORAGE_COLUMNAR;
		}
		else
		{
			storageType = SHARD_STORAGE_FOREIGN;
		}
	}

	values[0] = ObjectIdGetDatum(relationId);
	values[1] = storageType;
	values[2] = partitionEntry->partitionMethod;
	values[3] = partitionKey;
	values[4] = Int32GetDatum(ShardReplicationFactor);
	values[5] = Int64GetDatum(shardMaxSizeInBytes);
	values[6] = Int32GetDatum(ShardPlacementPolicy);

	metadataTuple = heap_form_tuple(metadataDescriptor, values, isNulls);
	metadataDatum = HeapTupleGetDatum(metadataTuple);

	PG_RETURN_DATUM(metadataDatum);
}
Exemplo n.º 7
0
/* LocalTableSize returns the size on disk of the given table. */
static uint64
LocalTableSize(Oid relationId)
{
	uint64 tableSize = 0;
	char relationType = 0;
	Datum relationIdDatum = ObjectIdGetDatum(relationId);

	relationType = get_rel_relkind(relationId);
	if (relationType == RELKIND_RELATION)
	{
		Datum tableSizeDatum = DirectFunctionCall1(pg_table_size, relationIdDatum);

		tableSize = DatumGetInt64(tableSizeDatum);
	}
	else if (relationType == RELKIND_FOREIGN_TABLE)
	{
		bool cstoreTable = CStoreTable(relationId);
		if (cstoreTable)
		{
			/* extract schema name of cstore */
			Oid cstoreId = get_extension_oid(CSTORE_FDW_NAME, false);
			Oid cstoreSchemaOid = get_extension_schema(cstoreId);
			const char *cstoreSchemaName = get_namespace_name(cstoreSchemaOid);

			const int tableSizeArgumentCount = 1;

			Oid tableSizeFunctionOid = FunctionOid(cstoreSchemaName,
												   CSTORE_TABLE_SIZE_FUNCTION_NAME,
												   tableSizeArgumentCount);
			Datum tableSizeDatum = OidFunctionCall1(tableSizeFunctionOid,
													relationIdDatum);

			tableSize = DatumGetInt64(tableSizeDatum);
		}
		else
		{
			char *relationName = get_rel_name(relationId);
			struct stat fileStat;

			int statOK = 0;

			StringInfo localFilePath = makeStringInfo();
			appendStringInfo(localFilePath, FOREIGN_CACHED_FILE_PATH, relationName);

			/* extract the file size using stat, analogous to pg_stat_file */
			statOK = stat(localFilePath->data, &fileStat);
			if (statOK < 0)
			{
				ereport(ERROR, (errcode_for_file_access(),
								errmsg("could not stat file \"%s\": %m",
									   localFilePath->data)));
			}

			tableSize = (uint64) fileStat.st_size;
		}
	}
	else
	{
		char *relationName = get_rel_name(relationId);

		ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("cannot get size for table \"%s\"", relationName),
						errdetail("Only regular and foreign tables are supported.")));
	}

	return tableSize;
}
Exemplo n.º 8
0
/*
 * master_create_empty_shard creates an empty shard for the given distributed
 * table. For this, the function first gets a list of candidate nodes, connects
 * to these nodes, and issues DDL commands on the nodes to create empty shard
 * placements. The function then updates metadata on the master node to make
 * this shard (and its placements) visible.
 */
Datum
master_create_empty_shard(PG_FUNCTION_ARGS)
{
	text *relationNameText = PG_GETARG_TEXT_P(0);
	char *relationName = text_to_cstring(relationNameText);
	List *workerNodeList = WorkerNodeList();
	Datum shardIdDatum = 0;
	int64 shardId = INVALID_SHARD_ID;
	List *ddlEventList = NULL;
	uint32 attemptableNodeCount = 0;
	uint32 liveNodeCount = 0;

	uint32 candidateNodeIndex = 0;
	List *candidateNodeList = NIL;
	text *nullMinValue = NULL;
	text *nullMaxValue = NULL;
	char partitionMethod = 0;
	char storageType = SHARD_STORAGE_TABLE;

	Oid relationId = ResolveRelationId(relationNameText);
	char relationKind = get_rel_relkind(relationId);
	char *relationOwner = TableOwner(relationId);

	EnsureTablePermissions(relationId, ACL_INSERT);
	CheckDistributedTable(relationId);

	/*
	 * We check whether the table is a foreign table or not. If it is, we set
	 * storage type as foreign also. Only exception is if foreign table is a
	 * foreign cstore table, in this case we set storage type as columnar.
	 *
	 * i.e. While setting storage type, columnar has priority over foreign.
	 */
	if (relationKind == RELKIND_FOREIGN_TABLE)
	{
		bool cstoreTable = cstoreTable = CStoreTable(relationId);
		if (cstoreTable)
		{
			storageType = SHARD_STORAGE_COLUMNAR;
		}
		else
		{
			storageType = SHARD_STORAGE_FOREIGN;
		}
	}

	partitionMethod = PartitionMethod(relationId);
	if (partitionMethod == DISTRIBUTE_BY_HASH)
	{
		ereport(ERROR, (errmsg("relation \"%s\" is a hash partitioned table",
							   relationName),
						errdetail("We currently don't support creating shards "
								  "on hash-partitioned tables")));
	}

	/* generate new and unique shardId from sequence */
	shardIdDatum = master_get_new_shardid(NULL);
	shardId = DatumGetInt64(shardIdDatum);

	/* get table DDL commands to replay on the worker node */
	ddlEventList = GetTableDDLEvents(relationId);

	/* if enough live nodes, add an extra candidate node as backup */
	attemptableNodeCount = ShardReplicationFactor;
	liveNodeCount = WorkerGetLiveNodeCount();
	if (liveNodeCount > ShardReplicationFactor)
	{
		attemptableNodeCount = ShardReplicationFactor + 1;
	}

	/* first retrieve a list of random nodes for shard placements */
	while (candidateNodeIndex < attemptableNodeCount)
	{
		WorkerNode *candidateNode = NULL;

		if (ShardPlacementPolicy == SHARD_PLACEMENT_LOCAL_NODE_FIRST)
		{
			candidateNode = WorkerGetLocalFirstCandidateNode(candidateNodeList);
		}
		else if (ShardPlacementPolicy == SHARD_PLACEMENT_ROUND_ROBIN)
		{
			candidateNode = WorkerGetRoundRobinCandidateNode(workerNodeList, shardId,
															 candidateNodeIndex);
		}
		else if (ShardPlacementPolicy == SHARD_PLACEMENT_RANDOM)
		{
			candidateNode = WorkerGetRandomCandidateNode(candidateNodeList);
		}
		else
		{
			ereport(ERROR, (errmsg("unrecognized shard placement policy")));
		}

		if (candidateNode == NULL)
		{
			ereport(ERROR, (errmsg("could only find %u of %u possible nodes",
								   candidateNodeIndex, attemptableNodeCount)));
		}

		candidateNodeList = lappend(candidateNodeList, candidateNode);
		candidateNodeIndex++;
	}

	CreateShardPlacements(relationId, shardId, ddlEventList, relationOwner,
						  candidateNodeList, 0, ShardReplicationFactor);

	InsertShardRow(relationId, shardId, storageType, nullMinValue, nullMaxValue);

	PG_RETURN_INT64(shardId);
}
Exemplo n.º 9
0
/*
 * master_create_worker_shards creates empty shards for the given table based
 * on the specified number of initial shards. The function first gets a list of
 * candidate nodes and issues DDL commands on the nodes to create empty shard
 * placements on those nodes. The function then updates metadata on the master
 * node to make this shard (and its placements) visible. Note that the function
 * assumes the table is hash partitioned and calculates the min/max hash token
 * ranges for each shard, giving them an equal split of the hash space.
 */
Datum
master_create_worker_shards(PG_FUNCTION_ARGS)
{
	text *tableNameText = PG_GETARG_TEXT_P(0);
	int32 shardCount = PG_GETARG_INT32(1);
	int32 replicationFactor = PG_GETARG_INT32(2);

	Oid distributedTableId = ResolveRelationId(tableNameText);
	char relationKind = get_rel_relkind(distributedTableId);
	char *tableName = text_to_cstring(tableNameText);
	char *relationOwner = NULL;
	char shardStorageType = '\0';
	List *workerNodeList = NIL;
	List *ddlCommandList = NIL;
	int32 workerNodeCount = 0;
	uint32 placementAttemptCount = 0;
	uint64 hashTokenIncrement = 0;
	List *existingShardList = NIL;
	int64 shardIndex = 0;

	/* make sure table is hash partitioned */
	CheckHashPartitionedTable(distributedTableId);

	/*
	 * In contrast to append/range partitioned tables it makes more sense to
	 * require ownership privileges - shards for hash-partitioned tables are
	 * only created once, not continually during ingest as for the other
	 * partitioning types.
	 */
	EnsureTableOwner(distributedTableId);

	/* we plan to add shards: get an exclusive metadata lock */
	LockRelationDistributionMetadata(distributedTableId, ExclusiveLock);

	relationOwner = TableOwner(distributedTableId);

	/* validate that shards haven't already been created for this table */
	existingShardList = LoadShardList(distributedTableId);
	if (existingShardList != NIL)
	{
		ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
						errmsg("table \"%s\" has already had shards created for it",
							   tableName)));
	}

	/* make sure that at least one shard is specified */
	if (shardCount <= 0)
	{
		ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						errmsg("shard_count must be positive")));
	}

	/* make sure that at least one replica is specified */
	if (replicationFactor <= 0)
	{
		ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						errmsg("replication_factor must be positive")));
	}

	/* calculate the split of the hash space */
	hashTokenIncrement = HASH_TOKEN_COUNT / shardCount;

	/* load and sort the worker node list for deterministic placement */
	workerNodeList = WorkerNodeList();
	workerNodeList = SortList(workerNodeList, CompareWorkerNodes);

	/* make sure we don't process cancel signals until all shards are created */
	HOLD_INTERRUPTS();

	/* retrieve the DDL commands for the table */
	ddlCommandList = GetTableDDLEvents(distributedTableId);

	workerNodeCount = list_length(workerNodeList);
	if (replicationFactor > workerNodeCount)
	{
		ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
						errmsg("replication_factor (%d) exceeds number of worker nodes "
							   "(%d)", replicationFactor, workerNodeCount),
						errhint("Add more worker nodes or try again with a lower "
								"replication factor.")));
	}

	/* if we have enough nodes, add an extra placement attempt for backup */
	placementAttemptCount = (uint32) replicationFactor;
	if (workerNodeCount > replicationFactor)
	{
		placementAttemptCount++;
	}

	/* set shard storage type according to relation type */
	if (relationKind == RELKIND_FOREIGN_TABLE)
	{
		bool cstoreTable = CStoreTable(distributedTableId);
		if (cstoreTable)
		{
			shardStorageType = SHARD_STORAGE_COLUMNAR;
		}
		else
		{
			shardStorageType = SHARD_STORAGE_FOREIGN;
		}
	}
	else
	{
		shardStorageType = SHARD_STORAGE_TABLE;
	}

	for (shardIndex = 0; shardIndex < shardCount; shardIndex++)
	{
		uint32 roundRobinNodeIndex = shardIndex % workerNodeCount;

		/* initialize the hash token space for this shard */
		text *minHashTokenText = NULL;
		text *maxHashTokenText = NULL;
		int32 shardMinHashToken = INT32_MIN + (shardIndex * hashTokenIncrement);
		int32 shardMaxHashToken = shardMinHashToken + (hashTokenIncrement - 1);
		Datum shardIdDatum = master_get_new_shardid(NULL);
		int64 shardId = DatumGetInt64(shardIdDatum);

		/* if we are at the last shard, make sure the max token value is INT_MAX */
		if (shardIndex == (shardCount - 1))
		{
			shardMaxHashToken = INT32_MAX;
		}

		/* insert the shard metadata row along with its min/max values */
		minHashTokenText = IntegerToText(shardMinHashToken);
		maxHashTokenText = IntegerToText(shardMaxHashToken);

		/*
		 * Grabbing the shard metadata lock isn't technically necessary since
		 * we already hold an exclusive lock on the partition table, but we'll
		 * acquire it for the sake of completeness. As we're adding new active
		 * placements, the mode must be exclusive.
		 */
		LockShardDistributionMetadata(shardId, ExclusiveLock);

		CreateShardPlacements(shardId, ddlCommandList, relationOwner, workerNodeList,
							  roundRobinNodeIndex, replicationFactor);

		InsertShardRow(distributedTableId, shardId, shardStorageType,
					   minHashTokenText, maxHashTokenText);
	}

	if (QueryCancelPending)
	{
		ereport(WARNING, (errmsg("cancel requests are ignored during shard creation")));
		QueryCancelPending = false;
	}

	RESUME_INTERRUPTS();

	PG_RETURN_VOID();
}