Exemplo n.º 1
0
void compound_changed(GtkWidget * widget, gpointer data) {
	char *textPtr,*textPtr2,*endPtr,*lastPtr;
	struct compoundWidget *cw = (struct compoundWidget *) data;
	struct compoundData cd;
	double weight;
	int cp_rv;

	textPtr = (char *) gtk_entry_get_text(GTK_ENTRY(cw->compoundEntry));
	textPtr2 = (char *) gtk_entry_get_text(GTK_ENTRY(cw->weightEntry));
	weight = strtod(textPtr2, &endPtr);
	cp_rv = CompoundParser(textPtr, &cd); 

#if DEBUG == 1
	fprintf(stdout,"weight: %lf\n",weight);

#endif

	lastPtr = textPtr2 + strlen(textPtr2);

#if DEBUG == 1
	fprintf(stdout,"lastPtr: %p\n",lastPtr);
	fprintf(stdout,"endPtr: %p\n",endPtr);
#endif

	if (widget == cw->compoundEntry) {
		if (cp_rv == 1) {
			gtk_widget_modify_base(widget,GTK_STATE_NORMAL,&white);
			FREE_COMPOUND_DATA(cd);
		}
		else {
			//bad value
			gtk_widget_modify_base(widget,GTK_STATE_NORMAL,&red);
			gtk_widget_set_sensitive(cw->okButton,FALSE);
		}
		if (cp_rv == 1 && lastPtr == endPtr && weight > 0.0) {
			gtk_widget_set_sensitive(cw->okButton,TRUE);
		}
	}
	else if (widget == cw->weightEntry) {
		if (lastPtr == endPtr && weight > 0.0) {
			gtk_widget_modify_base(widget,GTK_STATE_NORMAL,&white);
		}
		else {
			//bad value
			gtk_widget_modify_base(widget,GTK_STATE_NORMAL,&red);
			gtk_widget_set_sensitive(cw->okButton,FALSE);
		}
		if (cp_rv == 1 && lastPtr == endPtr && weight > 0.0) {
			gtk_widget_set_sensitive(cw->okButton,TRUE);
			FREE_COMPOUND_DATA(cd);
		}
	}



	

}
Exemplo n.º 2
0
int main()
{
  struct compoundData cdtest;
  int i;
  XRayInit();
  //if something goes wrong, the test will end with EXIT_FAILURE
  //SetHardExit(1);

  std::printf("Example of C++ program using xraylib\n");
  std::printf("Ca K-alpha Fluorescence Line Energy: %f\n",
	 LineEnergy(20,KA_LINE));
  std::printf("Fe partial photoionization cs of L3 at 6.0 keV: %f\n",CS_Photo_Partial(26,L3_SHELL,6.0));
  std::printf("Zr L1 edge energy: %f\n",EdgeEnergy(40,L1_SHELL));
  std::printf("Pb Lalpha XRF production cs at 20.0 keV (jump approx): %f\n",CS_FluorLine(82,LA_LINE,20.0));
  std::printf("Pb Lalpha XRF production cs at 20.0 keV (Kissel): %f\n",CS_FluorLine_Kissel(82,LA_LINE,20.0));
  std::printf("Bi M1N2 radiative rate: %f\n",RadRate(83,M1N2_LINE));
  std::printf("U M3O3 Fluorescence Line Energy: %f\n",LineEnergy(92,M3O3_LINE));
  //parser test for Ca(HCO3)2 (calcium bicarbonate)
  if (CompoundParser("Ca(HCO3)2",&cdtest) == 0)
	return 1;
  std::printf("Ca(HCO3)2 contains %i atoms and %i elements\n",cdtest.nAtomsAll,cdtest.nElements);
  for (i = 0 ; i < cdtest.nElements ; i++)
    std::printf("Element %i: %lf %%\n",cdtest.Elements[i],cdtest.massFractions[i]*100.0);

  FREE_COMPOUND_DATA(cdtest)

  //parser test for SiO2 (quartz)
  if (CompoundParser("SiO2",&cdtest) == 0)
	return 1;

  std::printf("SiO2 contains %i atoms and %i elements\n",cdtest.nAtomsAll,cdtest.nElements);
  for (i = 0 ; i < cdtest.nElements ; i++)
    std::printf("Element %i: %lf %%\n",cdtest.Elements[i],cdtest.massFractions[i]*100.0);

  FREE_COMPOUND_DATA(cdtest)

  std::printf("Ca(HCO3)2 Rayleigh cs at 10.0 keV: %f\n",CS_Rayl_CP("Ca(HCO3)2",10.0f) );

  std::printf("CS2 Refractive Index at 10.0 keV : %f - %f i\n",Refractive_Index_Re("CS2",10.0f,1.261f),Refractive_Index_Im("CS2",10.0f,1.261f));
  std::printf("C16H14O3 Refractive Index at 1 keV : %f - %f i\n",Refractive_Index_Re("C16H14O3",1.0f,1.2f),Refractive_Index_Im("C16H14O3",1.0f,1.2f));
  std::printf("SiO2 Refractive Index at 5 keV : %f - %f i\n",Refractive_Index_Re("SiO2",5.0f,2.65f),Refractive_Index_Im("SiO2",5.0f,2.65f));
  std::printf("Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile(26,1.1f));
  std::printf("M5 Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile_Partial(26,M5_SHELL,1.1f));
  std::printf("K atomic level width for Fe: %f\n", AtomicLevelWidth(26,K_SHELL));
  std::printf("M1->M5 Coster-Kronig transition probability for Au : %f\n",CosKronTransProb(79,FM15_TRANS));
  std::printf("L1->L3 Coster-Kronig transition probability for Fe : %f\n",CosKronTransProb(26,FL13_TRANS));
  std::printf("Au Ma1 XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MA1_LINE,10.0f));
  std::printf("Au Mb XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MB_LINE,10.0f));
  std::printf("Au Mg XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MG_LINE,10.0f));

  std::printf("Bi L2-M5M5 Auger non-radiative rate: %f\n",AugerRate(86,L2_M5M5_AUGER));

  std::printf("Pb Malpha XRF production cs at 20.0 keV with cascade effect: %f\n",CS_FluorLine_Kissel(82,MA1_LINE,20.0));
  std::printf("Pb Malpha XRF production cs at 20.0 keV with radiative cascade effect: %f\n",CS_FluorLine_Kissel_Radiative_Cascade(82,MA1_LINE,20.0));
  std::printf("Pb Malpha XRF production cs at 20.0 keV with non-radiative cascade effect: %f\n",CS_FluorLine_Kissel_Nonradiative_Cascade(82,MA1_LINE,20.0));
  std::printf("Pb Malpha XRF production cs at 20.0 keV without cascade effect: %f\n",CS_FluorLine_Kissel_no_Cascade(82,MA1_LINE,20.0));

  /* Si Crystal structure */

  Crystal_Struct* cryst = Crystal_GetCrystal("Si", NULL);
  if (cryst == NULL) return 1;
  std::printf ("Si unit cell dimensions are %f %f %f\n", cryst->a, cryst->b, cryst->c);
  std::printf ("Si unit cell angles are %f %f %f\n", cryst->alpha, cryst->beta, cryst->gamma);
  std::printf ("Si unit cell volume is %f\n", cryst->volume);
  std::printf ("Si atoms at:\n");
  std::printf ("   Z  fraction    X        Y        Z\n");
  Crystal_Atom* atom;
  for (i = 0; i < cryst->n_atom; i++) {
    atom = &cryst->atom[i];
    std::printf ("  %3i %f %f %f %f\n", atom->Zatom, atom->fraction, atom->x, atom->y, atom->z);
  } 

  /* Si diffraction parameters */

  std::printf ("\nSi111 at 8 KeV. Incidence at the Bragg angle:\n");

  float energy = 8;
  float debye_temp_factor = 1.0;
  float rel_angle = 1.0;

  float bragg = Bragg_angle (cryst, energy, 1, 1, 1);
  std::printf ("  Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI);

  float q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle);
  std::printf ("  Q Scattering amplitude: %f\n", q);

  float f0, fp, fpp;
  Atomic_Factors (14, energy, q, debye_temp_factor, &f0, &fp, &fpp);
  std::printf ("  Atomic factors (Z = 14) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp);

  Complex FH, F0;
  FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle);
  std::printf ("  FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im);

  F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle);
  std::printf ("  F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im);



  /* Diamond diffraction parameters */

  cryst = Crystal_GetCrystal("Diamond", NULL);

  std::printf ("\nDiamond 111 at 8 KeV. Incidence at the Bragg angle:\n");

  bragg = Bragg_angle (cryst, energy, 1, 1, 1);
  std::printf ("  Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI);

  q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle);
  std::printf ("  Q Scattering amplitude: %f\n", q);

  Atomic_Factors (6, energy, q, debye_temp_factor, &f0, &fp, &fpp);
  std::printf ("  Atomic factors (Z = 6) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp);

  FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle);
  std::printf ("  FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im);

  F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle);
  std::printf ("  F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im);

  Complex FHbar = Crystal_F_H_StructureFactor (cryst, energy, -1, -1, -1, debye_temp_factor, rel_angle);
  float dw = 1e10 * 2 * (R_E / cryst->volume) * (KEV2ANGST * KEV2ANGST/ (energy * energy)) * 
                                                  sqrt(c_abs(c_mul(FH, FHbar))) / PI / sin(2*bragg);
  std::printf ("  Darwin width: %f micro-radians\n", 1e6*dw);

  /* Alpha Quartz diffraction parameters */

  cryst = Crystal_GetCrystal("AlphaQuartz", NULL);

  std::printf ("\nAlpha Quartz 020 at 8 KeV. Incidence at the Bragg angle:\n");

  bragg = Bragg_angle (cryst, energy, 0, 2, 0);
  std::printf ("  Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI);

  q = Q_scattering_amplitude (cryst, energy, 0, 2, 0, rel_angle);
  std::printf ("  Q Scattering amplitude: %f\n", q);

  Atomic_Factors (8, energy, q, debye_temp_factor, &f0, &fp, &fpp);
  std::printf ("  Atomic factors (Z = 8) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp);

  FH = Crystal_F_H_StructureFactor (cryst, energy, 0, 2, 0, debye_temp_factor, rel_angle);
  std::printf ("  FH(0,2,0) structure factor: (%f, %f)\n", FH.re, FH.im);

  F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle);
  std::printf ("  F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im);

  /* Muscovite diffraction parameters */

  cryst = Crystal_GetCrystal("Muscovite", NULL);

  std::printf ("\nMuscovite 331 at 8 KeV. Incidence at the Bragg angle:\n");

  bragg = Bragg_angle (cryst, energy, 3, 3, 1);
  std::printf ("  Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI);

  q = Q_scattering_amplitude (cryst, energy, 3, 3, 1, rel_angle);
  std::printf ("  Q Scattering amplitude: %f\n", q);

  Atomic_Factors (19, energy, q, debye_temp_factor, &f0, &fp, &fpp);
  std::printf ("  Atomic factors (Z = 19) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp);

  FH = Crystal_F_H_StructureFactor (cryst, energy, 3, 3, 1, debye_temp_factor, rel_angle);
  std::printf ("  FH(3,3,1) structure factor: (%f, %f)\n", FH.re, FH.im);

  F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle);
  std::printf ("  F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im);


  std::printf ("\n--------------------------- END OF XRLEXAMPLE6 -------------------------------\n");
  return 0;
}