Exemplo n.º 1
0
static void _BezierPatchLowQuality(u8 *&dest, u16 *&indices, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
	// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.

	float u_base = patch.u_index / 3.0f;
	float v_base = patch.v_index / 3.0f;

	GEPatchPrimType prim_type = patch.primType;

	for (int tile_v = 0; tile_v < 3; tile_v++) {
		for (int tile_u = 0; tile_u < 3; tile_u++) {
			int point_index = tile_u + tile_v * 4;

			SimpleVertex v0 = *patch.points[point_index];
			SimpleVertex v1 = *patch.points[point_index + 1];
			SimpleVertex v2 = *patch.points[point_index + 4];
			SimpleVertex v3 = *patch.points[point_index + 5];

			// Generate UV. TODO: Do this even if UV specified in control points?
			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				float u = u_base + tile_u * third;
				float v = v_base + tile_v * third;
				v0.uv[0] = u;
				v0.uv[1] = v;
				v1.uv[0] = u + third;
				v1.uv[1] = v;
				v2.uv[0] = u;
				v2.uv[1] = v + third;
				v3.uv[0] = u + third;
				v3.uv[1] = v + third;
			}

			// Generate normal if lighting is enabled (otherwise there's no point).
			// This is a really poor quality algorithm, we get facet normals.
			if (patch.computeNormals) {
				Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
				norm.Normalize();
				if (patch.patchFacing)
					norm *= -1.0f;
				v0.nrm = norm;
				v1.nrm = norm;
				v2.nrm = norm;
				v3.nrm = norm;
			}


			int total = patch.index * 3 * 3 * 4; // A patch has 3x3 tiles, and each tiles have 4 vertices.
			int tile_index = tile_u + tile_v * 3;
			int idx0 = total + tile_index * 4 + 0;
			int idx1 = total + tile_index * 4 + 1;
			int idx2 = total + tile_index * 4 + 2;
			int idx3 = total + tile_index * 4 + 3;

			CopyQuad(dest, &v0, &v1, &v2, &v3);
			CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3);
			count += 6;
		}
	}
}
Exemplo n.º 2
0
void _SplinePatchLowQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
	// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.

	const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
	const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
	const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
	const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;

	for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			int point_index = tile_u + tile_v * spatch.count_u;

			SimpleVertex v0 = *spatch.points[point_index];
			SimpleVertex v1 = *spatch.points[point_index + 1];
			SimpleVertex v2 = *spatch.points[point_index + spatch.count_u];
			SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1];

			// Generate UV. TODO: Do this even if UV specified in control points?
			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				float u = tile_u * third;
				float v = tile_v * third;
				v0.uv[0] = u;
				v0.uv[1] = v;
				v1.uv[0] = u + third;
				v1.uv[1] = v;
				v2.uv[0] = u;
				v2.uv[1] = v + third;
				v3.uv[0] = u + third;
				v3.uv[1] = v + third;
			}

			// Generate normal if lighting is enabled (otherwise there's no point).
			// This is a really poor quality algorithm, we get facet normals.
			if (gstate.isLightingEnabled()) {
				Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
				norm.Normalize();
				if (gstate.patchfacing & 1)
					norm *= -1.0f;
				v0.nrm = norm;
				v1.nrm = norm;
				v2.nrm = norm;
				v3.nrm = norm;
			}

			CopyQuad(dest, &v0, &v1, &v2, &v3);
			count += 6;
		}
	}

}
Exemplo n.º 3
0
void _BezierPatchLowQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
	// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.

	float u_base = patch.u_index / 3.0f;
	float v_base = patch.v_index / 3.0f;

	for (int tile_v = 0; tile_v < 3; tile_v++) {
		for (int tile_u = 0; tile_u < 3; tile_u++) {
			int point_index = tile_u + tile_v * 4;

			SimpleVertex v0 = *patch.points[point_index];
			SimpleVertex v1 = *patch.points[point_index + 1];
			SimpleVertex v2 = *patch.points[point_index + 4];
			SimpleVertex v3 = *patch.points[point_index + 5];

			// Generate UV. TODO: Do this even if UV specified in control points?
			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				float u = u_base + tile_u * third;
				float v = v_base + tile_v * third;
				v0.uv[0] = u;
				v0.uv[1] = v;
				v1.uv[0] = u + third;
				v1.uv[1] = v;
				v2.uv[0] = u;
				v2.uv[1] = v + third;
				v3.uv[0] = u + third;
				v3.uv[1] = v + third;
			}

			// Generate normal if lighting is enabled (otherwise there's no point).
			// This is a really poor quality algorithm, we get facet normals.
			if (gstate.isLightingEnabled()) {
				Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
				norm.Normalize();
				if (gstate.patchfacing & 1)
					norm *= -1.0f;
				v0.nrm = norm;
				v1.nrm = norm;
				v2.nrm = norm;
				v3.nrm = norm;
			}

			CopyQuad(dest, &v0, &v1, &v2, &v3);
			count += 6;
		}
	}
}
Exemplo n.º 4
0
static void _SplinePatchLowQuality(u8 *&dest, u16 *indices, int &count, const SplinePatchLocal &spatch, u32 origVertType) {
	// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
	// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.

	const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
	const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
	const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
	const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;

	float tu_width = (float)spatch.count_u - 3.0f;
	float tv_height = (float)spatch.count_v - 3.0f;
	tu_width /= (float)(tile_max_u - tile_min_u);
	tv_height /= (float)(tile_max_v - tile_min_v);

	GEPatchPrimType prim_type = spatch.primType;
	bool computeNormals = spatch.computeNormals;
	bool patchFacing = spatch.patchFacing;

	int i = 0;
	for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			int point_index = tile_u + tile_v * spatch.count_u;

			SimpleVertex v0 = *spatch.points[point_index];
			SimpleVertex v1 = *spatch.points[point_index + 1];
			SimpleVertex v2 = *spatch.points[point_index + spatch.count_u];
			SimpleVertex v3 = *spatch.points[point_index + spatch.count_u + 1];

			// Generate UV. TODO: Do this even if UV specified in control points?
			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				float u = (tile_u - tile_min_u) * tu_width;
				float v = (tile_v - tile_min_v) * tv_height;

				v0.uv[0] = u;
				v0.uv[1] = v;
				v1.uv[0] = u + tu_width;
				v1.uv[1] = v;
				v2.uv[0] = u;
				v2.uv[1] = v + tv_height;
				v3.uv[0] = u + tu_width;
				v3.uv[1] = v + tv_height;
			}

			// Generate normal if lighting is enabled (otherwise there's no point).
			// This is a really poor quality algorithm, we get facet normals.
			if (computeNormals) {
				Vec3Packedf norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
				norm.Normalize();
				if (patchFacing)
					norm *= -1.0f;
				v0.nrm = norm;
				v1.nrm = norm;
				v2.nrm = norm;
				v3.nrm = norm;
			}

			int idx0 = i * 4 + 0;
			int idx1 = i * 4 + 1;
			int idx2 = i * 4 + 2;
			int idx3 = i * 4 + 3;
			i++;

			CopyQuad(dest, &v0, &v1, &v2, &v3);
			CopyQuadIndex(indices, prim_type, idx0, idx1, idx2, idx3);
			count += 6;
		}
	}

}
Exemplo n.º 5
0
void _BezierPatchHighQuality(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;
	// Full correct tesselation of bezier patches.
	// Note: Does not handle splines correctly.

	// First compute all the vertices and put them in an array
	SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

	Vec3Packedf *horiz = new Vec3Packedf[(tess_u + 1) * 4];
	Vec3Packedf *horiz2 = horiz + (tess_u + 1) * 1;
	Vec3Packedf *horiz3 = horiz + (tess_u + 1) * 2;
	Vec3Packedf *horiz4 = horiz + (tess_u + 1) * 3;

	// Precompute the horizontal curves to we only have to evaluate the vertical ones.
	for (int i = 0; i < tess_u + 1; i++) {
		float u = ((float)i / (float)tess_u);
		horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
		horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
		horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
		horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
	}

	bool computeNormals = gstate.isLightingEnabled();

	for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);
			float bu = u;
			float bv = v;

			// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
			const Vec3Packedf &pos1 = horiz[tile_u];
			const Vec3Packedf &pos2 = horiz2[tile_u];
			const Vec3Packedf &pos3 = horiz3[tile_u];
			const Vec3Packedf &pos4 = horiz4[tile_u];

			SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

			if (computeNormals) {
				Vec3Packedf derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
				Vec3Packedf derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
				Vec3Packedf derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
				Vec3Packedf derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
				Vec3Packedf derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
				Vec3Packedf derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

				// TODO: Interpolate normals instead of generating them, if available?
				vert.nrm = Cross(derivU, derivV).Normalized();
				if (gstate.patchfacing & 1)
					vert.nrm *= -1.0f;
			}
			else {
				vert.nrm.SetZero();
			}

			vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

			if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
				// Generate texcoord
				vert.uv[0] = u + patch.u_index * third;
				vert.uv[1] = v + patch.v_index * third;
			} else {
				// Sample UV from control points
				patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
			} 

			if (origVertType & GE_VTYPE_COL_MASK) {
				patch.sampleColor(u, v, vert.color);
			} else {
				memcpy(vert.color, patch.points[0]->color, 4);
			}
		}
	}
	delete[] horiz;

	// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
	for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
		for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
			float u = ((float)tile_u / (float)tess_u);
			float v = ((float)tile_v / (float)tess_v);

			const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
			const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
			const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
			const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

			CopyQuad(dest, v0, v1, v2, v3);
			count += 6;
		}
	}

	delete[] vertices;
}
Exemplo n.º 6
0
void  _SplinePatchFullQuality(u8 *&dest, int &count, const SplinePatchLocal &spatch, u32 origVertType, int patch_cap) {
	// Full (mostly) correct tessellation of spline patches.
	// Not very fast.

	// First, generate knot vectors.
	int n = spatch.count_u - 1;
	int m = spatch.count_v - 1;

	float *knot_u = new float[n + 5];
	float *knot_v = new float[m + 5];
	spline_knot(n, spatch.type_u, knot_u);
	spline_knot(m, spatch.type_v, knot_v);

	// Increase tesselation based on the size. Should be approximately right?
	// JPCSP is wrong at least because their method results in square loco roco.
	int patch_div_s = (spatch.count_u - 3) * gstate.getPatchDivisionU() / 3;
	int patch_div_t = (spatch.count_v - 3) * gstate.getPatchDivisionV() / 3;

	if (patch_div_s <= 0) patch_div_s = 1;
	if (patch_div_t <= 0) patch_div_t = 1;

	// TODO: Remove this cap when spline_s has been optimized. 
	if (patch_div_s > patch_cap) patch_div_s = patch_cap;
	if (patch_div_t > patch_cap) patch_div_t = patch_cap;

	// First compute all the vertices and put them in an array
	SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];

	float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f / 3.0f;
	float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f / 3.0f;

	bool computeNormals = gstate.isLightingEnabled();
	for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
		float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f));  // epsilon to prevent division by 0 in spline_s
		if (v < 0.0f)
			v = 0.0f;
		for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
			float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));
			if (u < 0.0f)
				u = 0.0f;
			SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
			vert->pos.SetZero();
			if (origVertType & GE_VTYPE_NRM_MASK) {
				vert->nrm.SetZero();
			}
			else {
				vert->nrm.SetZero();
				vert->nrm.z = 1.0f;
			}
			if (origVertType & GE_VTYPE_COL_MASK) {
				memset(vert->color, 0, 4);
			}
			else {
				memcpy(vert->color, spatch.points[0]->color, 4);
			}
			if (origVertType & GE_VTYPE_TC_MASK) {
				vert->uv[0] = 0.0f;
				vert->uv[1] = 0.0f;
			}
			else {
				vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s);
				vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t);
			}

			// Collect influences from surrounding control points.
			float u_weights[4];
			float v_weights[4];

			int iu = (int)u;
			int iv = (int)v;
			spline_n_4(iu, u, knot_u, u_weights);
			spline_n_4(iv, v, knot_v, v_weights);

			// Handle degenerate patches. without this, spatch.points[] may read outside the number of initialized points.
			int patch_w = std::min(spatch.count_u, 4);
			int patch_h = std::min(spatch.count_v, 4);

			for (int ii = 0; ii < patch_w; ++ii) {
				for (int jj = 0; jj < patch_h; ++jj) {
					float u_spline = u_weights[ii];
					float v_spline = v_weights[jj];
					float f = u_spline * v_spline;

					if (f > 0.0f) {
						int idx = spatch.count_u * (iv + jj) + (iu + ii);
						SimpleVertex *a = spatch.points[idx];
						vert->pos += a->pos * f;
						if (origVertType & GE_VTYPE_TC_MASK) {
							vert->uv[0] += a->uv[0] * f;
							vert->uv[1] += a->uv[1] * f;
						}
						if (origVertType & GE_VTYPE_COL_MASK) {
							vert->color[0] += a->color[0] * f;
							vert->color[1] += a->color[1] * f;
							vert->color[2] += a->color[2] * f;
							vert->color[3] += a->color[3] * f;
						}
						if (origVertType & GE_VTYPE_NRM_MASK) {
							vert->nrm += a->nrm * f;
						}
					}
				}
			}
			if (origVertType & GE_VTYPE_NRM_MASK) {
				vert->nrm.Normalize();
			}
		}
	}

	delete[] knot_u;
	delete[] knot_v;

	// Hacky normal generation through central difference.
	if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) {
		for (int v = 0; v < patch_div_t + 1; v++) {
			for (int u = 0; u < patch_div_s + 1; u++) {
				int l = std::max(0, u - 1);
				int t = std::max(0, v - 1);
				int r = std::min(patch_div_s, u + 1);
				int b = std::min(patch_div_t, v + 1);

				const Vec3Packedf &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos;
				const Vec3Packedf &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos;

				vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized();
				if (gstate.patchfacing & 1) {
					vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f;
				}
			}
		}
	}

	// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
	for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
		for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
			float u = ((float)tile_u / (float)patch_div_s);
			float v = ((float)tile_v / (float)patch_div_t);

			SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
			SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
			SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
			SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];

			CopyQuad(dest, v0, v1, v2, v3);
			count += 6;
		}
	}

	delete[] vertices;
}
Exemplo n.º 7
0
void TesselateBezierPatch(u8 *&dest, int &count, const BezierPatch &patch, u32 origVertType) {
	const float third = 1.0f / 3.0f;

	if (g_Config.bLowQualitySplineBezier) {
		// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
		// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.

		float u_base = patch.u_index / 3.0f;
		float v_base = patch.v_index / 3.0f;

		for (int tile_v = 0; tile_v < 3; tile_v++) {
			for (int tile_u = 0; tile_u < 3; tile_u++) {
				int point_index = tile_u + tile_v * 4;

				SimpleVertex v0 = *patch.points[point_index];
				SimpleVertex v1 = *patch.points[point_index+1];
				SimpleVertex v2 = *patch.points[point_index+4];
				SimpleVertex v3 = *patch.points[point_index+5];

				// Generate UV. TODO: Do this even if UV specified in control points?
				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					float u = u_base + tile_u * third;
					float v = v_base + tile_v * third;
					v0.uv[0] = u;
					v0.uv[1] = v;
					v1.uv[0] = u + third;
					v1.uv[1] = v;
					v2.uv[0] = u;
					v2.uv[1] = v + third;
					v3.uv[0] = u + third;
					v3.uv[1] = v + third;
				}

				// Generate normal if lighting is enabled (otherwise there's no point).
				// This is a really poor quality algorithm, we get facet normals.
				if (gstate.isLightingEnabled()) {
					Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
					norm.Normalize();
					if (gstate.patchfacing & 1)
						norm *= -1.0f;
					v0.nrm = norm;
					v1.nrm = norm;
					v2.nrm = norm;
					v3.nrm = norm;
				}

				CopyQuad(dest, &v0, &v1, &v2, &v3);
				count += 6;
			}
		}
	} else {
		// Full correct tesselation of bezier patches.
		// Note: Does not handle splines correctly.

		int tess_u = gstate.getPatchDivisionU();
		int tess_v = gstate.getPatchDivisionV();

		// First compute all the vertices and put them in an array
		SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];

		Vec3f *horiz = new Vec3f[(tess_u + 1) * 4];
		Vec3f *horiz2 = horiz + (tess_u + 1) * 1;
		Vec3f *horiz3 = horiz + (tess_u + 1) * 2;
		Vec3f *horiz4 = horiz + (tess_u + 1) * 3;

		// Precompute the horizontal curves to we only have to evaluate the vertical ones.
		for (int i = 0; i < tess_u + 1; i++) {
			float u = ((float)i / (float)tess_u);
			horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
			horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
			horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
			horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
		}

		bool computeNormals = gstate.isLightingEnabled();

		for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);
				float bu = u;
				float bv = v;

				// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
				const Vec3f &pos1 = horiz[tile_u];
				const Vec3f &pos2 = horiz2[tile_u];
				const Vec3f &pos3 = horiz3[tile_u];
				const Vec3f &pos4 = horiz4[tile_u];

				SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];

				if (computeNormals) {
					Vec3f derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
					Vec3f derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
					Vec3f derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
					Vec3f derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
					Vec3f derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
					Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);

					// TODO: Interpolate normals instead of generating them, if available?
					vert.nrm = Cross(derivU, derivV).Normalized();
					if (gstate.patchfacing & 1)
						vert.nrm *= -1.0f;
				} else {
					vert.nrm.SetZero();
				}

				vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);

				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					// Generate texcoord
					vert.uv[0] = u + patch.u_index * third;
					vert.uv[1] = v + patch.v_index * third;
				} else {
					// Sample UV from control points
					patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
				}

				if (origVertType & GE_VTYPE_COL_MASK) {
					patch.sampleColor(u, v, vert.color);
				} else {
					memcpy(vert.color, patch.points[0]->color, 4);
				}
			}
		}
		delete [] horiz;

		// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
		for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
			for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
				float u = ((float)tile_u / (float)tess_u);
				float v = ((float)tile_v / (float)tess_v);

				const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
				const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
				const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
				const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];

				CopyQuad(dest, v0, v1, v2, v3);
				count += 6;
			}
		}

		delete [] vertices;
	}
}
Exemplo n.º 8
0
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatch &spatch, u32 origVertType) {
	const float third = 1.0f / 3.0f;

	if (g_Config.bLowQualitySplineBezier) {
		// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
		// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.

		const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
		const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
		const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
		const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;

		for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
			for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
				int point_index = tile_u + tile_v * spatch.count_u;

				SimpleVertex v0 = *spatch.points[point_index];
				SimpleVertex v1 = *spatch.points[point_index+1];
				SimpleVertex v2 = *spatch.points[point_index+spatch.count_u];
				SimpleVertex v3 = *spatch.points[point_index+spatch.count_u+1];

				// Generate UV. TODO: Do this even if UV specified in control points?
				if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
					float u = tile_u * third;
					float v = tile_v * third;
					v0.uv[0] = u;
					v0.uv[1] = v;
					v1.uv[0] = u + third;
					v1.uv[1] = v;
					v2.uv[0] = u;
					v2.uv[1] = v + third;
					v3.uv[0] = u + third;
					v3.uv[1] = v + third;
				}

				// Generate normal if lighting is enabled (otherwise there's no point).
				// This is a really poor quality algorithm, we get facet normals.
				if (gstate.isLightingEnabled()) {
					Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
					norm.Normalize();
					if (gstate.patchfacing & 1)
						norm *= -1.0f;
					v0.nrm = norm;
					v1.nrm = norm;
					v2.nrm = norm;
					v3.nrm = norm;
				}

				CopyQuad(dest, &v0, &v1, &v2, &v3);
				count += 6;
			}
		}
	} else {
		// Full correct tessellation of spline patches.
		// Does not yet generate normals and is atrociously slow (see spline_s...)

		// First, generate knot vectors.
		int n = spatch.count_u - 1;
		int m = spatch.count_v - 1;

		float *knot_u = new float[n + 5];
		float *knot_v = new float[m + 5];
		spline_knot(n, spatch.type_u, knot_u);
		spline_knot(m, spatch.type_v, knot_v);

		int patch_div_s = gstate.getPatchDivisionU();
		int patch_div_t = gstate.getPatchDivisionV();

		// Increase tesselation based on the size. Should be approximately right?
		// JPCSP is wrong at least because their method results in square loco roco.
		patch_div_s = (spatch.count_u - 3) * patch_div_s / 3;
		patch_div_t = (spatch.count_v - 3) * patch_div_t / 3;
		if (patch_div_s == 0) patch_div_s = 1;
		if (patch_div_t == 0) patch_div_t = 1;

		// TODO: Remove this cap when spline_s has been optimized. 
		if (patch_div_s > 64) patch_div_s = 64;
		if (patch_div_t > 64) patch_div_t = 64;

		// First compute all the vertices and put them in an array
		SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];

		float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f/3.0f;
		float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f/3.0f;

		bool computeNormals = gstate.isLightingEnabled();
		for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
			float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f));  // epsilon to prevent division by 0 in spline_s
			for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
				float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));

				SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
				vert->pos.SetZero();
				if (origVertType & GE_VTYPE_NRM_MASK) {
					vert->nrm.SetZero();
				} else {
					vert->nrm.SetZero();
					vert->nrm.z = 1.0f;
				}
				if (origVertType & GE_VTYPE_COL_MASK) {
					memset(vert->color, 0, 4);
				} else {
					memcpy(vert->color, spatch.points[0]->color, 4);
				}
				if (origVertType & GE_VTYPE_TC_MASK) {
					vert->uv[0] = 0.0f;
					vert->uv[1] = 0.0f;
				} else {
					vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s);
					vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t);
				}

				// Collect influences from surrounding control points.
				float u_weights[4];
				float v_weights[4];
				
				int iu = (int)u;
				int iv = (int)v;
				spline_n_4(iu, u, knot_u, u_weights);
				spline_n_4(iv, v, knot_v, v_weights);

				for (int ii = 0; ii < 4; ++ii) {
					for (int jj = 0; jj < 4; ++jj) {
						float u_spline = u_weights[ii];
						float v_spline = v_weights[jj];
						float f = u_spline * v_spline;
						
						if (f > 0.0f) {
							SimpleVertex *a = spatch.points[spatch.count_u * (iv + jj) + (iu + ii)];
							vert->pos += a->pos * f;
							if (origVertType & GE_VTYPE_TC_MASK) {
								vert->uv[0] += a->uv[0] * f;
								vert->uv[1] += a->uv[1] * f;
							}
							if (origVertType & GE_VTYPE_COL_MASK) {
								vert->color[0] += a->color[0] * f;
								vert->color[1] += a->color[1] * f;
								vert->color[2] += a->color[2] * f;
								vert->color[3] += a->color[3] * f;
							}
							if (origVertType & GE_VTYPE_NRM_MASK) {
								vert->nrm += a->nrm * f;
							}
						}
					}
				}
				if (origVertType & GE_VTYPE_NRM_MASK) {
					vert->nrm.Normalize();
				}
			}
		}

		delete [] knot_u;
		delete [] knot_v;

		// Hacky normal generation through central difference.
		if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) {
			for (int v = 0; v < patch_div_t + 1; v++) {
				for (int u = 0; u < patch_div_s + 1; u++) {
					int l = std::max(0, u - 1);
					int t = std::max(0, v - 1);
					int r = std::min(patch_div_s, u + 1);
					int b = std::min(patch_div_t, v + 1);

					const Vec3f &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos;
					const Vec3f &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos;

					vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized();
					if (gstate.patchfacing & 1) {
						vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f;
					}
				}
			}
		}

		// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
		for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
			for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
				float u = ((float)tile_u / (float)patch_div_s);
				float v = ((float)tile_v / (float)patch_div_t);

				SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
				SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
				SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
				SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];

				CopyQuad(dest, v0, v1, v2, v3);
				count += 6;
			}
		}

		delete [] vertices;
	}
}