Exemplo n.º 1
0
void LayoutContainer::SetHeight(const unsigned int& height) {
	mHeight = height;
	
	for (auto iter = mDivisions.begin(); iter != mDivisions.end(); ++iter) {
		iter->CreateCells();
	}
}
Exemplo n.º 2
0
void LayoutContainer::SetWidth(const unsigned int& width) {
	mWidth = width;
	
	// make sure to update all divisions (cells will have new
	// positions and dimensions)
	for (auto iter = mDivisions.begin(); iter != mDivisions.end(); ++iter) {
		iter->CreateCells();
	}
}
ribi::trim::CellsCreator::CellsCreator(
  const boost::shared_ptr<const Template> t,
  const int n_cell_layers,
  const boost::units::quantity<boost::units::si::length> layer_height,
  const CreateVerticalFacesStrategy strategy,
  const bool verbose,
  const CellsCreatorFactory&
) : m_cells(
      CreateCells(
        t,
        n_cell_layers + 1, //n_face_layers - 1 == n_cell_layers
        layer_height,
        strategy,
        verbose
      )
    ),
    m_strategy(strategy)
{
  #ifndef NDEBUG
  Test();
  assert(t);
  assert(strategy == m_strategy);
  #endif
}
ribi::trim::TriangleMeshBuilder::TriangleMeshBuilder(
  const std::vector<boost::shared_ptr<Cell>>& cells,
  const std::string& mesh_filename,
  const std::function<ribi::foam::PatchFieldType(const std::string&)> boundary_to_patch_field_type_function
  )
  : m_cells(cells),
    m_faces(SortByBoundary(ExtractFaces(cells))),
    m_points(ExtractPoints(cells))
{
  #ifndef NDEBUG
  Test();
  #endif
  TRACE_FUNC();
  PROFILE_FUNC();

  for (const std::string& folder: GetAllFolders())
  {
    if (!ribi::fileio::IsFolder(folder))
    {
      ribi::fileio::CreateFolder(folder);
    }
    assert(ribi::fileio::IsFolder(folder));
  }

  //Remove cells with less than 8 faces or less than 8 faces with an owner
  m_cells.erase(
    std::remove_if(m_cells.begin(),m_cells.end(),
      [](const boost::shared_ptr<Cell> cell)
      {
        const std::vector<boost::shared_ptr<Face>> faces { cell->GetFaces() };
        assert(faces.size() == 8);
        return std::count_if(faces.begin(),faces.end(),
          [](const boost::shared_ptr<Face> face)
          {
            assert(face);
            assert(face->GetOwner()); //Test: is this loop needed?
            return face->GetOwner();
          }
        ) < 8;
      }
    ),
    m_cells.end()
  );


  m_faces.erase(
    std::remove_if(m_faces.begin(),m_faces.end(),
      [](const boost::shared_ptr<const Face> face)
      {
        return !face->GetOwner();
      }
    ),
    m_faces.end()
  );

  //Remove cells with less than 8 faces or less than 8 faces with an owner
  m_cells.erase(
    std::remove_if(m_cells.begin(),m_cells.end(),
      [](const boost::shared_ptr<Cell> cell)
      {
        const std::vector<boost::shared_ptr<Face>> faces { cell->GetFaces() };
        assert(faces.size() == 8);
        return std::count_if(faces.begin(),faces.end(),
          [](const boost::shared_ptr<Face> face)
          {
            assert(face);
            assert(face->GetOwner()); //Test: is this loop needed?
            return face->GetOwner();
          }
        ) < 8;
      }
    ),
    m_cells.end()
  );

  //Set all indices
  {
    const int n_cells = static_cast<int>(m_cells.size());
    for (int i=0; i!=n_cells; ++i)
    {
      m_cells[i]->SetIndex(i);
    }
    const int n_faces = static_cast<int>(m_faces.size());
    for (int i=0; i!=n_faces; ++i)
    {
      m_faces[i]->SetIndex(i);
    }
    const int n_points = static_cast<int>(m_points.size());
    for (int i=0; i!=n_points; ++i)
    {
      m_points[i]->SetIndex(i);
    }
  }


  //Check
  #ifndef NDEBUG
  {
    const int cell_usecount = m_cells.empty() ? 0 : m_cells[0].use_count();
    for (const auto& cell: m_cells)
    {
      assert(cell);
      //TRACE(cell_usecount);
      //TRACE(cell.use_count());
      assert(cell.use_count() == cell_usecount && "Every Cell must have an equal use_count");
      //All Cells must have existing indices
      assert(cell->GetIndex() >= 0);
      assert(cell->GetIndex() <  static_cast<int>(m_cells.size()));
      //const int face_usecount = cell->GetFaces().empty() ? 0 : cell->GetFaces()[0].use_count();
      for (const auto& face: cell->GetFaces())
      {
        assert(face);
        //TRACE(face_usecount);
        //TRACE(face.use_count());
        //assert(std::abs(face_usecount - face.use_count()) <= 1 && "Face are used once or twice");
        //All Cells must exist of Faces with an existing index
        assert(face->GetIndex() >= 0);
        assert(face->GetIndex() <  static_cast<int>(m_faces.size()));
        //All Faces must have a Cell that owns them with an existing index
        assert(face->GetOwner()->GetIndex() >= 0);
        assert(face->GetOwner()->GetIndex() <  static_cast<int>(m_cells.size()));
        //All Faces must have either no Neighbout or a Neighbour with an existing index
        assert(!face->GetNeighbour() || face->GetNeighbour()->GetIndex() >= 0);
        assert(!face->GetNeighbour() || face->GetNeighbour()->GetIndex() <  static_cast<int>(m_cells.size()));
        for (const auto point: face->GetPoints())
        {
          assert(point);
          //All Faces must exists of Points with an existing index
          assert(point->GetIndex() >= 0);
          assert(point->GetIndex() <  static_cast<int>(m_points.size()));
        }
      }
    }
  }
  #endif

  const bool verbose = false;
  if (verbose) std::cout << "Writing output...\n";
  //Mesh
  {
    if (verbose) std::cout << "\tGenerating mesh (.ply)\n";

    std::ofstream f(mesh_filename.c_str());
    f << CreateHeader();
    f << CreateNodes();
    f << CreateFaces();
  }
  {

    std::ofstream f(ribi::foam::Filenames().GetPoints().Get().c_str());
    f << CreateOpenFoamHeader("vectorField","points","constant/polyMesh");
    f << CreateOpenFoamNodes();
  }
  {
    std::ofstream fp(ribi::foam::Filenames().GetFaces().Get().c_str());

    fp << CreateOpenFoamHeader("faceList","faces","constant/polyMesh");
    fp << CreateOpenFoamFaces();
  }
  {
    const int n_cells = static_cast<int>(m_cells.size());
    if (verbose) std::cout << "\tGenerating cells (" << n_cells << ")\n";

    std::ofstream fo(ribi::foam::Filenames().GetOwner().Get().c_str());
    std::ofstream fn(ribi::foam::Filenames().GetNeighbour().Get().c_str());

    std::stringstream fs;
    fs
      << "nPoints: " << m_points.size()
      << " nCells: " << m_cells.size()
      << " nFaces: " << m_faces.size()
    ;

    fo << CreateOpenFoamHeader(
        "labelList",
        "owner",
        "constant/polyMesh",
        fs.str()
      );
    fn << CreateOpenFoamHeader(
      "labelList",
      "neighbour",
      "constant/polyMesh",
      fs.str()
      );

    const std::pair<std::string,std::string> p { CreateCells() };
    const std::string& out_owner { p.first };
    const std::string& out_neighbour { p.second};
    fo << out_owner;
    fn << out_neighbour;
  }
  {
    std::ofstream f(ribi::foam::Filenames().GetBoundary().Get().c_str());
    f << CreateBoundary(boundary_to_patch_field_type_function);
  }
  {
    std::ofstream f(ribi::foam::Filenames().GetCase().Get().c_str());
    //Need nothing to stream
  }
  {
    //std::ofstream f(ribi::foam::Filenames().GetFvSchemes().Get().c_str());
    //f << CreateOpenFoamFvSchemes();
  }
  {
    //std::ofstream f(ribi::foam::Filenames().GetFvSolution().Get().c_str());
    //f << CreateOpenFoamFvSolution();
  }

  {
    std::ofstream f(ribi::foam::Filenames().GetVelocityField().Get().c_str());
    f << CreateOpenFoamU();
  }

  {
    //std::ofstream f(ribi::foam::Filenames().GetControlDict().Get().c_str());
    //f << CreateOpenFoamControlDict();
  }

  PROFILER_UPDATE();
}
Exemplo n.º 5
0
int main(int argc, char *argv[])
{
  int i,j,k,l,inmethod,outmethod,info,errorstat;
  int nogrids,nomeshes,nofile,dim,elementsredone=0;
  int nodes3d,elements3d,showmem;
  Real mergeeps;
  char prefix[MAXFILESIZE];
  struct GridType *grids;
  struct CellType *cell[MAXCASES];
  struct FemType data[MAXCASES];
  struct BoundaryType *boundaries[MAXCASES];
  struct ElmergridType eg;

  showmem = TRUE;

  printf("\nStarting program Elmergrid\n");

  InitParameters(&eg);

  grids = (struct GridType*)malloc((size_t) (MAXCASES)*sizeof(struct GridType));     
  InitGrid(grids);
  info = TRUE;

  if(argc <= 1) {
    errorstat = LoadCommands(argv[1],&eg,grids,argc-1,info);     
    Instructions();
    if(errorstat) Goodbye();
  }
  if(argc == 2) {
    errorstat = LoadCommands(argv[1],&eg,grids,argc-1,info);     
    if(errorstat) Goodbye();
  }
  else if(argc < 4) {
    Instructions();
    Goodbye();
  } 
  else {
    errorstat = InlineParameters(&eg,argc,argv);
    if(errorstat) Goodbye();
  }


  if(!eg.outmethod || !eg.inmethod) {
    printf("Please define the input and output formats\n");
  }
  if(eg.inmethod != 1) {
    if(eg.outmethod == 1 || eg.outmethod == 8 || eg.outmethod == 9 || eg.outmethod == 10) {
      printf("input of type %d can't create output of type %d\n",
	     eg.inmethod,eg.outmethod);
      errorstat++;
      Goodbye();
    }
  }
#if 0
  if(eg.inmethod != 8 && eg.outmethod == 5) {
    printf("To write Easymesh format you need to read easymesh format!\n");
    errorstat++;
  }
#endif

  if(eg.timeron) timer_activate(eg.infofile);

  /**********************************/
  printf("\nElmergrid loading data:\n");
  printf(  "-----------------------\n");

  dim = eg.dim;
  nofile = 0;
  nomeshes = 0;
  nogrids = 0;
  inmethod = eg.inmethod;
  outmethod = eg.outmethod;


 read_another_file:    

  timer_show();
  
  switch (inmethod) {

  case 1:        
    if(LoadElmergrid(&grids,&nogrids,eg.filesin[nofile],eg.relh,info) == 1) {   
      if(dim == 3) ExampleGrid3D(&grids,&nogrids,info);
      if(dim == 2) ExampleGrid2D(&grids,&nogrids,info);
      if(dim == 1) ExampleGrid1D(&grids,&nogrids,info);
      SaveElmergrid(grids,nogrids,eg.filesin[nofile],info); 
      printf("Because file %s didn't exist, it was created for you.\n",eg.filesin[nofile]);
      Goodbye();
    }
    LoadCommands(eg.filesin[nofile],&eg,grids,2,info); 
    break;

  case 2: 
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if(LoadElmerInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],info))
      Goodbye();
    nomeshes++;
    break;

  case 3: 
    if(LoadSolutionElmer(&(data[nofile]),TRUE,eg.filesin[nofile],info)) 
      Goodbye();
    nomeshes++;
    break;

  case 4:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    if(LoadAnsysInput(&(data[0]),boundaries[0],eg.filesin[nofile],info)) 
      Goodbye();
    nomeshes++;
    break;

  case 5: 
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if(LoadAbaqusInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE)) 
      Goodbye();
    nomeshes++;
    break;

  case 6:
    if(LoadAbaqusOutput(&(data[nofile]),eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 7:
    if(LoadFidapInput(&(data[nofile]),eg.filesin[nofile],TRUE))
      Goodbye();
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if(0 && !eg.usenames) data[nofile].boundarynamesexist = data[nofile].bodynamesexist = FALSE;
    ElementsToBoundaryConditions(&(data[nofile]),boundaries[nofile],FALSE,TRUE);
    RenumberBoundaryTypes(&data[nofile],boundaries[nofile],TRUE,0,info);
  
    nomeshes++;
    break;

  case 8:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadUniversalMesh(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

 case 9:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
   
    if(LoadComsolMesh(&(data[nofile]),eg.filesin[nofile],info)) 
      Goodbye();
    ElementsToBoundaryConditions(&(data[nofile]),boundaries[nofile],FALSE,TRUE);
    nomeshes++;
    break;

  case 10:
    if(LoadFieldviewInput(&(data[nofile]),eg.filesin[nofile],TRUE))
      Goodbye();
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	    
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    ElementsToBoundaryConditions(&(data[nofile]),boundaries[nofile],FALSE,TRUE);
    nomeshes++;
    break;

  case 11:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadTriangleInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 12:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadMeditInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 13:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadGidInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 14:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadGmshInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 15: 
    if(info) printf("Partitioned solution is fused on-the-fly therefore no other operations may be performed.\n");
    FuseSolutionElmerPartitioned(eg.filesin[nofile],eg.filesout[nofile],eg.decimals,eg.partjoin,
				 eg.saveinterval[0],eg.saveinterval[1],eg.saveinterval[2],info);
    if(info) printf("Finishing with the fusion of partitioned Elmer solutions\n");
    Goodbye();
    break;

#if 0
  case 16: 
    InitializeKnots(&(data[nofile]));
    if( Easymesh(argc,argv,&data[nofile].noknots,
		 &data[nofile].noelements,&sides)) 
      Goodbye();	
    
    data[nofile].dim = 2;
    data[nofile].coordsystem = COORD_CART2;
    data[nofile].maxnodes = 3;
    
    AllocateKnots(&(data[nofile]));
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if(EasymeshCopy(&(data[nofile]),boundaries[nofile]))
      Goodbye();    
    nomeshes++;
    break;
#endif

  case 17:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadNastranInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  case 18:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
   
    if(LoadCGsimMesh(&(data[nofile]),eg.filesin[nofile],info))
       Goodbye();
    nomeshes++;
    break;

  case 19:
    boundaries[nofile] = (struct BoundaryType*)
      malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
    for(i=0;i<MAXBOUNDARIES;i++) {
      boundaries[nofile][i].created = FALSE; 
      boundaries[nofile][i].nosides = 0;
    }
    if (LoadGeoInput(&(data[nofile]),boundaries[nofile],eg.filesin[nofile],TRUE))
      Goodbye();
    nomeshes++;
    break;

  default:
    Instructions();
    Goodbye();
  }  

  nofile++;
  if(nofile < eg.nofilesin) {
    printf("\nElmergrid loading data from another file:\n");
    goto read_another_file;
  }

  /***********************************/


 redoelements:

  printf("\nElmergrid creating and manipulating meshes:\n");
  printf(  "-------------------------------------------\n");
  timer_show();


  if(nogrids > nomeshes && outmethod != 1) { 

    nomeshes = nogrids;
    for(k=0;k<nogrids;k++) {

      CreateCells(&(grids[k]),&(cell[k]),info);  
      CreateKnots(&(grids[k]),cell[k],&(data[k]),0,0);

      boundaries[k] = (struct BoundaryType*)
	malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 

      for(j=0;j<MAXBOUNDARIES;j++) {
	boundaries[k][j].created = FALSE;
	boundaries[k][j].nosides = FALSE;
      }

      if(grids[k].noboundaries > 0) {
	for(j=0;j<grids[k].noboundaries;j++) {
	  if(grids[k].boundsolid[j] < 4) {
	    CreateBoundary(cell[k],&(data[k]),&(boundaries[k][j]),
			   grids[k].boundext[j],grids[k].boundint[j],
			   1,grids[k].boundtype[j]);  
	  } 
	  else { 
	    CreatePoints(cell[k],&(data[k]),&(boundaries[k][j]),
			 grids[k].boundext[j],grids[k].boundint[j],
			 grids[k].boundsolid[j],grids[k].boundtype[j]); 	    
	  }
	}
      }
    }
  }

  /* In some formats the dimension for curved 2D meshes seems to be set to 2.
     This should fix the problem for all input types. */
  if( data->dim < 3 ) {
    data->dim = GetCoordinateDimension(data,info);
  }

 
  /* Make the discontinous boundary needed, for example, in poor thermal conduction */
  for(k=0;k<nomeshes;k++) {
    if(!eg.discont) {
      for(j=0;j<grids[k].noboundaries;j++) 
	if(grids[k].boundsolid[j] == 2) {
	  eg.discontbounds[eg.discont] = grids[k].boundtype[j];
	  eg.discont++;	  
	}
    }
    if(eg.discont) {
      for(i=1;i<=eg.discont;i++) 
	SetDiscontinuousBoundary(&(data[k]),boundaries[k],eg.discontbounds[i-1],2,info);
    }
  }


  /* Divide quadrilateral meshes into triangular meshes */
  for(k=0;k<nomeshes;k++) 
    if(nogrids && (eg.triangles || grids[k].triangles == TRUE)) {
      Real criticalangle;
      criticalangle = MAX(eg.triangleangle , grids[k].triangleangle);
      ElementsToTriangles(&data[k],boundaries[k],criticalangle,info);
    }


  /* Make a boundary layer with two different methods */
  if(eg.layers > 0) 
    for(k=0;k<nomeshes;k++) 
      CreateBoundaryLayer(&data[k],boundaries[k],eg.layers,
			  eg.layerbounds, eg.layernumber, eg.layerratios, eg.layerthickness,
			  eg.layerparents, eg.layermove, eg.layereps, info);

  else if(eg.layers < 0) 
    for(k=0;k<nomeshes;k++) 
      CreateBoundaryLayerDivide(&data[k],boundaries[k],abs(eg.layers),
				eg.layerbounds, eg.layernumber, eg.layerratios, eg.layerthickness,
				eg.layerparents, info);

  /* Take up the infor on rotation */
  for(k=0;k<nogrids;k++) 
    if( grids[k].rotatecurve ) {
      eg.rotatecurve = TRUE;
      eg.curvezet = grids[k].curvezet;
      eg.curverad = grids[k].curverad;
      eg.curveangle = grids[k].curveangle;
    }


  if(outmethod != 1 && dim != 2 && eg.dim != 2) { 
    j = MAX(nogrids,1);


    for(k=0;k<j;k++) {
      if(grids[k].dimension == 3 || grids[k].rotate) {

	boundaries[j] = (struct BoundaryType*)
	  malloc((size_t) (MAXBOUNDARIES)*sizeof(struct BoundaryType)); 	
	
	for(i=0;i<MAXBOUNDARIES;i++) 
	  boundaries[j][i].created = FALSE;

	CreateKnotsExtruded(&(data[k]),boundaries[k],&(grids[k]),
			    &(data[j]),boundaries[j],info);

	if(nogrids) {
	  elements3d = MAX(eg.elements3d, grids[k].wantedelems3d);
	  nodes3d = MAX(eg.nodes3d, grids[k].wantednodes3d);

	  if(elements3d) {
	    if( abs(data[j].noelements - elements3d) / (1.0*elements3d) > 0.01 && elementsredone < 5 ) {
	      grids[k].wantedelems *= pow(1.0*elements3d / data[j].noelements, (2.0/3.0));
	      elementsredone++;
	    }
	    else elementsredone = 0;
	  }
	  else if(nodes3d) {
	    if( abs(data[j].noknots - nodes3d) / (1.0*nodes3d) > 0.01 && elementsredone < 5 ) {
	      grids[k].wantedelems *= pow(1.0*nodes3d / data[j].noknots, (2.0/3.0));
	      elementsredone++;
	    }
	    else elementsredone = 0;
	  }

	  if(elementsredone) {
	    nomeshes = 0;
	    for(i=0;i < nogrids;i++) SetElementDivision(&(grids[i]),eg.relh,info);
	    
	    DestroyKnots(&data[j]);
	    DestroyKnots(&data[k]);
	    free(cell[k]);
	    
	    if(info) printf("Iteration %d of elements number targiting %d in 2D\n",
			    elementsredone,grids[k].wantedelems);
	    goto redoelements;
	  }
	}	

	data[k] = data[j];
	boundaries[k] = boundaries[j];
      }
    }
  }

  /* If the original mesh was given in polar coordinates make the transformation into cartesian ones */
  for(k=0;k<nomeshes;k++) {
    if(eg.polar || data[k].coordsystem == COORD_POLAR) {
      if(!eg.polar) eg.polarradius = grids[k].polarradius;
      PolarCoordinates(&data[k],eg.polarradius,info);
    }
  }

  /* If the original mesh was given in cylindrical coordinates make the transformation into cartesian ones */
  for(k=0;k<nomeshes;k++) {
    if(eg.cylinder || data[k].coordsystem == COORD_CYL) {
      CylinderCoordinates(&data[k],info);
    }
  }

  if(1) for(k=0;k<nomeshes;k++) 
    RotateTranslateScale(&data[k],&eg,info);


  /* Rotate may apply to 2d and 3d geometries as well */
  for(k=0;k<nomeshes;k++) 
    if(eg.rotatecurve) 
      CylindricalCoordinateCurve(&data[k],eg.curvezet,eg.curverad,eg.curveangle);

  /* Unite meshes if there are several of them */
  if(eg.unitemeshes) {
    for(k=1;k<nomeshes;k++)
      UniteMeshes(&data[0],&data[k],boundaries[0],boundaries[k],info);
    nomeshes = nogrids = 1;
  }
  
  if(eg.clone[0] || eg.clone[1] || eg.clone[2]) {
    for(k=0;k<nomeshes;k++) {
      CloneMeshes(&data[k],boundaries[k],eg.clone,eg.clonesize,FALSE,info);
      mergeeps = fabs(eg.clonesize[0]+eg.clonesize[1]+eg.clonesize[2]) * 1.0e-8;
      MergeElements(&data[k],boundaries[k],eg.order,eg.corder,mergeeps,TRUE,TRUE);
    }
  }

  if(eg.mirror[0] || eg.mirror[1] || eg.mirror[2]) {
    for(k=0;k<nomeshes;k++) {
      MirrorMeshes(&data[k],boundaries[k],eg.mirror,FALSE,eg.clonesize,eg.mirrorbc,info);
      mergeeps = fabs(eg.clonesize[0]+eg.clonesize[1]+eg.clonesize[2]) * 1.0e-8;
      MergeElements(&data[k],boundaries[k],eg.order,eg.corder,mergeeps,FALSE,TRUE);
    }
  }

  /* Naming convection for the case of several meshes */
  if(nomeshes > 1) {
    strcpy(prefix,eg.filesout[0]);
    for(k=0;k<nomeshes;k++)
      sprintf(eg.filesout[k],"%s%d",prefix,k+1);
  }

  for(k=0;k<nomeshes;k++) {
    if(nogrids && grids[k].reduceordermatmax) {
      eg.reduce = TRUE;
      eg.reducemat1 = grids[k].reduceordermatmin;
      eg.reducemat2 = grids[k].reduceordermatmax;
    }
    if(eg.reduce) 
      ReduceElementOrder(&data[k],eg.reducemat1,eg.reducemat2);
  }

  for(k=0;k<nomeshes;k++) 
    if(eg.increase) IncreaseElementOrder(&data[k],TRUE);
 
  for(k=0;k<nomeshes;k++) {
    if(eg.merge) 
      MergeElements(&data[k],boundaries[k],eg.order,eg.corder,eg.cmerge,FALSE,TRUE);
    else if(eg.order == 3) 
#if PARTMETIS 
      ReorderElementsMetis(&data[k],TRUE);
#else
      printf("Cannot order nodes by Metis as it is not even compiled!\n");
#endif    
    else if(eg.order) 
      ReorderElements(&data[k],boundaries[k],eg.order,eg.corder,TRUE);
    
    if(eg.isoparam) 
      IsoparametricElements(&data[k],boundaries[k],TRUE,info);
  }