Exemplo n.º 1
0
void FLwsWebSocket::InitLwsProtocols()
{
	LwsProtocols.Empty(Protocols.Num()+1);
	for(FString Protocol : Protocols)
	{
		FTCHARToUTF8 ConvertName(*Protocol);

		// We need to hold on to the converted strings
		ANSICHAR *Converted = static_cast<ANSICHAR*>(FMemory::Malloc(ConvertName.Length()+1));
		FCStringAnsi::Strcpy(Converted, ConvertName.Length(), ConvertName.Get());
		LwsProtocols.Add({Converted, &FLwsWebSocket::CallbackWrapper, 0, 65536});
	}
	// Add a zero terminator at the end as we don't pass the length to LWS
	LwsProtocols.Add({nullptr, nullptr, 0, 0});
}
Exemplo n.º 2
0
// -----------------------------------------------------------------------------------
// Write a single node as text dump
void WriteNode(const aiNode* node, FILE* out, unsigned int depth)
{
	char prefix[512];
	for (unsigned int i = 0; i < depth;++i)
		prefix[i] = '\t';
	prefix[depth] = '\0';

	const aiMatrix4x4& m = node->mTransformation;

	aiString name;
	ConvertName(name,node->mName);
	fprintf(out,"%s<Node name=\"%s\"> \n"
		"%s\t<Matrix4> \n"
		"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
		"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
		"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
		"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
		"%s\t</Matrix4> \n",
		prefix,name.data,prefix,
		prefix,m.a1,m.a2,m.a3,m.a4,
		prefix,m.b1,m.b2,m.b3,m.b4,
		prefix,m.c1,m.c2,m.c3,m.c4,
		prefix,m.d1,m.d2,m.d3,m.d4,prefix);

	if (node->mNumMeshes) {
		fprintf(out, "%s\t<MeshRefs num=\"%i\">\n%s\t",
			prefix,node->mNumMeshes,prefix);

		for (unsigned int i = 0; i < node->mNumMeshes;++i) {
			fprintf(out,"%i ",node->mMeshes[i]);
		}
		fprintf(out,"\n%s\t</MeshRefs>\n",prefix);
	}

	if (node->mNumChildren) {
		fprintf(out,"%s\t<NodeList num=\"%i\">\n",
			prefix,node->mNumChildren);

		for (unsigned int i = 0; i < node->mNumChildren;++i) {
			WriteNode(node->mChildren[i],out,depth+2);
		}
		fprintf(out,"%s\t</NodeList>\n",prefix);
	}
	fprintf(out,"%s</Node>\n",prefix);
}
Exemplo n.º 3
0
// -----------------------------------------------------------------------------------
// Write a text model dump
void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened)
{
	time_t tt = ::time(NULL);
	tm* p     = ::gmtime(&tt);

	std::string c = cmd;
	std::string::size_type s; 

	// https://sourceforge.net/tracker/?func=detail&aid=3167364&group_id=226462&atid=1067632
	// -- not allowed in XML comments
	while((s = c.find("--")) != std::string::npos) {
		c[s] = '?';
	}
	aiString name;

	// write header
	fprintf(out,
		"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
		"<ASSIMP format_id=\"1\">\n\n"

		"<!-- XML Model dump produced by assimp dump\n"
		"  Library version: %i.%i.%i\n"
		"  Source: %s\n"
		"  Command line: %s\n"
		"  %s\n"
		"-->"
		" \n\n"
		"<Scene flags=\"%i\" postprocessing=\"%i\">\n",
		
		aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,c.c_str(),asctime(p),
		scene->mFlags,
		0 /*globalImporter->GetEffectivePostProcessing()*/);

	// write the node graph
	WriteNode(scene->mRootNode, out, 0);

#if 0
		// write cameras
	for (unsigned int i = 0; i < scene->mNumCameras;++i) {
		aiCamera* cam  = scene->mCameras[i];
		ConvertName(name,cam->mName);

		// camera header
		fprintf(out,"\t<Camera parent=\"%s\">\n"
			"\t\t<Vector3 name=\"up\"        > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"lookat\"    > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"pos\"       > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Float   name=\"fov\"       > %f </Float>\n"
			"\t\t<Float   name=\"aspect\"    > %f </Float>\n"
			"\t\t<Float   name=\"near_clip\" > %f </Float>\n"
			"\t\t<Float   name=\"far_clip\"  > %f </Float>\n"
			"\t</Camera>\n",
			name.data,
			cam->mUp.x,cam->mUp.y,cam->mUp.z,
			cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
			cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
			cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
	}

	// write lights
	for (unsigned int i = 0; i < scene->mNumLights;++i) {
		aiLight* l  = scene->mLights[i];
		ConvertName(name,l->mName);

		// light header
		fprintf(out,"\t<Light parent=\"%s\"> type=\"%s\"\n"
			"\t\t<Vector3 name=\"diffuse\"   > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"specular\"  > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"ambient\"   > %0 8f %0 8f %0 8f </Vector3>\n",
			name.data,
			(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
			(l->mType == aiLightSource_POINT ? "point" : "spot" )),
			l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
			l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
			l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);

		if (l->mType != aiLightSource_DIRECTIONAL) {
			fprintf(out,
				"\t\t<Vector3 name=\"pos\"       > %0 8f %0 8f %0 8f </Vector3>\n"
				"\t\t<Float   name=\"atten_cst\" > %f </Float>\n"
				"\t\t<Float   name=\"atten_lin\" > %f </Float>\n"
				"\t\t<Float   name=\"atten_sqr\" > %f </Float>\n",
				l->mPosition.x,l->mPosition.y,l->mPosition.z,
				l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
		}

		if (l->mType != aiLightSource_POINT) {
			fprintf(out,
				"\t\t<Vector3 name=\"lookat\"    > %0 8f %0 8f %0 8f </Vector3>\n",
				l->mDirection.x,l->mDirection.y,l->mDirection.z);
		}

		if (l->mType == aiLightSource_SPOT) {
			fprintf(out,
				"\t\t<Float   name=\"cone_out\" > %f </Float>\n"
				"\t\t<Float   name=\"cone_inn\" > %f </Float>\n",
				l->mAngleOuterCone,l->mAngleInnerCone);
		}
		fprintf(out,"\t</Light>\n");
	}
#endif

	// write textures
	if (scene->mNumTextures) {
		fprintf(out,"<TextureList num=\"%i\">\n",scene->mNumTextures);
		for (unsigned int i = 0; i < scene->mNumTextures;++i) {
			aiTexture* tex  = scene->mTextures[i];
			bool compressed = (tex->mHeight == 0);

			// mesh header
			fprintf(out,"\t<Texture width=\"%i\" height=\"%i\" compressed=\"%s\"> \n",
				(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
				(compressed ? "true" : "false"));

			if (compressed) {
				fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth);

				if (!shortened) {
					for (unsigned int n = 0; n < tex->mWidth;++n) {
						fprintf(out,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]);
						if (n && !(n % 50)) {
							fprintf(out,"\n");
						}
					}
				}
			}
			else if (!shortened){
				fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);

				// const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
				for (unsigned int y = 0; y < tex->mHeight;++y) {
					for (unsigned int x = 0; x < tex->mWidth;++x) {
						aiTexel* tx = tex->pcData + y*tex->mWidth+x;
						unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
						fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a);

						// group by four for readibility
						if (0 == (x+y*tex->mWidth) % 4)
							fprintf(out,"\n");
					}
				}
			}
			fprintf(out,"\t\t</Data>\n\t</Texture>\n");
		}
		fprintf(out,"</TextureList>\n");
	}

	// write materials
	if (scene->mNumMaterials) {
		fprintf(out,"<MaterialList num=\"%i\">\n",scene->mNumMaterials);
		for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
			const aiMaterial* mat = scene->mMaterials[i];

			fprintf(out,"\t<Material>\n");
			fprintf(out,"\t\t<MatPropertyList  num=\"%i\">\n",mat->mNumProperties);
			for (unsigned int n = 0; n < mat->mNumProperties;++n) {

				const aiMaterialProperty* prop = mat->mProperties[n];
				const char* sz = "";
				if (prop->mType == aiPTI_Float) {
					sz = "float";
				}
				else if (prop->mType == aiPTI_Integer) {
					sz = "integer";
				}
				else if (prop->mType == aiPTI_String) {
					sz = "string";
				}
				else if (prop->mType == aiPTI_Buffer) {
					sz = "binary_buffer";
				}

				fprintf(out,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"",
					prop->mKey.data, sz,
					::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);

				if (prop->mType == aiPTI_Float) {
					fprintf(out," size=\"%i\">\n\t\t\t\t",
						static_cast<int>(prop->mDataLength/sizeof(float)));

					for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) {
						fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float))));
					}
				}
				else if (prop->mType == aiPTI_Integer) {
					fprintf(out," size=\"%i\">\n\t\t\t\t",
						static_cast<int>(prop->mDataLength/sizeof(int)));

					for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) {
						fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int))));
					}
				}
				else if (prop->mType == aiPTI_Buffer) {
					fprintf(out," size=\"%i\">\n\t\t\t\t",
						static_cast<int>(prop->mDataLength));

					for (unsigned int p = 0; p < prop->mDataLength;++p) {
						fprintf(out,"%2x ",prop->mData[p]);
						if (p && 0 == p%30) {
							fprintf(out,"\n\t\t\t\t");
						}
					}
				}
				else if (prop->mType == aiPTI_String) {
					fprintf(out,">\n\t\t\t\"%s\"",prop->mData+4 /* skip length */);
				}
				fprintf(out,"\n\t\t\t</MatProperty>\n");
			}
			fprintf(out,"\t\t</MatPropertyList>\n");
			fprintf(out,"\t</Material>\n");
		}
		fprintf(out,"</MaterialList>\n");
	}

	// write animations
	if (scene->mNumAnimations) {
		fprintf(out,"<AnimationList num=\"%i\">\n",scene->mNumAnimations);
		for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
			aiAnimation* anim = scene->mAnimations[i];

			// anim header
			ConvertName(name,anim->mName);
			fprintf(out,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
				name.data, anim->mDuration, anim->mTicksPerSecond);

			// write bone animation channels
			if (anim->mNumChannels) {
				fprintf(out,"\t\t<NodeAnimList num=\"%i\">\n",anim->mNumChannels);
				for (unsigned int n = 0; n < anim->mNumChannels;++n) {
					aiNodeAnim* nd = anim->mChannels[n];

					// node anim header
					ConvertName(name,nd->mNodeName);
					fprintf(out,"\t\t\t<NodeAnim node=\"%s\">\n",name.data);

					if (!shortened) {
						// write position keys
						if (nd->mNumPositionKeys) {
							fprintf(out,"\t\t\t\t<PositionKeyList num=\"%i\">\n",nd->mNumPositionKeys);
							for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
								aiVectorKey* vc = nd->mPositionKeys+a;
								fprintf(out,"\t\t\t\t\t<PositionKey time=\"%e\">\n"
									"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
									vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
							}
							fprintf(out,"\t\t\t\t</PositionKeyList>\n");
						}

						// write scaling keys
						if (nd->mNumScalingKeys) {
							fprintf(out,"\t\t\t\t<ScalingKeyList num=\"%i\">\n",nd->mNumScalingKeys);
							for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
								aiVectorKey* vc = nd->mScalingKeys+a;
								fprintf(out,"\t\t\t\t\t<ScalingKey time=\"%e\">\n"
									"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
									vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
							}
							fprintf(out,"\t\t\t\t</ScalingKeyList>\n");
						}

						// write rotation keys
						if (nd->mNumRotationKeys) {
							fprintf(out,"\t\t\t\t<RotationKeyList num=\"%i\">\n",nd->mNumRotationKeys);
							for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
								aiQuatKey* vc = nd->mRotationKeys+a;
								fprintf(out,"\t\t\t\t\t<RotationKey time=\"%e\">\n"
									"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
									vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w);
							}
							fprintf(out,"\t\t\t\t</RotationKeyList>\n");
						}
					}
					fprintf(out,"\t\t\t</NodeAnim>\n");
				}
				fprintf(out,"\t\t</NodeAnimList>\n");
			}
			fprintf(out,"\t</Animation>\n");
		}
		fprintf(out,"</AnimationList>\n");
	}

	// write meshes
	if (scene->mNumMeshes) {
		fprintf(out,"<MeshList num=\"%i\">\n",scene->mNumMeshes);
		for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
			aiMesh* mesh = scene->mMeshes[i];
			// const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;

			// mesh header
			fprintf(out,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%i\">\n",
				(mesh->mPrimitiveTypes & aiPrimitiveType_POINT    ? "points"    : ""),
				(mesh->mPrimitiveTypes & aiPrimitiveType_LINE     ? "lines"     : ""),
				(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
				(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON  ? "polygons"  : ""),
				mesh->mMaterialIndex);

			// bones
			if (mesh->mNumBones) {
				fprintf(out,"\t\t<BoneList num=\"%i\">\n",mesh->mNumBones);

				for (unsigned int n = 0; n < mesh->mNumBones;++n) {
					aiBone* bone = mesh->mBones[n];

					ConvertName(name,bone->mName);
					// bone header
					fprintf(out,"\t\t\t<Bone name=\"%s\">\n"
						"\t\t\t\t<Matrix4> \n"
						"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
						"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
						"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
						"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
						"\t\t\t\t</Matrix4> \n",
						name.data,
						bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
						bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
						bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
						bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4);

					if (!shortened && bone->mNumWeights) {
						fprintf(out,"\t\t\t\t<WeightList num=\"%i\">\n",bone->mNumWeights);

						// bone weights
						for (unsigned int a = 0; a < bone->mNumWeights;++a) {
							aiVertexWeight* wght = bone->mWeights+a;

							fprintf(out,"\t\t\t\t\t<Weight index=\"%i\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
								wght->mVertexId,wght->mWeight);
						}
						fprintf(out,"\t\t\t\t</WeightList>\n");
					}
					fprintf(out,"\t\t\t</Bone>\n");
				}
				fprintf(out,"\t\t</BoneList>\n");
			}

			// faces
			if (!shortened && mesh->mNumFaces) {
				fprintf(out,"\t\t<FaceList num=\"%i\">\n",mesh->mNumFaces);
				for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
					aiFace& f = mesh->mFaces[n];
					fprintf(out,"\t\t\t<Face num=\"%i\">\n"
						"\t\t\t\t",f.mNumIndices);

					for (unsigned int j = 0; j < f.mNumIndices;++j)
						fprintf(out,"%i ",f.mIndices[j]);

					fprintf(out,"\n\t\t\t</Face>\n");
				}
				fprintf(out,"\t\t</FaceList>\n");
			}

			// vertex positions
			if (mesh->HasPositions()) {
				fprintf(out,"\t\t<Positions num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
				if (!shortened) {
					for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
						fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
							mesh->mVertices[n].x,
							mesh->mVertices[n].y,
							mesh->mVertices[n].z);
					}
				}
				fprintf(out,"\t\t</Positions>\n");
			}

			// vertex normals
			if (mesh->HasNormals()) {
				fprintf(out,"\t\t<Normals num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
				if (!shortened) {
					for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
						fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
							mesh->mNormals[n].x,
							mesh->mNormals[n].y,
							mesh->mNormals[n].z);
					}
				}
				else {
				}
				fprintf(out,"\t\t</Normals>\n");
			}

			// vertex tangents and bitangents
			if (mesh->HasTangentsAndBitangents()) {
				fprintf(out,"\t\t<Tangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
				if (!shortened) {
					for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
						fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
							mesh->mTangents[n].x,
							mesh->mTangents[n].y,
							mesh->mTangents[n].z);
					}
				}
				fprintf(out,"\t\t</Tangents>\n");

				fprintf(out,"\t\t<Bitangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
				if (!shortened) {
					for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
						fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
							mesh->mBitangents[n].x,
							mesh->mBitangents[n].y,
							mesh->mBitangents[n].z);
					}
				}
				fprintf(out,"\t\t</Bitangents>\n");
			}

			// texture coordinates
			for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
				if (!mesh->mTextureCoords[a])
					break;

				fprintf(out,"\t\t<TextureCoords num=\"%i\" set=\"%i\" num_components=\"%i\"> \n",mesh->mNumVertices,
					a,mesh->mNumUVComponents[a]);
				
				if (!shortened) {
					if (mesh->mNumUVComponents[a] == 3) {
						for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
							fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
								mesh->mTextureCoords[a][n].x,
								mesh->mTextureCoords[a][n].y,
								mesh->mTextureCoords[a][n].z);
						}
					}
					else {
						for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
							fprintf(out,"\t\t%0 8f %0 8f\n",
								mesh->mTextureCoords[a][n].x,
								mesh->mTextureCoords[a][n].y);
						}
					}
				}
				fprintf(out,"\t\t</TextureCoords>\n");
			}

			// vertex colors
			for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
				if (!mesh->mColors[a])
					break;
				fprintf(out,"\t\t<Colors num=\"%i\" set=\"%i\" num_components=\"4\"> \n",mesh->mNumVertices,a);
				if (!shortened) {
					for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
						fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
							mesh->mColors[a][n].r,
							mesh->mColors[a][n].g,
							mesh->mColors[a][n].b,
							mesh->mColors[a][n].a);
					}
				}
				fprintf(out,"\t\t</Color>\n");
			}
			fprintf(out,"\t</Mesh>\n");
		}
		fprintf(out,"</MeshList>\n");
	}
	fprintf(out,"</Scene>\n</ASSIMP>");
}
Exemplo n.º 4
0
//Find one empty short directory entry in a cluster chain start from dwStartCluster,
//and save the short entry pointed by pfse into this entry.If can not find a free one
//in the whole cluster chain,then append a free cluster in the chain and save it.
BOOL CreateDirEntry(__FAT32_FS* pFat32Fs,DWORD dwStartCluster,__FAT32_SHORTENTRY* pDirEntry)
{
	__FAT32_SHORTENTRY     DirEntry;
	__FAT32_SHORTENTRY*    pfse       = NULL;
	DWORD                  dwSector   = 0;
	DWORD                  dwCurrCluster = 0;
	DWORD                  dwNextCluster = 0;
	BYTE*                  pBuffer       = NULL;
	CHAR                   DirName[13]   = {0};
	DWORD                  i;
	BOOL                   bFind      = FALSE;
	BOOL                   bResult    = FALSE;

	if((NULL == pFat32Fs) || (dwStartCluster < 2) || IS_EOC(dwStartCluster) || (NULL == pDirEntry))
	{
		goto __TERMINAL;
	}
	if(!ConvertName(pDirEntry,(BYTE*)&DirName[0]))
	{
		goto __TERMINAL;
	}
	//Check if the directory to be created has already in directory.
	if(GetShortEntry(pFat32Fs,dwStartCluster,DirName,&DirEntry,NULL,NULL))  //Directory already exists.
	{
		goto __TERMINAL;
	}
	pBuffer = (BYTE*)LocalAlloc(LPTR,pFat32Fs->dwClusterSize);
	if(NULL == pBuffer)
	{
		goto __TERMINAL;
	}
	//Try to find a free directory entry in the given directory,if can not find,then
	//allocate a free cluster,append it to the given directory.
	dwNextCluster = dwStartCluster;
	while(!IS_EOC(dwNextCluster))
	{
		dwCurrCluster = dwNextCluster;
		dwSector = GetClusterSector(pFat32Fs,dwCurrCluster);
		if(0 == dwSector)
		{
			//PrintLine("  In CreateDirEntry,Condition 2");
			goto __TERMINAL;
		}
		if(!ReadDeviceSector(pFat32Fs->pPartition,pFat32Fs->dwPartitionSatrt+dwSector, pFat32Fs->SectorPerClus,pBuffer))
		{			//PrintLine("  In CreateDirEntry,Condition 3");
			goto __TERMINAL;
		}
		//Search this cluster from begin.
		pfse = (__FAT32_SHORTENTRY*)pBuffer;
		for(i = 0;i < pFat32Fs->dwClusterSize / sizeof(__FAT32_SHORTENTRY);i++)
		{
			if((0 == pfse->FileName[0]) || (0xE5 == (BYTE)pfse->FileName[0]))  //Find a free slot.
			{
				bFind = TRUE;
				break;
			}
			pfse ++;
		}
		if(bFind) //Find a free directory entry,no need to check further.
		{
			break;
		}
		//Can not find a free directory slot,try to search next cluster.
		if(!GetNextCluster(pFat32Fs,&dwNextCluster))
		{
			//PrintLine("  In CreateDirEntry,Condition 4");
			goto __TERMINAL;
		}
	}

	if(bFind)  //Has found a free directory slot.
	{
		memcpy((char*)pfse,(const char*)pDirEntry,sizeof(__FAT32_SHORTENTRY));
		if(!WriteDeviceSector(pFat32Fs->pPartition,pFat32Fs->dwPartitionSatrt+dwSector,pFat32Fs->SectorPerClus,pBuffer))
		{			
			goto __TERMINAL;
		}
	}
	else       //Can not find a free slot,allocate a new cluster for parent directory.
	{
		if(!AppendClusterToChain(pFat32Fs,&dwCurrCluster))
		{			
			goto __TERMINAL;
		}
		ZeroMemory(pBuffer,pFat32Fs->dwClusterSize);
		memcpy((char*)pBuffer,(const char*)pDirEntry,sizeof(__FAT32_SHORTENTRY));
		dwSector = GetClusterSector(pFat32Fs,dwCurrCluster);
		if(!WriteDeviceSector(pFat32Fs->pPartition,pFat32Fs->dwPartitionSatrt+dwSector,pFat32Fs->SectorPerClus,pBuffer))
		{			
			goto __TERMINAL;
		}
	}

	bResult = TRUE;

__TERMINAL:
	if(pBuffer)
	{
		LocalFree(pBuffer);
	}

	return bResult;
}
Exemplo n.º 5
0
BOOL GetShortEntry(__FAT32_FS* pFat32Fs,DWORD dwStartCluster,CHAR* pFileName,__FAT32_SHORTENTRY* pShortEntry, DWORD* pDirClus,DWORD* pDirOffset)
{
	BOOL                bResult      = FALSE;
	__FAT32_SHORTENTRY* pfse         = NULL;
	BYTE*               pBuffer      = NULL;
	DWORD               dwCurrClus   = 0;
	DWORD               dwSector     = 0;
	BYTE                FileName[13];
	int                 i;

	if((NULL == pFat32Fs) || (NULL == pFileName) || (pShortEntry == pfse))
	{
		goto __TERMINAL;
	}
	//Create local buffer to contain one cluster.
	pBuffer = (BYTE*)LocalAlloc(LPTR,pFat32Fs->SectorPerClus * pFat32Fs->dwBytePerSector);
	if(NULL == pBuffer)
	{
		
		goto __TERMINAL;
	}
	dwCurrClus = dwStartCluster;
	while(!IS_EOC(dwCurrClus))  //Main loop to check the root directory.
	{
		dwSector = GetClusterSector(pFat32Fs,dwCurrClus);
		if(0 == dwSector)  //Fatal error.
		{
			//PrintLine("  In GetShortEntry: Can not get cluster sector.");
			goto __TERMINAL;
		}
		if(!ReadDeviceSector(pFat32Fs->pPartition,
			pFat32Fs->dwPartitionSatrt+dwSector,
			pFat32Fs->SectorPerClus,
			pBuffer))  //Can not read the appropriate sector(s).
		{
			//PrintLine("  In GetShortEntry: Can not read sector from device.");
			goto __TERMINAL;
		}
		//Now check the root directory to seek the volume ID entry.
		pfse = (__FAT32_SHORTENTRY*)pBuffer;
		for(i = 0;i < pFat32Fs->SectorPerClus * 16;i ++)
		{
			if(0xE5 == (BYTE)pfse->FileName[0])  //Empty entry.
			{
				pfse += 1;  //Seek to the next entry.
				continue;
			}
			if(0 == pfse->FileName[0])     //All rest part is zero,no need to check futher.
			{
				break;
			}
			if(FILE_ATTR_LONGNAME == pfse->FileAttributes)  //Long file name entry.
			{
				pfse += 1;
				continue;
			}
			if(FILE_ATTR_VOLUMEID & pfse->FileAttributes)   //Volume label entry.
			{
				pfse += 1;
				continue;
			}
			if(ConvertName(pfse,FileName))  //Can not convert to regular file name string.
			{
				if(strcmpi((CHAR*)pFileName,(CHAR*)&FileName[0]) == 0)  //Found.
				{
					memcpy((char*)pShortEntry,(const char*)pfse,sizeof(__FAT32_SHORTENTRY));
					if(pDirClus)
					{
						*pDirClus = dwCurrClus;
					}
					if(pDirOffset)
					{
						*pDirOffset = (BYTE*)pfse - pBuffer;
					}
					bResult = TRUE;
					goto __TERMINAL;
				}
			}
			pfse += 1;
		}
		if(!GetNextCluster(pFat32Fs,&dwCurrClus))
		{
			break;
		}
	}
__TERMINAL:
	if(pBuffer)
	{
		LocalFree(pBuffer);
	}

	return bResult;
}
Exemplo n.º 6
0
//Find one empty short directory entry in a cluster chain start from dwStartCluster,
//and save the short entry pointed by pfse into this entry.If can not find a free one
//in the whole cluster chain,then append a free cluster in the chain and save it.
BOOL CreateDirEntry(__FAT32_FS* pFat32Fs,DWORD dwStartCluster,__FAT32_SHORTENTRY* pDirEntry)
{
	__FAT32_SHORTENTRY     DirEntry;
	__FAT32_SHORTENTRY*    pfse       = NULL;
	DWORD                  dwSector   = 0;
	DWORD                  dwCurrCluster = 0;
	DWORD                  dwNextCluster = 0;
	BYTE*                  pBuffer       = NULL;
	CHAR                   DirName[13]   = {0};
	DWORD                  i;
	BOOL                   bFind      = FALSE;
	BOOL                   bResult    = FALSE;

	if((NULL == pFat32Fs) || (dwStartCluster < 2) || IS_EOC(dwStartCluster) || (NULL == pDirEntry))
	{
		PrintLine("  In CreateDirEntry,Condition 0");
		goto __TERMINAL;
	}
	if(!ConvertName(pDirEntry,(BYTE*)&DirName[0]))
	{
		PrintLine("  In CreateDirEntry,Condition 1");
		goto __TERMINAL;
	}
	//Check if the directory to be created has already in directory.
	if(GetShortEntry(pFat32Fs,dwStartCluster,DirName,&DirEntry,NULL,NULL))  //Directory already exists.
	{
		PrintLine("  In CreateDirEntry: The specified directory already exist.");
		goto __TERMINAL;
	}
	pBuffer = (BYTE*)KMemAlloc(pFat32Fs->dwClusterSize,KMEM_SIZE_TYPE_ANY);
	if(NULL == pBuffer)
	{
		PrintLine("  In CreateDirEntry,can not allocate memory for temporary buffer.");
		goto __TERMINAL;
	}
	//Try to find a free directory entry in the given directory,if can not find,then
	//allocate a free cluster,append it to the given directory.
	dwNextCluster = dwStartCluster;
	while(!IS_EOC(dwNextCluster))
	{
		dwCurrCluster = dwNextCluster;
		dwSector = GetClusterSector(pFat32Fs,dwCurrCluster);
		if(0 == dwSector)
		{
			PrintLine("  In CreateDirEntry,Condition 2");
			goto __TERMINAL;
		}
		if(!ReadDeviceSector((__COMMON_OBJECT*)pFat32Fs->pPartition,
			dwSector,
			pFat32Fs->SectorPerClus,
			pBuffer))
		{
			PrintLine("  In CreateDirEntry,Condition 3");
			goto __TERMINAL;
		}
		//Search this cluster from begin.
		pfse = (__FAT32_SHORTENTRY*)pBuffer;
		for(i = 0;i < pFat32Fs->dwClusterSize / sizeof(__FAT32_SHORTENTRY);i++)
		{
			if((0 == pfse->FileName[0]) || ((BYTE)0xE5 == pfse->FileName[0]))  //Find a free slot.
			{
				bFind = TRUE;
				break;
			}
			pfse ++;
		}
		if(bFind) //Find a free directory entry,no need to check further.
		{
			break;
		}
		//Can not find a free directory slot,try to search next cluster.
		if(!GetNextCluster(pFat32Fs,&dwNextCluster))
		{
			PrintLine("  In CreateDirEntry,Condition 4");
			goto __TERMINAL;
		}
	}
	if(bFind)  //Has found a free directory slot.
	{
		memcpy((char*)pfse,(const char*)pDirEntry,sizeof(__FAT32_SHORTENTRY));
		if(!WriteDeviceSector((__COMMON_OBJECT*)pFat32Fs->pPartition,
			dwSector,
			pFat32Fs->SectorPerClus,
			pBuffer))
		{
			PrintLine("  In CreateDirEntry,Condition 5");
			goto __TERMINAL;
		}
	}
	else       //Can not find a free slot,allocate a new cluster for parent directory.
	{
		if(!AppendClusterToChain(pFat32Fs,&dwCurrCluster))
		{
			PrintLine("  In CreateDirEntry: Can not append a free cluster to this dir.");
			goto __TERMINAL;
		}
		memzero(pBuffer,pFat32Fs->dwClusterSize);
		memcpy((char*)pBuffer,(const char*)pDirEntry,sizeof(__FAT32_SHORTENTRY));
		dwSector = GetClusterSector(pFat32Fs,dwCurrCluster);
		if(!WriteDeviceSector((__COMMON_OBJECT*)pFat32Fs->pPartition,
			dwSector,
			pFat32Fs->SectorPerClus,
			pBuffer))
		{
			PrintLine("  In CreateDirEntry,Condition 6");
			goto __TERMINAL;
		}
	}
	/*
	_hx_sprintf(pBuffer,"In CreateDirEntry: dwSector = %d,dwCurrCluster = %d,offset = %d",
		dwSector,
		dwCurrCluster,
		(BYTE*)pfse - pBuffer);
	PrintLine(pBuffer);*/

	bResult = TRUE;
__TERMINAL:
	if(pBuffer)
	{
		KMemFree(pBuffer,KMEM_SIZE_TYPE_ANY,0);
	}
	return bResult;
}
Exemplo n.º 7
0
// -----------------------------------------------------------------------------------
// Write a text model dump
void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened)
{
	time_t tt = ::time(NULL);
	tm* p     = ::gmtime(&tt);

	aiString name;

	// write header
	::fprintf(out,
		"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
		"<ASSIMP >\n\n"

		"<!-- XML Model dump produced by assimp dump\n"
		"  Library version: %i.%i.%i\n"
		"  Source: %s\n"
		"  Command line: %s\n"
		"  %s\n"
		"-->"
		" \n\n"
		"<Scene NumberOfMeshes=\"%i\" NumberOfMaterials=\"%i\" NumberOfTextures=\"%i\" NumberOfCameras=\"%i\" NumberOfLights=\"%i\" NumberOfAnimations=\"%i\">\n",
		
		aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,cmd,::asctime(p),
		scene->mNumMeshes, scene->mNumMaterials,scene->mNumTextures,
		scene->mNumCameras,scene->mNumLights,scene->mNumAnimations);

	// write the node graph
	WriteNode(scene->mRootNode, out, 1);

		// write cameras
	for (unsigned int i = 0; i < scene->mNumCameras;++i) {
		aiCamera* cam  = scene->mCameras[i];
		ConvertName(name,cam->mName);

		// camera header
		::fprintf(out,"\t<Camera parent=\"%s\">\n"
			"\t\t<Vector3 name=\"up\"        > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"lookat\"    > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"pos\"       > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Float   name=\"fov\"       > %f </Float>\n"
			"\t\t<Float   name=\"aspect\"    > %f </Float>\n"
			"\t\t<Float   name=\"near_clip\" > %f </Float>\n"
			"\t\t<Float   name=\"far_clip\"  > %f </Float>\n"
			"\t</Camera>\n",
			name.data,
			cam->mUp.x,cam->mUp.y,cam->mUp.z,
			cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
			cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
			cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
	}

	// write lights
	for (unsigned int i = 0; i < scene->mNumLights;++i) {
		aiLight* l  = scene->mLights[i];
		ConvertName(name,l->mName);

		// light header
		::fprintf(out,"\t<Light parent=\"%s\"> type=\"%s\"\n"
			"\t\t<Vector3 name=\"diffuse\"   > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"specular\"  > %0 8f %0 8f %0 8f </Vector3>\n"
			"\t\t<Vector3 name=\"ambient\"   > %0 8f %0 8f %0 8f </Vector3>\n",
			name.data,
			(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
			(l->mType == aiLightSource_POINT ? "point" : "spot" )),
			l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
			l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
			l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);

		if (l->mType != aiLightSource_DIRECTIONAL) {
			::fprintf(out,
				"\t\t<Vector3 name=\"pos\"       > %0 8f %0 8f %0 8f </Vector3>\n"
				"\t\t<Float   name=\"atten_cst\" > %f </Float>\n"
				"\t\t<Float   name=\"atten_lin\" > %f </Float>\n"
				"\t\t<Float   name=\"atten_sqr\" > %f </Float>\n",
				l->mPosition.x,l->mPosition.y,l->mPosition.z,
				l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
		}

		if (l->mType != aiLightSource_POINT) {
			::fprintf(out,
				"\t\t<Vector3 name=\"lookat\"    > %0 8f %0 8f %0 8f </Vector3>\n",
				l->mDirection.x,l->mDirection.y,l->mDirection.z);
		}

		if (l->mType == aiLightSource_SPOT) {
			::fprintf(out,
				"\t\t<Float   name=\"cone_out\" > %f </Float>\n"
				"\t\t<Float   name=\"cone_inn\" > %f </Float>\n",
				l->mAngleOuterCone,l->mAngleInnerCone);
		}
		::fprintf(out,"\t</Light>\n");
	}

	// write textures
	for (unsigned int i = 0; i < scene->mNumTextures;++i) {
		aiTexture* tex  = scene->mTextures[i];
		bool compressed = (tex->mHeight == 0);

		// mesh header
		::fprintf(out,"\t<Texture> \n"
			"\t\t<Integer   name=\"width\"      > %i </Integer>\n",
			"\t\t<Integer   name=\"height\"     > %i </Integer>\n",
			"\t\t<Boolean   name=\"compressed\" > %s </Boolean>\n",
			(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
			(compressed ? "true" : "false"));

		if (compressed) {
			::fprintf(out,"\t\t<Data length=\"%i\"> %i \n",tex->mWidth);

			if (!shortened) {
				for (unsigned int n = 0; n < tex->mWidth;++n) {
					::fprintf(out,"\t\t\t%2x",tex->pcData[n]);
					if (n && !(n % 50))
						::fprintf(out,"\n");
				}
			}
		}
		else if (!shortened){
			::fprintf(out,"\t\t<Data length=\"%i\"> %i \n",tex->mWidth*tex->mHeight*4);

			const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
			for (unsigned int y = 0; y < tex->mHeight;++y) {
				for (unsigned int x = 0; x < tex->mWidth;++x) {
					aiTexel* tx = tex->pcData + y*tex->mWidth+x;
					unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
					::fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a);

					// group by four for readibility
					if (0 == (x+y*tex->mWidth) % 4)
						::fprintf(out,"\n");
				}
			}
		}
		::fprintf(out,"\t\t</Data>\n\t</Texture>\n");
	}

	// write materials
	for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
		const aiMaterial* mat = scene->mMaterials[i];

		::fprintf(out,
			"\t<Material  NumberOfProperties=\"%i\">\n",mat->mNumProperties);

		for (unsigned int n = 0; n < mat->mNumProperties;++n) {
			const aiMaterialProperty* prop = mat->mProperties[n];

			const char* sz = "";
			if (prop->mType == aiPTI_Float) 
				sz = "float";
			else if (prop->mType == aiPTI_Integer) 
				sz = "integer";
			else if (prop->mType == aiPTI_String) 
				sz = "string";
			else if (prop->mType == aiPTI_Buffer) 
				sz = "binary_buffer";

			::fprintf(out,
				"\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"",
				prop->mKey.data, sz,
				TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);

			if (prop->mType == aiPTI_Float) {
				::fprintf(out,
				" size=\"%i\">\n\t\t\t",
				prop->mDataLength/sizeof(float));
				
				for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p)
					::fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float))));
			}
			else if (prop->mType == aiPTI_Integer) {
				::fprintf(out,
				" size=\"%i\">\n\t\t\t",
				prop->mDataLength/sizeof(int));

				for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p)
					::fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int))));
			}
			else if (prop->mType == aiPTI_Buffer) {
				::fprintf(out,
				" size=\"%i\">\n\t\t\t",
				prop->mDataLength);
				
				for (unsigned int p = 0; p < prop->mDataLength;++p) {
					::fprintf(out,"%2x ",prop->mData[p]);
					if (p && 0 == p%30)
						::fprintf(out,"\n\t\t\t");
				}
			}
			else if (prop->mType == aiPTI_String) {
				::fprintf(out,">\n\t\t\t\"%s\"",prop->mData+4 /* skip length */);
			}
			::fprintf(out,"\n\t\t</MatProperty>\n");
		}
		::fprintf(out,"\t</Material>\n");
	}

	// write animations
	for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
		aiAnimation* anim = scene->mAnimations[i];

		// anim header
		ConvertName(name,anim->mName);
		::fprintf(out,"\t<Animation name=\"%s\">\n"
			"\t\t<Integer name=\"num_chan\" > %i </Integer>\n"
			"\t\t<Float   name=\"duration\" > %e </Float>\n"
			"\t\t<Float   name=\"tick_cnt\" > %e </Float>\n",
			name.data, anim->mNumChannels,anim->mDuration, anim->mTicksPerSecond);

		// write bone animation channels
		for (unsigned int n = 0; n < anim->mNumChannels;++n) {
			aiNodeAnim* nd = anim->mChannels[n];

			// node anim header
			ConvertName(name,nd->mNodeName);
			::fprintf(out,"\t\t<Channel node=\"%s\">\n"
				"\t\t\t<Integer name=\"num_pos_keys\" > %i </Integer>\n"
				"\t\t\t<Integer name=\"num_scl_keys\" > %i </Integer>\n"
				"\t\t\t<Integer name=\"num_rot_keys\" > %i </Integer>\n",
				name.data,nd->mNumPositionKeys,nd->mNumScalingKeys,nd->mNumRotationKeys);

			if (!shortened) {
				// write position keys
				for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
					aiVectorKey* vc = nd->mPositionKeys+a;
					::fprintf(out,"\t\t\t<PositionKey time=\"%e\">\n"
						"\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t</PositionKey>\n",
						vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a);
				}

				// write scaling keys
				for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
					aiVectorKey* vc = nd->mScalingKeys+a;
					::fprintf(out,"\t\t\t<ScalingKey time=\"%e\">\n"
						"\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t</ScalingKey>\n",
						vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a);
				}

				// write rotation keys
				for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
					aiQuatKey* vc = nd->mRotationKeys+a;
					::fprintf(out,"\t\t\t<RotationKey time=\"%e\">\n"
						"\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t</RotationKey>\n",
						vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w,a);
				}
			}
			::fprintf(out,"\t\t</Channel>\n",n);
		}
		::fprintf(out,"\t</Animation>\n",i);
	}

	// write meshes
	for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
		aiMesh* mesh = scene->mMeshes[i];
		const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;

		// mesh header
		::fprintf(out,"\t<Mesh types=\"%s %s %s %s\">\n"
			"\t\t<Integer name=\"num_verts\" > %i </Integer>\n"
			"\t\t<Integer name=\"num_faces\" > %i </Integer>\n",
			(mesh->mPrimitiveTypes & aiPrimitiveType_POINT    ? "points"    : ""),
			(mesh->mPrimitiveTypes & aiPrimitiveType_LINE     ? "lines"     : ""),
			(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
			(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON  ? "polygons"  : ""),
			mesh->mNumVertices,mesh->mNumFaces);

		// bones
		for (unsigned int n = 0; n < mesh->mNumBones;++n) {
			aiBone* bone = mesh->mBones[n];

			ConvertName(name,bone->mName);
			// bone header
			::fprintf(out,"\t\t<Bone name=\"%s\">\n"
				"\t\t\t<Matrix4 name=\"offset\" > \n"
				"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
				"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
				"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
				"\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
				"\t\t\t</Matrix4> \n"
				"\t\t\t<Integer name=\"num_weights\" > %i </Integer>\n",
				name.data,
				bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
				bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
				bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
				bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4,
				bone->mNumWeights);

			if (!shortened) {
				// bone weights
				for (unsigned int a = 0; a < bone->mNumWeights;++a) {
					aiVertexWeight* wght = bone->mWeights+a;

					::fprintf(out,"\t\t\t<VertexWeight index=\"%i\">\n\t\t\t\t%f\n\t\t\t</VertexWeight>\n",
						wght->mVertexId,wght->mWeight);
				}
			}
			::fprintf(out,"\t\t</Bone>\n",n);
		}

		// faces
		if (!shortened) {
			for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
				aiFace& f = mesh->mFaces[n];
				::fprintf(out,"\t\t<Face num_indices=\"%i\">\n"
					"\t\t\t",f.mNumIndices);

				for (unsigned int j = 0; j < f.mNumIndices;++j)
					::fprintf(out,"%i ",f.mIndices[j]);

				::fprintf(out,"\n\t\t</Face>\n");
			}
		}

		// vertex positions
		if (mesh->HasPositions()) {
			::fprintf(out,"\t\t<Positions> \n");
			if (!shortened) {
				for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
					::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
						mesh->mVertices[n].x,
						mesh->mVertices[n].y,
						mesh->mVertices[n].z);
				}
			}
			else {
			}
			::fprintf(out,"\t\t</Positions>\n");
		}

		// vertex normals
		if (mesh->HasNormals()) {
			::fprintf(out,"\t\t<Normals> \n");
			if (!shortened) {
				for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
					::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
						mesh->mNormals[n].x,
						mesh->mNormals[n].y,
						mesh->mNormals[n].z);
				}
			}
			else {
			}
			::fprintf(out,"\t\t</Normals>\n");
		}

		// vertex tangents and bitangents
		if (mesh->HasTangentsAndBitangents()) {
			::fprintf(out,"\t\t<Tangents> \n");
			if (!shortened) {
				for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
					::fprintf(out,"\t\t%0 8f %0 8f %0 8f \t %0 8f %0 8f %0 8f\n",
						mesh->mTangents[n].x,
						mesh->mTangents[n].y,
						mesh->mTangents[n].z,
						mesh->mBitangents[n].x,
						mesh->mBitangents[n].y,
						mesh->mBitangents[n].z);
				}
			}
			else {
			}
			::fprintf(out,"\t\t</Tangents>\n");
		}

		// texture coordinates
		for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
			if (!mesh->mTextureCoords[a])
				break;

			::fprintf(out,"\t\t<TextureCoords set=\"%i\" num_components=\"%i\"> \n",a,mesh->mNumUVComponents[a]);
			if (!shortened) {
				for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
					::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
						mesh->mTextureCoords[a][n].x,
						mesh->mTextureCoords[a][n].y,
						mesh->mTextureCoords[a][n].z);
				}
			}
			else {
			}
			::fprintf(out,"\t\t</TextureCoords>\n");
		}

		// vertex colors
		for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
			if (!mesh->mColors[a])
				break;
			//::fprintf(out,"\t\t<Colors set=\"%i\"> \n",a);
			if (!shortened) {
				for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
					::fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
						mesh->mColors[a][n].r,
						mesh->mColors[a][n].g,
						mesh->mColors[a][n].b,
						mesh->mColors[a][n].a);
				}
			}
			else {
			}
			::fprintf(out,"\t\t</Color>\n");
		}
		::fprintf(out,"\t</Mesh>\n");
	}
	::fprintf(out,"</Scene>\n</ASSIMP>");
}