Exemplo n.º 1
0
void BSBDataset::ScanForGCPsBSB()
{
/* -------------------------------------------------------------------- */
/*      Collect standalone GCPs.  They look like:                       */
/*                                                                      */
/*      REF/1,115,2727,32.346666666667,-60.881666666667			*/
/*      REF/n,pixel,line,lat,long                                       */
/* -------------------------------------------------------------------- */
    int fileGCPCount=0;
    int i;

    // Count the GCPs (reference points) in psInfo->papszHeader
    for( i = 0; psInfo->papszHeader[i] != NULL; i++ )
        if( EQUALN(psInfo->papszHeader[i],"REF/",4) )
            fileGCPCount++;

    // Memory has not been allocated to fileGCPCount yet
    pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),fileGCPCount+1);

    for( i = 0; psInfo->papszHeader[i] != NULL; i++ )
    {
        char	**papszTokens;
        char	szName[50];

        if( !EQUALN(psInfo->papszHeader[i],"REF/",4) )
            continue;

        papszTokens = 
            CSLTokenizeStringComplex( psInfo->papszHeader[i]+4, ",", 
                                      FALSE, FALSE );

        if( CSLCount(papszTokens) > 4 )
        {
            GDALInitGCPs( 1, pasGCPList + nGCPCount );

            pasGCPList[nGCPCount].dfGCPX = atof(papszTokens[4]);
            pasGCPList[nGCPCount].dfGCPY = atof(papszTokens[3]);
            pasGCPList[nGCPCount].dfGCPPixel = atof(papszTokens[1]);
            pasGCPList[nGCPCount].dfGCPLine = atof(papszTokens[2]);

            CPLFree( pasGCPList[nGCPCount].pszId );
            if( CSLCount(papszTokens) > 5 )
            {
                pasGCPList[nGCPCount].pszId = CPLStrdup(papszTokens[5]);
            }
            else
            {
                sprintf( szName, "GCP_%d", nGCPCount+1 );
                pasGCPList[nGCPCount].pszId = CPLStrdup( szName );
            }

            nGCPCount++;
        }
        CSLDestroy( papszTokens );
    }
}
Exemplo n.º 2
0
void BSBDataset::ScanForGCPsNos( const char *pszFilename )
{
    char **Tokens;
    const char *geofile;
    const char *extension;
    int fileGCPCount=0;

    extension = CPLGetExtension(pszFilename);

    // pseudointelligently try and guess whether we want a .geo or a .GEO
    if (extension[1] == 'O')
    {
        geofile = CPLResetExtension( pszFilename, "GEO");
    } else {
        geofile = CPLResetExtension( pszFilename, "geo");
    }

    FILE *gfp = VSIFOpen( geofile, "r" );  // Text files
    if( gfp == NULL )
    {
        CPLError( CE_Failure, CPLE_OpenFailed,
                  "Couldn't find a matching .GEO file: %s", geofile );
        return;
    }

    char *thisLine = (char *) CPLMalloc( 80 ); // FIXME

    // Count the GCPs (reference points) and seek the file pointer 'gfp' to the starting point
    while (fgets(thisLine, 80, gfp))
    {
        if( EQUALN(thisLine, "Point", 5) )
            fileGCPCount++;
    }
    VSIRewind( gfp );

    // Memory has not been allocated to fileGCPCount yet
    pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),fileGCPCount+1);

    while (fgets(thisLine, 80, gfp))
    {
        if( EQUALN(thisLine, "Point", 5) )
        {
            // got a point line, turn it into a gcp
            Tokens = CSLTokenizeStringComplex(thisLine, "= ", FALSE, FALSE);
            if (CSLCount(Tokens) >= 5)
            {
                GDALInitGCPs( 1, pasGCPList + nGCPCount );
                pasGCPList[nGCPCount].dfGCPX = atof(Tokens[1]);
                pasGCPList[nGCPCount].dfGCPY = atof(Tokens[2]);
                pasGCPList[nGCPCount].dfGCPPixel = atof(Tokens[4]);
                pasGCPList[nGCPCount].dfGCPLine = atof(Tokens[3]);

                CPLFree( pasGCPList[nGCPCount].pszId );
                char	szName[50];
                sprintf( szName, "GCP_%d", nGCPCount+1 );
                pasGCPList[nGCPCount].pszId = CPLStrdup( szName );

                nGCPCount++;
            }
            CSLDestroy(Tokens);
        }
    }

    CPLFree(thisLine);
    VSIFClose(gfp);
}
Exemplo n.º 3
0
void *GDALDeserializeGCPTransformer( CPLXMLNode *psTree )

{
    GDAL_GCP *pasGCPList = 0;
    int nGCPCount = 0;
    void *pResult;
    int nReqOrder;
    int bReversed;
    int bRefine;
    int nMinimumGcps;
    double dfTolerance;

    /* -------------------------------------------------------------------- */
    /*      Check for GCPs.                                                 */
    /* -------------------------------------------------------------------- */
    CPLXMLNode *psGCPList = CPLGetXMLNode( psTree, "GCPList" );

    if( psGCPList != NULL )
    {
        int  nGCPMax = 0;
        CPLXMLNode *psXMLGCP;
         
        // Count GCPs.
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
            nGCPMax++;
         
        pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),nGCPMax);

        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
        {
            GDAL_GCP *psGCP = pasGCPList + nGCPCount;

            if( !EQUAL(psXMLGCP->pszValue,"GCP") || 
                psXMLGCP->eType != CXT_Element )
                continue;
             
            GDALInitGCPs( 1, psGCP );
             
            CPLFree( psGCP->pszId );
            psGCP->pszId = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Id",""));
             
            CPLFree( psGCP->pszInfo );
            psGCP->pszInfo = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Info",""));
             
            psGCP->dfGCPPixel = atof(CPLGetXMLValue(psXMLGCP,"Pixel","0.0"));
            psGCP->dfGCPLine = atof(CPLGetXMLValue(psXMLGCP,"Line","0.0"));
             
            psGCP->dfGCPX = atof(CPLGetXMLValue(psXMLGCP,"X","0.0"));
            psGCP->dfGCPY = atof(CPLGetXMLValue(psXMLGCP,"Y","0.0"));
            psGCP->dfGCPZ = atof(CPLGetXMLValue(psXMLGCP,"Z","0.0"));
            nGCPCount++;
        }
    }

/* -------------------------------------------------------------------- */
/*      Get other flags.                                                */
/* -------------------------------------------------------------------- */
    nReqOrder = atoi(CPLGetXMLValue(psTree,"Order","3"));
    bReversed = atoi(CPLGetXMLValue(psTree,"Reversed","0"));
    bRefine = atoi(CPLGetXMLValue(psTree,"Refine","0"));
    nMinimumGcps = atoi(CPLGetXMLValue(psTree,"MinimumGcps","6"));
    dfTolerance = atof(CPLGetXMLValue(psTree,"Tolerance","1.0"));

/* -------------------------------------------------------------------- */
/*      Generate transformation.                                        */
/* -------------------------------------------------------------------- */
    if(bRefine)
    {
        pResult = GDALCreateGCPRefineTransformer( nGCPCount, pasGCPList, nReqOrder, 
                                        bReversed, dfTolerance, nMinimumGcps );
    }
    else
    {
        pResult = GDALCreateGCPTransformer( nGCPCount, pasGCPList, nReqOrder, 
                                        bReversed );
    }
    
/* -------------------------------------------------------------------- */
/*      Cleanup GCP copy.                                               */
/* -------------------------------------------------------------------- */
    GDALDeinitGCPs( nGCPCount, pasGCPList );
    CPLFree( pasGCPList );

    return pResult;
}
Exemplo n.º 4
0
CPLErr GDALPamDataset::XMLInit( CPLXMLNode *psTree, const char *pszVRTPath )

{
/* -------------------------------------------------------------------- */
/*      Check for an SRS node.                                          */
/* -------------------------------------------------------------------- */
    if( strlen(CPLGetXMLValue(psTree, "SRS", "")) > 0 )
    {
        OGRSpatialReference oSRS;

        CPLFree( psPam->pszProjection );
        psPam->pszProjection = NULL;

        if( oSRS.SetFromUserInput( CPLGetXMLValue(psTree, "SRS", "") )
            == OGRERR_NONE )
            oSRS.exportToWkt( &(psPam->pszProjection) );
    }

/* -------------------------------------------------------------------- */
/*      Check for a GeoTransform node.                                  */
/* -------------------------------------------------------------------- */
    if( strlen(CPLGetXMLValue(psTree, "GeoTransform", "")) > 0 )
    {
        const char *pszGT = CPLGetXMLValue(psTree, "GeoTransform", "");
        char	**papszTokens;

        papszTokens = CSLTokenizeStringComplex( pszGT, ",", FALSE, FALSE );
        if( CSLCount(papszTokens) != 6 )
        {
            CPLError( CE_Warning, CPLE_AppDefined,
                      "GeoTransform node does not have expected six values.");
        }
        else
        {
            for( int iTA = 0; iTA < 6; iTA++ )
                psPam->adfGeoTransform[iTA] = atof(papszTokens[iTA]);
            psPam->bHaveGeoTransform = TRUE;
        }

        CSLDestroy( papszTokens );
    }

/* -------------------------------------------------------------------- */
/*      Check for GCPs.                                                 */
/* -------------------------------------------------------------------- */
    CPLXMLNode *psGCPList = CPLGetXMLNode( psTree, "GCPList" );

    if( psGCPList != NULL )
    {
        CPLXMLNode *psXMLGCP;
        OGRSpatialReference oSRS;
        const char *pszRawProj = CPLGetXMLValue(psGCPList, "Projection", "");

        CPLFree( psPam->pszGCPProjection );

        if( strlen(pszRawProj) > 0 
            && oSRS.SetFromUserInput( pszRawProj ) == OGRERR_NONE )
            oSRS.exportToWkt( &(psPam->pszGCPProjection) );
        else
            psPam->pszGCPProjection = CPLStrdup("");

        // Count GCPs.
        int  nGCPMax = 0;
         
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
            nGCPMax++;
         
        psPam->pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),nGCPMax);
         
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
        {
            GDAL_GCP *psGCP = psPam->pasGCPList + psPam->nGCPCount;

            if( !EQUAL(psXMLGCP->pszValue,"GCP") || 
                psXMLGCP->eType != CXT_Element )
                continue;
             
            GDALInitGCPs( 1, psGCP );
             
            CPLFree( psGCP->pszId );
            psGCP->pszId = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Id",""));
             
            CPLFree( psGCP->pszInfo );
            psGCP->pszInfo = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Info",""));
             
            psGCP->dfGCPPixel = atof(CPLGetXMLValue(psXMLGCP,"Pixel","0.0"));
            psGCP->dfGCPLine = atof(CPLGetXMLValue(psXMLGCP,"Line","0.0"));
             
            psGCP->dfGCPX = atof(CPLGetXMLValue(psXMLGCP,"X","0.0"));
            psGCP->dfGCPY = atof(CPLGetXMLValue(psXMLGCP,"Y","0.0"));
            psGCP->dfGCPZ = atof(CPLGetXMLValue(psXMLGCP,"Z","0.0"));

            psPam->nGCPCount++;
        }
    }

/* -------------------------------------------------------------------- */
/*      Apply any dataset level metadata.                               */
/* -------------------------------------------------------------------- */
    oMDMD.XMLInit( psTree, TRUE );

/* -------------------------------------------------------------------- */
/*      Process bands.                                                  */
/* -------------------------------------------------------------------- */
    CPLXMLNode *psBandTree;

    for( psBandTree = psTree->psChild; 
         psBandTree != NULL; psBandTree = psBandTree->psNext )
    {
        if( psBandTree->eType != CXT_Element
            || !EQUAL(psBandTree->pszValue,"PAMRasterBand") )
            continue;

        int nBand = atoi(CPLGetXMLValue( psBandTree, "band", "0"));

        if( nBand < 1 || nBand > GetRasterCount() )
            continue;

        GDALPamRasterBand *poBand = (GDALPamRasterBand *)
            GetRasterBand(nBand);

        if( poBand == NULL || !(poBand->GetMOFlags() & GMO_PAM_CLASS) )
            continue;

        poBand->XMLInit( psBandTree, pszVRTPath );
    }

/* -------------------------------------------------------------------- */
/*      Clear dirty flag.                                               */
/* -------------------------------------------------------------------- */
    nPamFlags &= ~GPF_DIRTY;

    return CE_None;
}
Exemplo n.º 5
0
void EnvisatDataset::ScanForGCPs_ASAR()

{
    int		nDatasetIndex, nNumDSR, nDSRSize, iRecord;

/* -------------------------------------------------------------------- */
/*      Do we have a meaningful geolocation grid?                       */
/* -------------------------------------------------------------------- */
    nDatasetIndex = EnvisatFile_GetDatasetIndex( hEnvisatFile,
                                                 "GEOLOCATION GRID ADS" );
    if( nDatasetIndex == -1 )
        return;

    if( EnvisatFile_GetDatasetInfo( hEnvisatFile, nDatasetIndex,
                                    NULL, NULL, NULL, NULL, NULL,
                                    &nNumDSR, &nDSRSize ) != SUCCESS )
        return;

    if( nNumDSR == 0 || nDSRSize != 521 )
        return;

/* -------------------------------------------------------------------- */
/*      Collect the first GCP set from each record.			*/
/* -------------------------------------------------------------------- */
    GByte	abyRecord[521];
    int  	nRange=0, nSample, iGCP, nRangeOffset=0;
    GUInt32 	unValue;

    nGCPCount = 0;
    pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),(nNumDSR+1) * 11);

    for( iRecord = 0; iRecord < nNumDSR; iRecord++ )
    {
        if( EnvisatFile_ReadDatasetRecord( hEnvisatFile, nDatasetIndex,
                                           iRecord, abyRecord ) != SUCCESS )
            continue;

        memcpy( &unValue, abyRecord + 13, 4 );
        nRange = CPL_MSBWORD32( unValue ) + nRangeOffset;

        if((iRecord>1) && (int(pasGCPList[nGCPCount-1].dfGCPLine+0.5) > nRange))
        {
            int delta = (int) (pasGCPList[nGCPCount-1].dfGCPLine -
                               pasGCPList[nGCPCount-12].dfGCPLine);
            nRange = int(pasGCPList[nGCPCount-1].dfGCPLine+0.5) + delta;
            nRangeOffset = nRange-1;
        }

        for( iGCP = 0; iGCP < 11; iGCP++ )
        {
            char	szId[128];

            GDALInitGCPs( 1, pasGCPList + nGCPCount );

            CPLFree( pasGCPList[nGCPCount].pszId );

            sprintf( szId, "%d", nGCPCount+1 );
            pasGCPList[nGCPCount].pszId = CPLStrdup( szId );

            memcpy( &unValue, abyRecord + 25 + iGCP*4, 4 );
            nSample = CPL_MSBWORD32(unValue);

            memcpy( &unValue, abyRecord + 25 + 176 + iGCP*4, 4 );
            pasGCPList[nGCPCount].dfGCPX = ((int)CPL_MSBWORD32(unValue))*0.000001;

            memcpy( &unValue, abyRecord + 25 + 132 + iGCP*4, 4 );
            pasGCPList[nGCPCount].dfGCPY = ((int)CPL_MSBWORD32(unValue))*0.000001;

            pasGCPList[nGCPCount].dfGCPZ = 0.0;

            pasGCPList[nGCPCount].dfGCPLine = nRange - 0.5;
            pasGCPList[nGCPCount].dfGCPPixel = nSample - 0.5;

            nGCPCount++;
        }
    }

/* -------------------------------------------------------------------- */
/*      We also collect the bottom GCPs from the last granule.          */
/* -------------------------------------------------------------------- */
    memcpy( &unValue, abyRecord + 17, 4 );
    nRange = nRange + CPL_MSBWORD32( unValue ) - 1;

    for( iGCP = 0; iGCP < 11; iGCP++ )
    {
        char	szId[128];

        GDALInitGCPs( 1, pasGCPList + nGCPCount );

        CPLFree( pasGCPList[nGCPCount].pszId );

        sprintf( szId, "%d", nGCPCount+1 );
        pasGCPList[nGCPCount].pszId = CPLStrdup( szId );

        memcpy( &unValue, abyRecord + 279 + iGCP*4, 4 );
        nSample = CPL_MSBWORD32(unValue);

        memcpy( &unValue, abyRecord + 279 + 176 + iGCP*4, 4 );
        pasGCPList[nGCPCount].dfGCPX = ((int)CPL_MSBWORD32(unValue))*0.000001;

        memcpy( &unValue, abyRecord + 279 + 132 + iGCP*4, 4 );
        pasGCPList[nGCPCount].dfGCPY = ((int)CPL_MSBWORD32(unValue))*0.000001;

        pasGCPList[nGCPCount].dfGCPZ = 0.0;

        pasGCPList[nGCPCount].dfGCPLine = nRange - 0.5;
        pasGCPList[nGCPCount].dfGCPPixel = nSample - 0.5;

        nGCPCount++;
    }
}
Exemplo n.º 6
0
void PAuxDataset::ScanForGCPs()

{
    static const int MAX_GCP = 256;

    nGCPCount = 0;
    pasGCPList = reinterpret_cast<GDAL_GCP *>(
        CPLCalloc( sizeof(GDAL_GCP), MAX_GCP ) );

/* -------------------------------------------------------------------- */
/*      Get the GCP coordinate system.                                  */
/* -------------------------------------------------------------------- */
    const char *pszMapUnits = CSLFetchNameValue( papszAuxLines, "GCP_1_MapUnits" );
    const char *pszProjParms = CSLFetchNameValue( papszAuxLines, "GCP_1_ProjParms" );

    if( pszMapUnits != NULL )
        pszGCPProjection = PCI2WKT( pszMapUnits, pszProjParms );

/* -------------------------------------------------------------------- */
/*      Collect standalone GCPs.  They look like:                       */
/*                                                                      */
/*      GCP_1_n = row, col, x, y [,z [,"id"[, "desc"]]]                 */
/* -------------------------------------------------------------------- */
    for( int i = 0; nGCPCount < MAX_GCP; i++ )
    {
        char szName[50];
        snprintf( szName, sizeof(szName), "GCP_1_%d", i+1 );
        if( CSLFetchNameValue( papszAuxLines, szName ) == NULL )
            break;

        char **papszTokens = CSLTokenizeStringComplex(
            CSLFetchNameValue( papszAuxLines, szName ),
            " ", TRUE, FALSE );

        if( CSLCount(papszTokens) >= 4 )
        {
            GDALInitGCPs( 1, pasGCPList + nGCPCount );

            pasGCPList[nGCPCount].dfGCPX = CPLAtof(papszTokens[2]);
            pasGCPList[nGCPCount].dfGCPY = CPLAtof(papszTokens[3]);
            pasGCPList[nGCPCount].dfGCPPixel = CPLAtof(papszTokens[0]);
            pasGCPList[nGCPCount].dfGCPLine = CPLAtof(papszTokens[1]);

            if( CSLCount(papszTokens) > 4 )
                pasGCPList[nGCPCount].dfGCPZ = CPLAtof(papszTokens[4]);

            CPLFree( pasGCPList[nGCPCount].pszId );
            if( CSLCount(papszTokens) > 5 )
            {
                pasGCPList[nGCPCount].pszId = CPLStrdup(papszTokens[5]);
            }
            else
            {
                snprintf( szName, sizeof(szName), "GCP_%d", i+1 );
                pasGCPList[nGCPCount].pszId = CPLStrdup( szName );
            }

            if( CSLCount(papszTokens) > 6 )
            {
                CPLFree( pasGCPList[nGCPCount].pszInfo );
                pasGCPList[nGCPCount].pszInfo = CPLStrdup(papszTokens[6]);
            }

            nGCPCount++;
        }

        CSLDestroy(papszTokens);
    }
}
Exemplo n.º 7
0
GDAL_GCP * PrepareGCP(const CPLString& sFileName, OGRPoint *pt1, OGRPoint *pt2, OGRPoint *pt3, OGRPoint *pt4, OGRPoint *ptCenter, const OGRSpatialReference &oDstOGRSpatialReference, const int nRasterSizeX, const int nRasterSizeY, int &nGCPCount, OGREnvelope &DstEnv)
{
    // to meters
    double dfFocusM = dfFocus / 100;
    double dfFilmHalfHeightM = dfFilmHeight / 200;
    double dfRatio = dfFilmHalfHeightM / dfFocusM;

    //create center point and line of scene
    OGRPoint ptShortSideBeg = GetCenterOfLine(pt1, pt4);
    OGRPoint ptShortSideEnd = GetCenterOfLine(pt2, pt3);

    OGRLineString lnTmp;
    lnTmp.addPoint(&ptShortSideBeg);
    lnTmp.addPoint(&ptShortSideEnd);

    lnTmp.Value(lnTmp.Project(pt1), &ptShortSideBeg);
    lnTmp.Value(lnTmp.Project(pt2), &ptShortSideEnd);

    double dfDist1 = pt1->Distance(pt2);
    double dfDist2 = pt2->Distance(pt3);
    double dfDist3 = pt3->Distance(pt4);
    double dfDist4 = pt4->Distance(pt1);
    double dfHalfWidth = (dfDist2 + dfDist4) / 4;
    double dfHalfHeight = (dfDist1 + dfDist3) / 4;

    double dfAltitudeAtSide = (dfHalfWidth * dfFocusM) / dfFilmHalfHeightM;
    double dfAltitudeAtSceneCenter = sqrt( dfAltitudeAtSide * dfAltitudeAtSide - dfHalfHeight * dfHalfHeight);
    double dfAltitude = dfAltitudeAtSceneCenter * cos(dfMountAngleRad); // 145 - 220 km
    double dfDistCenter = dfAltitudeAtSceneCenter * sin(dfMountAngleRad);

    OGRLineString lnCenterLeft;
    lnCenterLeft.addPoint(&ptShortSideBeg);
    lnCenterLeft.addPoint(ptCenter);
    OGRPoint ptSatCenter = GetTangetPoint(lnCenterLeft, dfDistCenter);

    std::vector<OGRPoint> aPt1, aPt2;
    int nTotalGCPCount = ((SEGMENT_STEPS + 1) * 2);
    GDAL_GCP *paGSPs = (GDAL_GCP *) CPLMalloc (nTotalGCPCount * sizeof(GDAL_GCP));
    GDALInitGCPs(nTotalGCPCount, paGSPs);

    double dfImageStepLen = double(nRasterSizeX) / SEGMENT_STEPS;
    double dfImageCenterX = 0;

    OGRLineString lnCenter;
    lnCenter.addPoint(&ptShortSideBeg);
    lnCenter.addPoint(ptCenter);
    lnCenter.addPoint(&ptShortSideEnd);

    double dfCenterLineLen = lnCenter.get_Length();
    double dfStepLen = dfCenterLineLen / SEGMENT_STEPS;
    double dfCenterLineHalfLen = dfCenterLineLen / 2;

    for(double i = 0; i <= dfCenterLineLen; i += dfStepLen)
    {
        OGRPoint ptTmp;
        lnCenter.Value(i, &ptTmp);

        double dfDist = fabs(dfCenterLineHalfLen - i);

        double dfWidthTmp = GetWidthForHeight(dfAltitudeAtSceneCenter, dfDist, dfRatio);

        OGRLineString lnTmpLine;
        lnTmpLine.addPoint(ptCenter);
        lnTmpLine.addPoint(&ptTmp);

        int direction = 1;
        if(dfCenterLineHalfLen < i)
            direction = -1;

        OGRPoint ptUp = GetTangetPoint(lnTmpLine, dfWidthTmp * direction);
        OGRPoint ptDown = GetTangetPoint(lnTmpLine, -dfWidthTmp * direction);

        //OGRPoint ptUp = GetValue(dfWidthTmp, lnTmpLine);
        //OGRPoint ptDown = GetValue(-dfWidthTmp, lnTmpLine);

        aPt1.push_back(ptUp);
        aPt2.push_back(ptDown);

        paGSPs[nGCPCount].dfGCPLine = 0;
        paGSPs[nGCPCount].dfGCPPixel = dfImageCenterX;
        paGSPs[nGCPCount].dfGCPX = ptDown.getX();
        paGSPs[nGCPCount].dfGCPY = ptDown.getY();
        paGSPs[nGCPCount].dfGCPZ = dfMeanHeight;
        paGSPs[nGCPCount].pszId = CPLStrdup(CPLSPrintf("pt%d", nGCPCount));
        nGCPCount++;

        paGSPs[nGCPCount].dfGCPLine = nRasterSizeY;
        paGSPs[nGCPCount].dfGCPPixel = dfImageCenterX;
        paGSPs[nGCPCount].dfGCPX = ptUp.getX();
        paGSPs[nGCPCount].dfGCPY = ptUp.getY();
        paGSPs[nGCPCount].dfGCPZ = dfMeanHeight;
        paGSPs[nGCPCount].pszId = CPLStrdup(CPLSPrintf("pt%d", nGCPCount));
        nGCPCount++;

        dfImageCenterX += dfImageStepLen;
    }

    // add points to polygon
    OGRLinearRing Ring;
    for(int i = 0; i < aPt1.size(); ++i)
        Ring.addPoint(aPt1[i].getX(), aPt1[i].getY());

    for(int i = aPt2.size() - 1; i >= 0; --i)
        Ring.addPoint(aPt2[i].getX(), aPt2[i].getY());

    Ring.closeRings();

    OGRPolygon Rgn;
    Rgn.addRingDirectly((OGRCurve*)Ring.clone());
    Rgn.assignSpatialReference(oDstOGRSpatialReference.Clone());
    Rgn.flattenTo2D();

    Rgn.getEnvelope(&DstEnv);

    SaveGeometry(CPLResetExtension(sFileName, "shp"), Rgn, oDstOGRSpatialReference);

    return paGSPs;
}
Exemplo n.º 8
0
int main( int argc, char ** argv )

{
    const char         *pszSrcFilename = NULL;
    const char         *pszDstFilename = NULL;
    int                 nOrder = 0;
    void               *hTransformArg;
    GDALTransformerFunc pfnTransformer = NULL;
    int                 nGCPCount = 0;
    GDAL_GCP            *pasGCPs = NULL;
    int                 bInverse = FALSE;
    char              **papszTO = NULL;

    /* Check that we are running against at least GDAL 1.5 */
    /* Note to developers : if we use newer API, please change the requirement */
    if (atoi(GDALVersionInfo("VERSION_NUM")) < 1500)
    {
        fprintf(stderr, "At least, GDAL >= 1.5.0 is required for this version of %s, "
                "which was compiled against GDAL %s\n", argv[0], GDAL_RELEASE_NAME);
        exit(1);
    }

    GDALAllRegister();
    argc = GDALGeneralCmdLineProcessor( argc, &argv, 0 );
    if( argc < 1 )
        exit( -argc );

/* -------------------------------------------------------------------- */
/*      Parse arguments.                                                */
/* -------------------------------------------------------------------- */
    int i;

    for( i = 1; i < argc; i++ )
    {
        if( EQUAL(argv[i], "--utility_version") )
        {
            printf("%s was compiled against GDAL %s and is running against GDAL %s\n",
                   argv[0], GDAL_RELEASE_NAME, GDALVersionInfo("RELEASE_NAME"));
            return 0;
        }
        else if( EQUAL(argv[i],"-t_srs") && i < argc-1 )
        {
            char *pszSRS = SanitizeSRS(argv[++i]);
            papszTO = CSLSetNameValue( papszTO, "DST_SRS", pszSRS );
            CPLFree( pszSRS );
        }
        else if( EQUAL(argv[i],"-s_srs") && i < argc-1 )
        {
            char *pszSRS = SanitizeSRS(argv[++i]);
            papszTO = CSLSetNameValue( papszTO, "SRC_SRS", pszSRS );
            CPLFree( pszSRS );
        }
        else if( EQUAL(argv[i],"-order") && i < argc-1 )
        {
            nOrder = atoi(argv[++i]);
            papszTO = CSLSetNameValue( papszTO, "MAX_GCP_ORDER", argv[i] );
        }
        else if( EQUAL(argv[i],"-tps") )
        {
            papszTO = CSLSetNameValue( papszTO, "METHOD", "GCP_TPS" );
            nOrder = -1;
        }
        else if( EQUAL(argv[i],"-rpc") )
        {
            papszTO = CSLSetNameValue( papszTO, "METHOD", "RPC" );
        }
        else if( EQUAL(argv[i],"-geoloc") )
        {
            papszTO = CSLSetNameValue( papszTO, "METHOD", "GEOLOC_ARRAY" );
        }
        else if( EQUAL(argv[i],"-i") )
        {
            bInverse = TRUE;
        }
        else if( EQUAL(argv[i],"-to") && i < argc-1 )
        {
            papszTO = CSLAddString( papszTO, argv[++i] );
        }
        else if( EQUAL(argv[i],"-gcp") && i < argc - 4 )
        {
            char* endptr = NULL;
            /* -gcp pixel line easting northing [elev] */

            nGCPCount++;
            pasGCPs = (GDAL_GCP *) 
                CPLRealloc( pasGCPs, sizeof(GDAL_GCP) * nGCPCount );
            GDALInitGCPs( 1, pasGCPs + nGCPCount - 1 );

            pasGCPs[nGCPCount-1].dfGCPPixel = atof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPLine = atof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPX = atof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPY = atof(argv[++i]);
            if( argv[i+1] != NULL 
                && (CPLStrtod(argv[i+1], &endptr) != 0.0 || argv[i+1][0] == '0') )
            {
                /* Check that last argument is really a number and not a filename */
                /* looking like a number (see ticket #863) */
                if (endptr && *endptr == 0)
                    pasGCPs[nGCPCount-1].dfGCPZ = atof(argv[++i]);
            }

            /* should set id and info? */
        }   

        else if( argv[i][0] == '-' )
            Usage();

        else if( pszSrcFilename == NULL )
            pszSrcFilename = argv[i];

        else if( pszDstFilename == NULL )
            pszDstFilename = argv[i];

        else
            Usage();
    }

/* -------------------------------------------------------------------- */
/*      Open src and destination file, if appropriate.                  */
/* -------------------------------------------------------------------- */
    GDALDatasetH hSrcDS = NULL, hDstDS = NULL;

    if( pszSrcFilename != NULL )
    {
        hSrcDS = GDALOpen( pszSrcFilename, GA_ReadOnly );
        if( hSrcDS == NULL )
            exit( 1 );
    }

    if( pszDstFilename != NULL )
    {
        hDstDS = GDALOpen( pszDstFilename, GA_ReadOnly );
        if( hDstDS == NULL )
            exit( 1 );
    }

    if( hSrcDS != NULL && nGCPCount > 0 )
    {
        fprintf( stderr, "Commandline GCPs and input file specified, specify one or the other.\n" );
        exit( 1 );
    }
    
/* -------------------------------------------------------------------- */
/*      Create a transformation object from the source to               */
/*      destination coordinate system.                                  */
/* -------------------------------------------------------------------- */
    if( nGCPCount != 0 && nOrder == -1 )
    {
        pfnTransformer = GDALTPSTransform;
        hTransformArg = 
            GDALCreateTPSTransformer( nGCPCount, pasGCPs, FALSE );
    }
    else if( nGCPCount != 0 )
    {
        pfnTransformer = GDALGCPTransform;
        hTransformArg = 
            GDALCreateGCPTransformer( nGCPCount, pasGCPs, nOrder, FALSE );
    }
    else
    {
        pfnTransformer = GDALGenImgProjTransform;
        hTransformArg = 
            GDALCreateGenImgProjTransformer2( hSrcDS, hDstDS, papszTO );
    }

    CSLDestroy( papszTO );

    if( hTransformArg == NULL )
    {
        exit( 1 );
    }

/* -------------------------------------------------------------------- */
/*      Read points from stdin, transform and write to stdout.          */
/* -------------------------------------------------------------------- */
    while( !feof(stdin) )
    {
        char szLine[1024];

        if( fgets( szLine, sizeof(szLine)-1, stdin ) == NULL )
            break;

        char **papszTokens = CSLTokenizeString(szLine);
        double dfX, dfY, dfZ = 0.0;
        int bSuccess = TRUE;

        if( CSLCount(papszTokens) < 2 )
        {
            CSLDestroy(papszTokens);
            continue;
        }

        dfX = atof(papszTokens[0]);
        dfY = atof(papszTokens[1]);
        if( CSLCount(papszTokens) >= 3 )
            dfZ = atof(papszTokens[2]);

        if( pfnTransformer( hTransformArg, bInverse, 1, 
                            &dfX, &dfY, &dfZ, &bSuccess )
            && bSuccess )
        {
            printf( "%.15g %.15g %.15g\n", dfX, dfY, dfZ );
        }
        else
        {
            printf( "transformation failed.\n" );
        }

        CSLDestroy(papszTokens);
    }

    if( nGCPCount != 0 && nOrder == -1 )
    {
        GDALDestroyTPSTransformer(hTransformArg);
    }
    else if( nGCPCount != 0 )
    {
        GDALDestroyGCPTransformer(hTransformArg);
    }
    else
    {
        GDALDestroyGenImgProjTransformer(hTransformArg);
    }

    if (nGCPCount)
    {
        GDALDeinitGCPs( nGCPCount, pasGCPs );
        CPLFree( pasGCPs );
    }

    if (hSrcDS)
        GDALClose(hSrcDS);

    if (hDstDS)
        GDALClose(hDstDS);

    GDALDumpOpenDatasets( stderr );
    GDALDestroyDriverManager();

    CSLDestroy( argv );

    return 0;
}
Exemplo n.º 9
0
CPLErr HDF5ImageDataset::CreateProjections()
{
    switch(iSubdatasetType)
    {
    case CSK_PRODUCT:
    {
        const char *osMissionLevel = NULL;
        int productType = PROD_UNKNOWN;

        if(GetMetadataItem("Product_Type")!=NULL)
        {
            //Get the format's level
            osMissionLevel = HDF5Dataset::GetMetadataItem("Product_Type");

            if(EQUALN(osMissionLevel,"RAW",3))
                productType  = PROD_CSK_L0;

            if(EQUALN(osMissionLevel,"SSC",3))
                productType  = PROD_CSK_L1A;

            if(EQUALN(osMissionLevel,"DGM",3))
                productType  = PROD_CSK_L1B;

            if(EQUALN(osMissionLevel,"GEC",3))
                productType  = PROD_CSK_L1C;

            if(EQUALN(osMissionLevel,"GTC",3))
                productType  = PROD_CSK_L1D;
        }
            
        CaptureCSKGeoTransform(productType);
        CaptureCSKGeolocation(productType);
        CaptureCSKGCPs(productType);
        
        break;
    }
    case UNKNOWN_PRODUCT:
    {
#define NBGCPLAT 100
#define NBGCPLON 30

    hid_t LatitudeDatasetID  = -1;
    hid_t LongitudeDatasetID = -1;
    hid_t LatitudeDataspaceID;
    hid_t LongitudeDataspaceID;
    float* Latitude;
    float* Longitude;
    int    i,j;
    int   nDeltaLat;
    int   nDeltaLon;

    nDeltaLat = nRasterYSize / NBGCPLAT;
    nDeltaLon = nRasterXSize / NBGCPLON;

    if( nDeltaLat == 0 || nDeltaLon == 0 )
        return CE_None;

    /* -------------------------------------------------------------------- */
    /*      Create HDF5 Data Hierarchy in a link list                       */
    /* -------------------------------------------------------------------- */
    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup,  "Latitude" );
    if( !poH5Objects ) {
        return CE_None;
    }
    /* -------------------------------------------------------------------- */
    /*      The Lattitude and Longitude arrays must have a rank of 2 to     */
    /*      retrieve GCPs.                                                  */
    /* -------------------------------------------------------------------- */
    if( poH5Objects->nRank != 2 ) {
        return CE_None;
    }

    /* -------------------------------------------------------------------- */
    /*      Retrieve HDF5 data information                                  */
    /* -------------------------------------------------------------------- */
    LatitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    LatitudeDataspaceID = H5Dget_space( dataset_id );

    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup, "Longitude" );
    LongitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    LongitudeDataspaceID = H5Dget_space( dataset_id );

    if( ( LatitudeDatasetID > 0 ) && ( LongitudeDatasetID > 0) ) {

        Latitude         = ( float * ) CPLCalloc(  nRasterYSize*nRasterXSize,
                            sizeof( float ) );
        Longitude         = ( float * ) CPLCalloc( nRasterYSize*nRasterXSize,
                            sizeof( float ) );
        memset( Latitude, 0, nRasterXSize*nRasterYSize*sizeof(  float ) );
        memset( Longitude, 0, nRasterXSize*nRasterYSize*sizeof( float ) );

        H5Dread ( LatitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Latitude );

        H5Dread ( LongitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Longitude );

        oSRS.SetWellKnownGeogCS( "WGS84" );
        CPLFree(pszProjection);
        CPLFree(pszGCPProjection);
        oSRS.exportToWkt( &pszProjection );
        oSRS.exportToWkt( &pszGCPProjection );

    /* -------------------------------------------------------------------- */
    /*  Fill the GCPs list.                                                 */
    /* -------------------------------------------------------------------- */
        nGCPCount = nRasterYSize/nDeltaLat * nRasterXSize/nDeltaLon;

        pasGCPList = ( GDAL_GCP * )
            CPLCalloc( nGCPCount, sizeof( GDAL_GCP ) );

        GDALInitGCPs( nGCPCount, pasGCPList );
        int k=0;

        int nYLimit = ((int)nRasterYSize/nDeltaLat) * nDeltaLat;
        int nXLimit = ((int)nRasterXSize/nDeltaLon) * nDeltaLon;
        for( j = 0; j < nYLimit; j+=nDeltaLat )
        {
            for( i = 0; i < nXLimit; i+=nDeltaLon )
            {
                int iGCP =  j * nRasterXSize + i;
                pasGCPList[k].dfGCPX = ( double ) Longitude[iGCP]+180.0;
                pasGCPList[k].dfGCPY = ( double ) Latitude[iGCP];

                pasGCPList[k].dfGCPPixel = i + 0.5;
                pasGCPList[k++].dfGCPLine =  j + 0.5;

            }
        }

        CPLFree( Latitude );
        CPLFree( Longitude );
    }
    
    if( LatitudeDatasetID > 0 )
        H5Dclose(LatitudeDatasetID);
    if( LongitudeDatasetID > 0 )
        H5Dclose(LongitudeDatasetID);

        break;
    }
    }
    return CE_None;

}
Exemplo n.º 10
0
/**
 * Retrieves and stores the GCPs from a COSMO-SKYMED dataset
 * It only retrieves the GCPs for L0, L1A and L1B products
 * for L1C and L1D products, geotransform is provided.
 * The GCPs provided will be the Image's corners.
 * @param iProductType type of CSK product @see HDF5CSKProductEnum
 */
void HDF5ImageDataset::CaptureCSKGCPs(int iProductType)
{
    //Only retrieve GCPs for L0,L1A and L1B products
    if(iProductType == PROD_CSK_L0||iProductType == PROD_CSK_L1A||
       iProductType == PROD_CSK_L1B)
    {
        int i;
        double *pdCornerCoordinates;

        nGCPCount=4;
        pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),4);
        CPLString osCornerName[4];
        double pdCornerPixel[4];
        double pdCornerLine[4];

        const char *pszSubdatasetName = GetSubdatasetName();

        //Load the subdataset name first
        for(i=0;i <4;i++)
            osCornerName[i] = pszSubdatasetName;

        //Load the attribute name, and raster coordinates for
        //all the corners
        osCornerName[0] += "/Top Left Geodetic Coordinates";
        pdCornerPixel[0] = 0;
        pdCornerLine[0] = 0;

        osCornerName[1] += "/Top Right Geodetic Coordinates";
        pdCornerPixel[1] = GetRasterXSize();
        pdCornerLine[1] = 0;

        osCornerName[2] += "/Bottom Left Geodetic Coordinates";
        pdCornerPixel[2] = 0;
        pdCornerLine[2] = GetRasterYSize();

        osCornerName[3] += "/Bottom Right Geodetic Coordinates";
        pdCornerPixel[3] = GetRasterXSize();
        pdCornerLine[3] = GetRasterYSize();

        //For all the image's corners
        for(i=0;i<4;i++)
        {
            GDALInitGCPs( 1, pasGCPList + i );

            CPLFree( pasGCPList[i].pszId );
            pasGCPList[i].pszId = NULL;

            //Retrieve the attributes
            if(HDF5ReadDoubleAttr(osCornerName[i].c_str(), 
                                  &pdCornerCoordinates) == CE_Failure)
            {
                CPLError( CE_Failure, CPLE_OpenFailed,
                             "Error retrieving CSK GCPs\n" );
                // Free on failure, e.g. in case of QLK subdataset.
                for( int i = 0; i < 4; i++ )
                {
                    if( pasGCPList[i].pszId )
                        CPLFree( pasGCPList[i].pszId );
                    if( pasGCPList[i].pszInfo )
                        CPLFree( pasGCPList[i].pszInfo );
	            }
                CPLFree( pasGCPList );
                pasGCPList = NULL;
                nGCPCount = 0;
                break;
            }

            //Fill the GCPs name
            pasGCPList[i].pszId = CPLStrdup( osCornerName[i].c_str() );

            //Fill the coordinates
            pasGCPList[i].dfGCPX = pdCornerCoordinates[1];
            pasGCPList[i].dfGCPY = pdCornerCoordinates[0];
            pasGCPList[i].dfGCPZ = pdCornerCoordinates[2];
            pasGCPList[i].dfGCPPixel = pdCornerPixel[i];
            pasGCPList[i].dfGCPLine = pdCornerLine[i];

            //Free the returned coordinates
            CPLFree(pdCornerCoordinates);
        }
    }
}
Exemplo n.º 11
0
void *GDALDeserializeTPSTransformer( CPLXMLNode *psTree )

{
    GDAL_GCP *pasGCPList = 0;
    int nGCPCount = 0;
    void *pResult;
    int bReversed;

    /* -------------------------------------------------------------------- */
    /*      Check for GCPs.                                                 */
    /* -------------------------------------------------------------------- */
    CPLXMLNode *psGCPList = CPLGetXMLNode( psTree, "GCPList" );

    if( psGCPList != NULL )
    {
        int  nGCPMax = 0;
        CPLXMLNode *psXMLGCP;
         
        // Count GCPs.
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
            nGCPMax++;
         
        pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),nGCPMax);

        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
        {
            GDAL_GCP *psGCP = pasGCPList + nGCPCount;

            if( !EQUAL(psXMLGCP->pszValue,"GCP") || 
                psXMLGCP->eType != CXT_Element )
                continue;
             
            GDALInitGCPs( 1, psGCP );
             
            CPLFree( psGCP->pszId );
            psGCP->pszId = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Id",""));
             
            CPLFree( psGCP->pszInfo );
            psGCP->pszInfo = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Info",""));
             
            psGCP->dfGCPPixel = atof(CPLGetXMLValue(psXMLGCP,"Pixel","0.0"));
            psGCP->dfGCPLine = atof(CPLGetXMLValue(psXMLGCP,"Line","0.0"));
             
            psGCP->dfGCPX = atof(CPLGetXMLValue(psXMLGCP,"X","0.0"));
            psGCP->dfGCPY = atof(CPLGetXMLValue(psXMLGCP,"Y","0.0"));
            psGCP->dfGCPZ = atof(CPLGetXMLValue(psXMLGCP,"Z","0.0"));
            nGCPCount++;
        }
    }

/* -------------------------------------------------------------------- */
/*      Get other flags.                                                */
/* -------------------------------------------------------------------- */
    bReversed = atoi(CPLGetXMLValue(psTree,"Reversed","0"));

/* -------------------------------------------------------------------- */
/*      Generate transformation.                                        */
/* -------------------------------------------------------------------- */
    pResult = GDALCreateTPSTransformer( nGCPCount, pasGCPList, bReversed );
    
/* -------------------------------------------------------------------- */
/*      Cleanup GCP copy.                                               */
/* -------------------------------------------------------------------- */
    GDALDeinitGCPs( nGCPCount, pasGCPList );
    CPLFree( pasGCPList );

    return pResult;
}
Exemplo n.º 12
0
static int ProxyMain(int argc, char **argv)

{
    GDALDatasetH     hDataset, hOutDS;
    int              i;
    int              nRasterXSize, nRasterYSize;
    const char       *pszSource = NULL, *pszDest = NULL, *pszFormat = "GTiff";
    GDALDriverH      hDriver;
    int              *panBandList = NULL;    /* negative value of panBandList[i] means mask band of ABS(panBandList[i]) */
    int              nBandCount   = 0, bDefBands = TRUE;
    double           adfGeoTransform[6];
    GDALDataType     eOutputType          = GDT_Unknown;
    int              nOXSize              = 0, nOYSize = 0;
    char             *pszOXSize           = NULL, *pszOYSize = NULL;
    char             **papszCreateOptions = NULL;
    int              anSrcWin[4], bStrict = FALSE;
    const char       *pszProjection;
    int              bScale        = FALSE, bHaveScaleSrc = FALSE, bUnscale = FALSE;
    double           dfScaleSrcMin = 0.0, dfScaleSrcMax = 255.0;
    double           dfScaleDstMin = 0.0, dfScaleDstMax = 255.0;
    double           dfULX, dfULY, dfLRX, dfLRY;
    char             **papszMetadataOptions = NULL;
    char             *pszOutputSRS          = NULL;
    int              bQuiet                 = FALSE, bGotBounds = FALSE;
    GDALProgressFunc pfnProgress            = GDALTermProgress;
    int              nGCPCount              = 0;
    GDAL_GCP         *pasGCPs               = NULL;
    int              iSrcFileArg            = -1, iDstFileArg = -1;
    int              bCopySubDatasets       = FALSE;
    double           adfULLR[4]             = { 0, 0, 0, 0 };
    int              bSetNoData             = FALSE;
    int              bUnsetNoData           = FALSE;
    double           dfNoDataReal           = 0.0;
    int              nRGBExpand             = 0;
    int              bParsedMaskArgument    = FALSE;
    int              eMaskMode              = MASK_AUTO;
    int              nMaskBand              = 0; /* negative value means mask band of ABS(nMaskBand) */
    int              bStats                 = FALSE, bApproxStats = FALSE;


    anSrcWin[0] = 0;
    anSrcWin[1] = 0;
    anSrcWin[2] = 0;
    anSrcWin[3] = 0;

    dfULX = dfULY = dfLRX = dfLRY = 0.0;

    /* Check strict compilation and runtime library version as we use C++ API */
    if (!GDAL_CHECK_VERSION(argv[0]))
        exit(1);

    /* Must process GDAL_SKIP before GDALAllRegister(), but we can't call */
    /* GDALGeneralCmdLineProcessor before it needs the drivers to be registered */
    /* for the --format or --formats options */
    for (i = 1; i < argc; i++)
    {
        if (EQUAL(argv[i], "--config") && i + 2 < argc && EQUAL(argv[i + 1], "GDAL_SKIP"))
        {
            CPLSetConfigOption(argv[i + 1], argv[i + 2]);

            i += 2;
        }
    }

/* -------------------------------------------------------------------- */
/*      Register standard GDAL drivers, and process generic GDAL        */
/*      command options.                                                */
/* -------------------------------------------------------------------- */
    GDALAllRegister();
    argc = GDALGeneralCmdLineProcessor(argc, &argv, 0);
    if (argc < 1)
        exit(-argc);

/* -------------------------------------------------------------------- */
/*      Handle command line arguments.                                  */
/* -------------------------------------------------------------------- */
    for (i = 1; i < argc; i++)
    {
        if (EQUAL(argv[i], "--utility_version"))
        {
            printf("%s was compiled against GDAL %s and is running against GDAL %s\n",
                   argv[0], GDAL_RELEASE_NAME, GDALVersionInfo("RELEASE_NAME"));
            return 0;
        }
        else if (EQUAL(argv[i], "-of") && i < argc - 1)
            pszFormat = argv[++i];

        else if (EQUAL(argv[i], "-q") || EQUAL(argv[i], "-quiet"))
        {
            bQuiet      = TRUE;
            pfnProgress = GDALDummyProgress;
        }

        else if (EQUAL(argv[i], "-ot") && i < argc - 1)
        {
            int iType;

            for (iType = 1; iType < GDT_TypeCount; iType++)
            {
                if (GDALGetDataTypeName((GDALDataType)iType) != NULL
                    && EQUAL(GDALGetDataTypeName((GDALDataType)iType),
                             argv[i + 1]))
                {
                    eOutputType = (GDALDataType) iType;
                }
            }

            if (eOutputType == GDT_Unknown)
            {
                printf("Unknown output pixel type: %s\n", argv[i + 1]);
                Usage();
                GDALDestroyDriverManager();
                exit(2);
            }

            i++;
        }
        else if (EQUAL(argv[i], "-b") && i < argc - 1)
        {
            const char *pszBand = argv[i + 1];
            int        bMask    = FALSE;
            if (EQUAL(pszBand, "mask"))
                pszBand = "mask,1";

            if (EQUALN(pszBand, "mask,", 5))
            {
                bMask    = TRUE;
                pszBand += 5;
                /* If we use tha source mask band as a regular band */
                /* don't create a target mask band by default */
                if (!bParsedMaskArgument)
                    eMaskMode = MASK_DISABLED;
            }

            int nBand = atoi(pszBand);
            if (nBand < 1)
            {
                printf("Unrecognizable band number (%s).\n", argv[i + 1]);
                Usage();
                GDALDestroyDriverManager();
                exit(2);
            }

            i++;

            nBandCount++;
            panBandList = (int*)
                          CPLRealloc(panBandList, sizeof(int) * nBandCount);
            panBandList[nBandCount - 1] = nBand;
            if (bMask)
                panBandList[nBandCount - 1] *= -1;

            if (panBandList[nBandCount - 1] != nBandCount)
                bDefBands = FALSE;
        }
        else if (EQUAL(argv[i], "-mask") && i < argc - 1)
        {
            bParsedMaskArgument = TRUE;
            const char *pszBand = argv[i + 1];
            if (EQUAL(pszBand, "none"))
            {
                eMaskMode = MASK_DISABLED;
            }
            else if (EQUAL(pszBand, "auto"))
            {
                eMaskMode = MASK_AUTO;
            }
            else
            {
                int bMask = FALSE;
                if (EQUAL(pszBand, "mask"))
                    pszBand = "mask,1";

                if (EQUALN(pszBand, "mask,", 5))
                {
                    bMask    = TRUE;
                    pszBand += 5;
                }

                int nBand = atoi(pszBand);
                if (nBand < 1)
                {
                    printf("Unrecognizable band number (%s).\n", argv[i + 1]);
                    Usage();
                    GDALDestroyDriverManager();
                    exit(2);
                }

                eMaskMode = MASK_USER;
                nMaskBand = nBand;
                if (bMask)
                    nMaskBand *= -1;
            }

            i++;
        }
        else if (EQUAL(argv[i], "-not_strict"))
            bStrict = FALSE;

        else if (EQUAL(argv[i], "-strict"))
            bStrict = TRUE;

        else if (EQUAL(argv[i], "-sds"))
            bCopySubDatasets = TRUE;

        else if (EQUAL(argv[i], "-gcp") && i < argc - 4)
        {
            char *endptr = NULL;
            /* -gcp pixel line easting northing [elev] */

            nGCPCount++;
            pasGCPs = (GDAL_GCP*)
                      CPLRealloc(pasGCPs, sizeof(GDAL_GCP) * nGCPCount);
            GDALInitGCPs(1, pasGCPs + nGCPCount - 1);

            pasGCPs[nGCPCount - 1].dfGCPPixel = CPLAtofM(argv[++i]);
            pasGCPs[nGCPCount - 1].dfGCPLine  = CPLAtofM(argv[++i]);
            pasGCPs[nGCPCount - 1].dfGCPX     = CPLAtofM(argv[++i]);
            pasGCPs[nGCPCount - 1].dfGCPY     = CPLAtofM(argv[++i]);
            if (argv[i + 1] != NULL
                && (CPLStrtod(argv[i + 1], &endptr) != 0.0 || argv[i + 1][0] == '0'))
            {
                /* Check that last argument is really a number and not a filename */
                /* looking like a number (see ticket #863) */
                if (endptr && *endptr == 0)
                    pasGCPs[nGCPCount - 1].dfGCPZ = CPLAtofM(argv[++i]);
            }

            /* should set id and info? */
        }

        else if (EQUAL(argv[i], "-a_nodata") && i < argc - 1)
        {
            if (EQUAL(argv[i + 1], "none"))
            {
                bUnsetNoData = TRUE;
            }
            else
            {
                bSetNoData   = TRUE;
                dfNoDataReal = CPLAtofM(argv[i + 1]);
            }

            i += 1;
        }

        else if (EQUAL(argv[i], "-a_ullr") && i < argc - 4)
        {
            adfULLR[0] = CPLAtofM(argv[i + 1]);
            adfULLR[1] = CPLAtofM(argv[i + 2]);
            adfULLR[2] = CPLAtofM(argv[i + 3]);
            adfULLR[3] = CPLAtofM(argv[i + 4]);

            bGotBounds = TRUE;

            i += 4;
        }

        else if (EQUAL(argv[i], "-co") && i < argc - 1)
        {
            papszCreateOptions = CSLAddString(papszCreateOptions, argv[++i]);
        }

        else if (EQUAL(argv[i], "-scale"))
        {
            bScale = TRUE;
            if (i < argc - 2 && ArgIsNumeric(argv[i + 1]))
            {
                bHaveScaleSrc = TRUE;
                dfScaleSrcMin = CPLAtofM(argv[i + 1]);
                dfScaleSrcMax = CPLAtofM(argv[i + 2]);
                i            += 2;
            }

            if (i < argc - 2 && bHaveScaleSrc && ArgIsNumeric(argv[i + 1]))
            {
                dfScaleDstMin = CPLAtofM(argv[i + 1]);
                dfScaleDstMax = CPLAtofM(argv[i + 2]);
                i            += 2;
            }
            else
            {
                dfScaleDstMin = 0.0;
                dfScaleDstMax = 255.999;
            }
        }

        else if (EQUAL(argv[i], "-unscale"))
        {
            bUnscale = TRUE;
        }

        else if (EQUAL(argv[i], "-mo") && i < argc - 1)
        {
            papszMetadataOptions = CSLAddString(papszMetadataOptions,
                                                argv[++i]);
        }

        else if (EQUAL(argv[i], "-outsize") && i < argc - 2)
        {
            pszOXSize = argv[++i];
            pszOYSize = argv[++i];
        }

        else if (EQUAL(argv[i], "-srcwin") && i < argc - 4)
        {
            anSrcWin[0] = atoi(argv[++i]);
            anSrcWin[1] = atoi(argv[++i]);
            anSrcWin[2] = atoi(argv[++i]);
            anSrcWin[3] = atoi(argv[++i]);
        }

        else if (EQUAL(argv[i], "-projwin") && i < argc - 4)
        {
            dfULX = CPLAtofM(argv[++i]);
            dfULY = CPLAtofM(argv[++i]);
            dfLRX = CPLAtofM(argv[++i]);
            dfLRY = CPLAtofM(argv[++i]);
        }

        else if (EQUAL(argv[i], "-a_srs") && i < argc - 1)
        {
            OGRSpatialReference oOutputSRS;

            if (oOutputSRS.SetFromUserInput(argv[i + 1]) != OGRERR_NONE)
            {
                fprintf(stderr, "Failed to process SRS definition: %s\n",
                        argv[i + 1]);
                GDALDestroyDriverManager();
                exit(1);
            }

            oOutputSRS.exportToWkt(&pszOutputSRS);
            i++;
        }

        else if (EQUAL(argv[i], "-expand") && i < argc - 1)
        {
            if (EQUAL(argv[i + 1], "gray"))
                nRGBExpand = 1;
            else if (EQUAL(argv[i + 1], "rgb"))
                nRGBExpand = 3;
            else if (EQUAL(argv[i + 1], "rgba"))
                nRGBExpand = 4;
            else
            {
                printf("Value %s unsupported. Only gray, rgb or rgba are supported.\n\n",
                       argv[i]);
                Usage();
                GDALDestroyDriverManager();
                exit(2);
            }

            i++;
        }

        else if (EQUAL(argv[i], "-stats"))
        {
            bStats       = TRUE;
            bApproxStats = FALSE;
        }
        else if (EQUAL(argv[i], "-approx_stats"))
        {
            bStats       = TRUE;
            bApproxStats = TRUE;
        }

        else if (argv[i][0] == '-')
        {
            printf("Option %s incomplete, or not recognised.\n\n",
                   argv[i]);
            Usage();
            GDALDestroyDriverManager();
            exit(2);
        }
        else if (pszSource == NULL)
        {
            iSrcFileArg = i;
            pszSource   = argv[i];
        }
        else if (pszDest == NULL)
        {
            pszDest     = argv[i];
            iDstFileArg = i;
        }

        else
        {
            printf("Too many command options.\n\n");
            Usage();
            GDALDestroyDriverManager();
            exit(2);
        }
    }

    if (pszDest == NULL)
    {
        Usage();
        GDALDestroyDriverManager();
        exit(10);
    }

    if (strcmp(pszSource, pszDest) == 0)
    {
        fprintf(stderr, "Source and destination datasets must be different.\n");
        GDALDestroyDriverManager();
        exit(1);
    }

    if (strcmp(pszDest, "/vsistdout/") == 0)
    {
        bQuiet      = TRUE;
        pfnProgress = GDALDummyProgress;
    }

/* -------------------------------------------------------------------- */
/*      Attempt to open source file.                                    */
/* -------------------------------------------------------------------- */

    hDataset = GDALOpenShared(pszSource, GA_ReadOnly);

    if (hDataset == NULL)
    {
        fprintf(stderr,
                "GDALOpen failed - %d\n%s\n",
                CPLGetLastErrorNo(), CPLGetLastErrorMsg());
        GDALDestroyDriverManager();
        exit(1);
    }

/* -------------------------------------------------------------------- */
/*      Handle subdatasets.                                             */
/* -------------------------------------------------------------------- */
    if (!bCopySubDatasets
        && CSLCount(GDALGetMetadata(hDataset, "SUBDATASETS")) > 0
        && GDALGetRasterCount(hDataset) == 0)
    {
        fprintf(stderr,
                "Input file contains subdatasets. Please, select one of them for reading.\n");
        GDALClose(hDataset);
        GDALDestroyDriverManager();
        exit(1);
    }

    if (CSLCount(GDALGetMetadata(hDataset, "SUBDATASETS")) > 0
        && bCopySubDatasets)
    {
        char **papszSubdatasets = GDALGetMetadata(hDataset, "SUBDATASETS");
        char *pszSubDest        = (char*) CPLMalloc(strlen(pszDest) + 32);
        int  i;
        int  bOldSubCall    = bSubCall;
        char **papszDupArgv = CSLDuplicate(argv);
        int  nRet           = 0;

        CPLFree(papszDupArgv[iDstFileArg]);
        papszDupArgv[iDstFileArg] = pszSubDest;
        bSubCall                  = TRUE;

        for (i = 0; papszSubdatasets[i] != NULL; i += 2)
        {
            CPLFree(papszDupArgv[iSrcFileArg]);
            papszDupArgv[iSrcFileArg] = CPLStrdup(strstr(papszSubdatasets[i], "=") + 1);
            sprintf(pszSubDest, "%s%d", pszDest, i / 2 + 1);
            nRet = ProxyMain(argc, papszDupArgv);
            if (nRet != 0)
                break;
        }

        CSLDestroy(papszDupArgv);

        bSubCall = bOldSubCall;
        CSLDestroy(argv);

        GDALClose(hDataset);

        if (!bSubCall)
        {
            GDALDumpOpenDatasets(stderr);
            GDALDestroyDriverManager();
        }

        return nRet;
    }

/* -------------------------------------------------------------------- */
/*      Collect some information from the source file.                  */
/* -------------------------------------------------------------------- */
    nRasterXSize = GDALGetRasterXSize(hDataset);
    nRasterYSize = GDALGetRasterYSize(hDataset);

    if (!bQuiet)
        printf("Input file size is %d, %d\n", nRasterXSize, nRasterYSize);

    if (anSrcWin[2] == 0 && anSrcWin[3] == 0)
    {
        anSrcWin[2] = nRasterXSize;
        anSrcWin[3] = nRasterYSize;
    }

/* -------------------------------------------------------------------- */
/*      Build band list to translate                                    */
/* -------------------------------------------------------------------- */
    if (nBandCount == 0)
    {
        nBandCount = GDALGetRasterCount(hDataset);
        if (nBandCount == 0)
        {
            fprintf(stderr, "Input file has no bands, and so cannot be translated.\n");
            GDALDestroyDriverManager();
            exit(1);
        }

        panBandList = (int*) CPLMalloc(sizeof(int) * nBandCount);

        for (i = 0; i < nBandCount; i++)
            panBandList[i] = i + 1;
    }
    else
    {
        for (i = 0; i < nBandCount; i++)
        {
            if (ABS(panBandList[i]) > GDALGetRasterCount(hDataset))
            {
                fprintf(stderr,
                        "Band %d requested, but only bands 1 to %d available.\n",
                        ABS(panBandList[i]), GDALGetRasterCount(hDataset));
                GDALDestroyDriverManager();
                exit(2);
            }
        }

        if (nBandCount != GDALGetRasterCount(hDataset))
            bDefBands = FALSE;
    }

/* -------------------------------------------------------------------- */
/*      Compute the source window from the projected source window      */
/*      if the projected coordinates were provided.  Note that the      */
/*      projected coordinates are in ulx, uly, lrx, lry format,         */
/*      while the anSrcWin is xoff, yoff, xsize, ysize with the         */
/*      xoff,yoff being the ulx, uly in pixel/line.                     */
/* -------------------------------------------------------------------- */
    if (dfULX != 0.0 || dfULY != 0.0
        || dfLRX != 0.0 || dfLRY != 0.0)
    {
        double adfGeoTransform[6];

        GDALGetGeoTransform(hDataset, adfGeoTransform);

        if (adfGeoTransform[2] != 0.0 || adfGeoTransform[4] != 0.0)
        {
            fprintf(stderr,
                    "The -projwin option was used, but the geotransform is\n"
                    "rotated.  This configuration is not supported.\n");
            GDALClose(hDataset);
            CPLFree(panBandList);
            GDALDestroyDriverManager();
            exit(1);
        }

        anSrcWin[0] = (int)
                      ((dfULX - adfGeoTransform[0]) / adfGeoTransform[1] + 0.001);
        anSrcWin[1] = (int)
                      ((dfULY - adfGeoTransform[3]) / adfGeoTransform[5] + 0.001);

        anSrcWin[2] = (int) ((dfLRX - dfULX) / adfGeoTransform[1] + 0.5);
        anSrcWin[3] = (int) ((dfLRY - dfULY) / adfGeoTransform[5] + 0.5);

        if (!bQuiet)
            fprintf(stdout,
                    "Computed -srcwin %d %d %d %d from projected window.\n",
                    anSrcWin[0],
                    anSrcWin[1],
                    anSrcWin[2],
                    anSrcWin[3]);

        if (anSrcWin[0] < 0 || anSrcWin[1] < 0
            || anSrcWin[0] + anSrcWin[2] > GDALGetRasterXSize(hDataset)
            || anSrcWin[1] + anSrcWin[3] > GDALGetRasterYSize(hDataset))
        {
            fprintf(stderr,
                    "Computed -srcwin falls outside raster size of %dx%d.\n",
                    GDALGetRasterXSize(hDataset),
                    GDALGetRasterYSize(hDataset));
            exit(1);
        }
    }

/* -------------------------------------------------------------------- */
/*      Verify source window.                                           */
/* -------------------------------------------------------------------- */
    if (anSrcWin[0] < 0 || anSrcWin[1] < 0
        || anSrcWin[2] <= 0 || anSrcWin[3] <= 0
        || anSrcWin[0] + anSrcWin[2] > GDALGetRasterXSize(hDataset)
        || anSrcWin[1] + anSrcWin[3] > GDALGetRasterYSize(hDataset))
    {
        fprintf(stderr,
                "-srcwin %d %d %d %d falls outside raster size of %dx%d\n"
                "or is otherwise illegal.\n",
                anSrcWin[0],
                anSrcWin[1],
                anSrcWin[2],
                anSrcWin[3],
                GDALGetRasterXSize(hDataset),
                GDALGetRasterYSize(hDataset));
        exit(1);
    }

/* -------------------------------------------------------------------- */
/*      Find the output driver.                                         */
/* -------------------------------------------------------------------- */
    hDriver = GDALGetDriverByName(pszFormat);
    if (hDriver == NULL)
    {
        int iDr;

        printf("Output driver `%s' not recognised.\n", pszFormat);
        printf("The following format drivers are configured and support output:\n");

        for (iDr = 0; iDr < GDALGetDriverCount(); iDr++)
        {
            GDALDriverH hDriver = GDALGetDriver(iDr);

            if (GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATE, NULL) != NULL
                || GDALGetMetadataItem(hDriver, GDAL_DCAP_CREATECOPY,
                                       NULL) != NULL)
            {
                printf("  %s: %s\n",
                       GDALGetDriverShortName(hDriver),
                       GDALGetDriverLongName(hDriver));
            }
        }

        printf("\n");
        Usage();

        GDALClose(hDataset);
        CPLFree(panBandList);
        GDALDestroyDriverManager();
        CSLDestroy(argv);
        CSLDestroy(papszCreateOptions);
        exit(1);
    }

/* -------------------------------------------------------------------- */
/*      The short form is to CreateCopy().  We use this if the input    */
/*      matches the whole dataset.  Eventually we should rewrite        */
/*      this entire program to use virtual datasets to construct a      */
/*      virtual input source to copy from.                              */
/* -------------------------------------------------------------------- */


    int bSpatialArrangementPreserved = (
        anSrcWin[0] == 0 && anSrcWin[1] == 0
        && anSrcWin[2] == GDALGetRasterXSize(hDataset)
        && anSrcWin[3] == GDALGetRasterYSize(hDataset)
        && pszOXSize == NULL && pszOYSize == NULL);

    if (eOutputType == GDT_Unknown
        && !bScale && !bUnscale
        && CSLCount(papszMetadataOptions) == 0 && bDefBands
        && eMaskMode == MASK_AUTO
        && bSpatialArrangementPreserved
        && nGCPCount == 0 && !bGotBounds
        && pszOutputSRS == NULL && !bSetNoData && !bUnsetNoData
        && nRGBExpand == 0 && !bStats)
    {
        hOutDS = GDALCreateCopy(hDriver, pszDest, hDataset,
                                bStrict, papszCreateOptions,
                                pfnProgress, NULL);

        if (hOutDS != NULL)
            GDALClose(hOutDS);

        GDALClose(hDataset);

        CPLFree(panBandList);

        if (!bSubCall)
        {
            GDALDumpOpenDatasets(stderr);
            GDALDestroyDriverManager();
        }

        CSLDestroy(argv);
        CSLDestroy(papszCreateOptions);

        return hOutDS == NULL;
    }

/* -------------------------------------------------------------------- */
/*      Establish some parameters.                                      */
/* -------------------------------------------------------------------- */
    if (pszOXSize == NULL)
    {
        nOXSize = anSrcWin[2];
        nOYSize = anSrcWin[3];
    }
    else
    {
        nOXSize = (int) ((pszOXSize[strlen(pszOXSize) - 1] == '%'
                          ? CPLAtofM(pszOXSize) / 100 * anSrcWin[2] : atoi(pszOXSize)));
        nOYSize = (int) ((pszOYSize[strlen(pszOYSize) - 1] == '%'
                          ? CPLAtofM(pszOYSize) / 100 * anSrcWin[3] : atoi(pszOYSize)));
    }

/* ==================================================================== */
/*      Create a virtual dataset.                                       */
/* ==================================================================== */
    VRTDataset *poVDS;

/* -------------------------------------------------------------------- */
/*      Make a virtual clone.                                           */
/* -------------------------------------------------------------------- */
    poVDS = (VRTDataset*) VRTCreate(nOXSize, nOYSize);

    if (nGCPCount == 0)
    {
        if (pszOutputSRS != NULL)
        {
            poVDS->SetProjection(pszOutputSRS);
        }
        else
        {
            pszProjection = GDALGetProjectionRef(hDataset);
            if (pszProjection != NULL && strlen(pszProjection) > 0)
                poVDS->SetProjection(pszProjection);
        }
    }

    if (bGotBounds)
    {
        adfGeoTransform[0] = adfULLR[0];
        adfGeoTransform[1] = (adfULLR[2] - adfULLR[0]) / nOXSize;
        adfGeoTransform[2] = 0.0;
        adfGeoTransform[3] = adfULLR[1];
        adfGeoTransform[4] = 0.0;
        adfGeoTransform[5] = (adfULLR[3] - adfULLR[1]) / nOYSize;

        poVDS->SetGeoTransform(adfGeoTransform);
    }

    else if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None
             && nGCPCount == 0)
    {
        adfGeoTransform[0] += anSrcWin[0] * adfGeoTransform[1]
                              + anSrcWin[1] * adfGeoTransform[2];
        adfGeoTransform[3] += anSrcWin[0] * adfGeoTransform[4]
                              + anSrcWin[1] * adfGeoTransform[5];

        adfGeoTransform[1] *= anSrcWin[2] / (double) nOXSize;
        adfGeoTransform[2] *= anSrcWin[3] / (double) nOYSize;
        adfGeoTransform[4] *= anSrcWin[2] / (double) nOXSize;
        adfGeoTransform[5] *= anSrcWin[3] / (double) nOYSize;

        poVDS->SetGeoTransform(adfGeoTransform);
    }

    if (nGCPCount != 0)
    {
        const char *pszGCPProjection = pszOutputSRS;

        if (pszGCPProjection == NULL)
            pszGCPProjection = GDALGetGCPProjection(hDataset);

        if (pszGCPProjection == NULL)
            pszGCPProjection = "";

        poVDS->SetGCPs(nGCPCount, pasGCPs, pszGCPProjection);

        GDALDeinitGCPs(nGCPCount, pasGCPs);
        CPLFree(pasGCPs);
    }

    else if (GDALGetGCPCount(hDataset) > 0)
    {
        GDAL_GCP *pasGCPs;
        int      nGCPs = GDALGetGCPCount(hDataset);

        pasGCPs = GDALDuplicateGCPs(nGCPs, GDALGetGCPs(hDataset));

        for (i = 0; i < nGCPs; i++)
        {
            pasGCPs[i].dfGCPPixel -= anSrcWin[0];
            pasGCPs[i].dfGCPLine  -= anSrcWin[1];
            pasGCPs[i].dfGCPPixel *= (nOXSize / (double) anSrcWin[2]);
            pasGCPs[i].dfGCPLine  *= (nOYSize / (double) anSrcWin[3]);
        }

        poVDS->SetGCPs(nGCPs, pasGCPs,
                       GDALGetGCPProjection(hDataset));

        GDALDeinitGCPs(nGCPs, pasGCPs);
        CPLFree(pasGCPs);
    }

/* -------------------------------------------------------------------- */
/*      Transfer generally applicable metadata.                         */
/* -------------------------------------------------------------------- */
    poVDS->SetMetadata(((GDALDataset*)hDataset)->GetMetadata());
    AttachMetadata((GDALDatasetH) poVDS, papszMetadataOptions);

    const char *pszInterleave = GDALGetMetadataItem(hDataset, "INTERLEAVE", "IMAGE_STRUCTURE");
    if (pszInterleave)
        poVDS->SetMetadataItem("INTERLEAVE", pszInterleave, "IMAGE_STRUCTURE");

/* -------------------------------------------------------------------- */
/*      Transfer metadata that remains valid if the spatial             */
/*      arrangement of the data is unaltered.                           */
/* -------------------------------------------------------------------- */
    if (bSpatialArrangementPreserved)
    {
        char **papszMD;

        papszMD = ((GDALDataset*)hDataset)->GetMetadata("RPC");
        if (papszMD != NULL)
            poVDS->SetMetadata(papszMD, "RPC");

        papszMD = ((GDALDataset*)hDataset)->GetMetadata("GEOLOCATION");
        if (papszMD != NULL)
            poVDS->SetMetadata(papszMD, "GEOLOCATION");
    }

    int nSrcBandCount = nBandCount;

    if (nRGBExpand != 0)
    {
        GDALRasterBand *poSrcBand;
        poSrcBand = ((GDALDataset*)
                     hDataset)->GetRasterBand(ABS(panBandList[0]));
        if (panBandList[0] < 0)
            poSrcBand = poSrcBand->GetMaskBand();

        GDALColorTable *poColorTable = poSrcBand->GetColorTable();
        if (poColorTable == NULL)
        {
            fprintf(stderr, "Error : band %d has no color table\n", ABS(panBandList[0]));
            GDALClose(hDataset);
            CPLFree(panBandList);
            GDALDestroyDriverManager();
            CSLDestroy(argv);
            CSLDestroy(papszCreateOptions);
            exit(1);
        }

        /* Check that the color table only contains gray levels */
        /* when using -expand gray */
        if (nRGBExpand == 1)
        {
            int nColorCount = poColorTable->GetColorEntryCount();
            int nColor;

            for (nColor = 0; nColor < nColorCount; nColor++)
            {
                const GDALColorEntry *poEntry = poColorTable->GetColorEntry(nColor);
                if (poEntry->c1 != poEntry->c2 || poEntry->c1 != poEntry->c2)
                {
                    fprintf(stderr, "Warning : color table contains non gray levels colors\n");
                    break;
                }
            }
        }

        if (nBandCount == 1)
            nBandCount = nRGBExpand;
        else if (nBandCount == 2 && (nRGBExpand == 3 || nRGBExpand == 4))
            nBandCount = nRGBExpand;
        else
        {
            fprintf(stderr, "Error : invalid use of -expand option.\n");
            exit(1);
        }
    }

    int bFilterOutStatsMetadata =
        (bScale || bUnscale || !bSpatialArrangementPreserved || nRGBExpand != 0);

/* ==================================================================== */
/*      Process all bands.                                              */
/* ==================================================================== */
    for (i = 0; i < nBandCount; i++)
    {
        VRTSourcedRasterBand *poVRTBand;
        GDALRasterBand       *poSrcBand;
        GDALDataType         eBandType;
        int                  nComponent = 0;

        int nSrcBand;
        if (nRGBExpand != 0)
        {
            if (nSrcBandCount == 2 && nRGBExpand == 4 && i == 3)
                nSrcBand = panBandList[1];
            else
            {
                nSrcBand   = panBandList[0];
                nComponent = i + 1;
            }
        }
        else
            nSrcBand = panBandList[i];

        poSrcBand = ((GDALDataset*) hDataset)->GetRasterBand(ABS(nSrcBand));

/* -------------------------------------------------------------------- */
/*      Select output data type to match source.                        */
/* -------------------------------------------------------------------- */
        if (eOutputType == GDT_Unknown)
            eBandType = poSrcBand->GetRasterDataType();
        else
            eBandType = eOutputType;

/* -------------------------------------------------------------------- */
/*      Create this band.                                               */
/* -------------------------------------------------------------------- */
        poVDS->AddBand(eBandType, NULL);
        poVRTBand = (VRTSourcedRasterBand*) poVDS->GetRasterBand(i + 1);
        if (nSrcBand < 0)
        {
            poVRTBand->AddMaskBandSource(poSrcBand);
            continue;
        }

/* -------------------------------------------------------------------- */
/*      Do we need to collect scaling information?                      */
/* -------------------------------------------------------------------- */
        double dfScale = 1.0, dfOffset = 0.0;

        if (bScale && !bHaveScaleSrc)
        {
            double adfCMinMax[2];
            GDALComputeRasterMinMax(poSrcBand, TRUE, adfCMinMax);
            dfScaleSrcMin = adfCMinMax[0];
            dfScaleSrcMax = adfCMinMax[1];
        }

        if (bScale)
        {
            if (dfScaleSrcMax == dfScaleSrcMin)
                dfScaleSrcMax += 0.1;

            if (dfScaleDstMax == dfScaleDstMin)
                dfScaleDstMax += 0.1;

            dfScale = (dfScaleDstMax - dfScaleDstMin)
                      / (dfScaleSrcMax - dfScaleSrcMin);
            dfOffset = -1 * dfScaleSrcMin * dfScale + dfScaleDstMin;
        }

        if (bUnscale)
        {
            dfScale  = poSrcBand->GetScale();
            dfOffset = poSrcBand->GetOffset();
        }

/* -------------------------------------------------------------------- */
/*      Create a simple or complex data source depending on the         */
/*      translation type required.                                      */
/* -------------------------------------------------------------------- */
        if (bUnscale || bScale || (nRGBExpand != 0 && i < nRGBExpand))
        {
            poVRTBand->AddComplexSource(poSrcBand,
                                        anSrcWin[0], anSrcWin[1],
                                        anSrcWin[2], anSrcWin[3],
                                        0, 0, nOXSize, nOYSize,
                                        dfOffset, dfScale,
                                        VRT_NODATA_UNSET,
                                        nComponent);
        }
        else
            poVRTBand->AddSimpleSource(poSrcBand,
                                       anSrcWin[0], anSrcWin[1],
                                       anSrcWin[2], anSrcWin[3],
                                       0, 0, nOXSize, nOYSize);

/* -------------------------------------------------------------------- */
/*      In case of color table translate, we only set the color         */
/*      interpretation other info copied by CopyBandInfo are            */
/*      not relevant in RGB expansion.                                  */
/* -------------------------------------------------------------------- */
        if (nRGBExpand == 1)
        {
            poVRTBand->SetColorInterpretation(GCI_GrayIndex);
        }
        else if (nRGBExpand != 0 && i < nRGBExpand)
        {
            poVRTBand->SetColorInterpretation((GDALColorInterp) (GCI_RedBand + i));
        }

/* -------------------------------------------------------------------- */
/*      copy over some other information of interest.                   */
/* -------------------------------------------------------------------- */
        else
        {
            CopyBandInfo(poSrcBand, poVRTBand,
                         !bStats && !bFilterOutStatsMetadata,
                         !bUnscale,
                         !bSetNoData && !bUnsetNoData);
        }

/* -------------------------------------------------------------------- */
/*      Set a forcable nodata value?                                    */
/* -------------------------------------------------------------------- */
        if (bSetNoData)
        {
            double dfVal    = dfNoDataReal;
            int    bClamped = FALSE, bRounded = FALSE;

#define CLAMP(val, type, minval, maxval)                                          \
    do { if (val < minval) { bClamped = TRUE; val = minval;                       \
         }                                                                        \
         else if (val > maxval) { bClamped = TRUE; val = maxval; }                \
         else if (val != (type)val) { bRounded = TRUE; val = (type)(val + 0.5); } \
    }                                                                             \
    while (0)

            switch (eBandType)
            {
            case GDT_Byte:
                CLAMP(dfVal, GByte, 0.0, 255.0);
                break;

            case GDT_Int16:
                CLAMP(dfVal, GInt16, -32768.0, 32767.0);
                break;

            case GDT_UInt16:
                CLAMP(dfVal, GUInt16, 0.0, 65535.0);
                break;

            case GDT_Int32:
                CLAMP(dfVal, GInt32, -2147483648.0, 2147483647.0);
                break;

            case GDT_UInt32:
                CLAMP(dfVal, GUInt32, 0.0, 4294967295.0);
                break;

            default:
                break;
            }

            if (bClamped)
            {
                printf("for band %d, nodata value has been clamped "
                       "to %.0f, the original value being out of range.\n",
                       i + 1, dfVal);
            }
            else if (bRounded)
            {
                printf("for band %d, nodata value has been rounded "
                       "to %.0f, %s being an integer datatype.\n",
                       i + 1, dfVal,
                       GDALGetDataTypeName(eBandType));
            }

            poVRTBand->SetNoDataValue(dfVal);
        }

        if (eMaskMode == MASK_AUTO &&
            (GDALGetMaskFlags(GDALGetRasterBand(hDataset, 1)) & GMF_PER_DATASET) == 0 &&
            (poSrcBand->GetMaskFlags() & (GMF_ALL_VALID | GMF_NODATA)) == 0)
        {
            if (poVRTBand->CreateMaskBand(poSrcBand->GetMaskFlags()) == CE_None)
            {
                VRTSourcedRasterBand *hMaskVRTBand =
                    (VRTSourcedRasterBand*)poVRTBand->GetMaskBand();
                hMaskVRTBand->AddMaskBandSource(poSrcBand,
                                                anSrcWin[0], anSrcWin[1],
                                                anSrcWin[2], anSrcWin[3],
                                                0, 0, nOXSize, nOYSize);
            }
        }
    }

    if (eMaskMode == MASK_USER)
    {
        GDALRasterBand *poSrcBand =
            (GDALRasterBand*)GDALGetRasterBand(hDataset, ABS(nMaskBand));
        if (poSrcBand && poVDS->CreateMaskBand(GMF_PER_DATASET) == CE_None)
        {
            VRTSourcedRasterBand *hMaskVRTBand = (VRTSourcedRasterBand*)
                                                 GDALGetMaskBand(GDALGetRasterBand((GDALDatasetH)poVDS, 1));
            if (nMaskBand > 0)
                hMaskVRTBand->AddSimpleSource(poSrcBand,
                                              anSrcWin[0], anSrcWin[1],
                                              anSrcWin[2], anSrcWin[3],
                                              0, 0, nOXSize, nOYSize);
            else
                hMaskVRTBand->AddMaskBandSource(poSrcBand,
                                                anSrcWin[0], anSrcWin[1],
                                                anSrcWin[2], anSrcWin[3],
                                                0, 0, nOXSize, nOYSize);
        }
    }
    else if (eMaskMode == MASK_AUTO && nSrcBandCount > 0 &&
             GDALGetMaskFlags(GDALGetRasterBand(hDataset, 1)) == GMF_PER_DATASET)
    {
        if (poVDS->CreateMaskBand(GMF_PER_DATASET) == CE_None)
        {
            VRTSourcedRasterBand *hMaskVRTBand = (VRTSourcedRasterBand*)
                                                 GDALGetMaskBand(GDALGetRasterBand((GDALDatasetH)poVDS, 1));
            hMaskVRTBand->AddMaskBandSource((GDALRasterBand*)GDALGetRasterBand(hDataset, 1),
                                            anSrcWin[0], anSrcWin[1],
                                            anSrcWin[2], anSrcWin[3],
                                            0, 0, nOXSize, nOYSize);
        }
    }

/* -------------------------------------------------------------------- */
/*      Compute stats if required.                                      */
/* -------------------------------------------------------------------- */
    if (bStats)
    {
        for (i = 0; i < poVDS->GetRasterCount(); i++)
        {
            double dfMin, dfMax, dfMean, dfStdDev;
            poVDS->GetRasterBand(i + 1)->ComputeStatistics(bApproxStats,
                                                           &dfMin, &dfMax, &dfMean, &dfStdDev, GDALDummyProgress, NULL);
        }
    }

/* -------------------------------------------------------------------- */
/*      Write to the output file using CopyCreate().                    */
/* -------------------------------------------------------------------- */
    hOutDS = GDALCreateCopy(hDriver, pszDest, (GDALDatasetH) poVDS,
                            bStrict, papszCreateOptions,
                            pfnProgress, NULL);
    if (hOutDS != NULL)
    {
        int bHasGotErr = FALSE;
        CPLErrorReset();
        GDALFlushCache(hOutDS);
        if (CPLGetLastErrorType() != CE_None)
            bHasGotErr = TRUE;

        GDALClose(hOutDS);
        if (bHasGotErr)
            hOutDS = NULL;
    }

    GDALClose((GDALDatasetH) poVDS);

    GDALClose(hDataset);

    CPLFree(panBandList);

    CPLFree(pszOutputSRS);

    if (!bSubCall)
    {
        GDALDumpOpenDatasets(stderr);
        GDALDestroyDriverManager();
    }

    CSLDestroy(argv);
    CSLDestroy(papszCreateOptions);

    return hOutDS == NULL;
}
Exemplo n.º 13
0
CPLErr HDF5ImageDataset::CreateProjections()
{
 switch(iSubdatasetType)
 {
  case CSK_PRODUCT:
  {
        const char *osMissionLevel = NULL;
        int productType = PROD_UNKNOWN;

        if(GetMetadataItem("Product_Type")!=NULL)
        {
            //Get the format's level
            osMissionLevel = HDF5Dataset::GetMetadataItem("Product_Type");

            if(STARTS_WITH_CI(osMissionLevel, "RAW"))
                productType  = PROD_CSK_L0;

            if(STARTS_WITH_CI(osMissionLevel, "SSC"))
                productType  = PROD_CSK_L1A;

            if(STARTS_WITH_CI(osMissionLevel, "DGM"))
                productType  = PROD_CSK_L1B;

            if(STARTS_WITH_CI(osMissionLevel, "GEC"))
                productType  = PROD_CSK_L1C;

            if(STARTS_WITH_CI(osMissionLevel, "GTC"))
                productType  = PROD_CSK_L1D;
        }

        CaptureCSKGeoTransform(productType);
        CaptureCSKGeolocation(productType);
        CaptureCSKGCPs(productType);

        break;
  }
  case UNKNOWN_PRODUCT:
  {
    static const int NBGCPLAT = 100;
    static const int NBGCPLON = 30;

    const int nDeltaLat = nRasterYSize / NBGCPLAT;
    const int nDeltaLon = nRasterXSize / NBGCPLON;

    if( nDeltaLat == 0 || nDeltaLon == 0 )
        return CE_None;

    /* -------------------------------------------------------------------- */
    /*      Create HDF5 Data Hierarchy in a link list                       */
    /* -------------------------------------------------------------------- */
    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup,  "Latitude" );
    if( !poH5Objects ) {
        if( GetMetadataItem("where_projdef") != NULL )
            return CreateODIMH5Projection();
        return CE_None;
    }
    /* -------------------------------------------------------------------- */
    /*      The Latitude and Longitude arrays must have a rank of 2 to     */
    /*      retrieve GCPs.                                                  */
    /* -------------------------------------------------------------------- */
    if( poH5Objects->nRank != 2 ) {
        return CE_None;
    }

    /* -------------------------------------------------------------------- */
    /*      Retrieve HDF5 data information                                  */
    /* -------------------------------------------------------------------- */
    const hid_t LatitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    // LatitudeDataspaceID = H5Dget_space( dataset_id );

    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup, "Longitude" );
    const hid_t LongitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    // LongitudeDataspaceID = H5Dget_space( dataset_id );

    if( ( LatitudeDatasetID > 0 ) && ( LongitudeDatasetID > 0) ) {
        float * const Latitude = static_cast<float *>(
            CPLCalloc( nRasterYSize*nRasterXSize, sizeof( float ) ) );
        float * const Longitude = static_cast<float *>(
            CPLCalloc( nRasterYSize*nRasterXSize, sizeof( float ) ) );
        memset( Latitude, 0, nRasterXSize*nRasterYSize*sizeof(  float ) );
        memset( Longitude, 0, nRasterXSize*nRasterYSize*sizeof( float ) );

        H5Dread ( LatitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Latitude );

        H5Dread ( LongitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Longitude );

        oSRS.SetWellKnownGeogCS( "WGS84" );
        CPLFree(pszProjection);
        CPLFree(pszGCPProjection);
        oSRS.exportToWkt( &pszProjection );
        oSRS.exportToWkt( &pszGCPProjection );

    /* -------------------------------------------------------------------- */
    /*  Fill the GCPs list.                                                 */
    /* -------------------------------------------------------------------- */
        nGCPCount = (nRasterYSize/nDeltaLat) * (nRasterXSize/nDeltaLon);

        pasGCPList = static_cast<GDAL_GCP *>(
            CPLCalloc( nGCPCount, sizeof( GDAL_GCP ) ) );

        GDALInitGCPs( nGCPCount, pasGCPList );
        int k=0;

        const int nYLimit = (static_cast<int>(nRasterYSize)/nDeltaLat) * nDeltaLat;
        const int nXLimit = (static_cast<int>(nRasterXSize)/nDeltaLon) * nDeltaLon;

        // The original code in https://trac.osgeo.org/gdal/changeset/8066
        // always add +180 to the longitudes, but without justification
        // I suspect this might be due to handling products crossing the
        // antimeridian. Trying to do it just when needed through a heuristics.
        bool bHasLonNearMinus180 = false;
        bool bHasLonNearPlus180 = false;
        bool bHasLonNearZero = false;
        for( int j = 0; j < nYLimit; j+=nDeltaLat )
        {
            for( int i = 0; i < nXLimit; i+=nDeltaLon )
            {
                const int iGCP =  j * nRasterXSize + i;
                if( Longitude[iGCP] > 170 && Longitude[iGCP] <= 180 )
                    bHasLonNearPlus180 = true;
                if( Longitude[iGCP] < -170 && Longitude[iGCP] >= -180 )
                    bHasLonNearMinus180 = true;
                if( fabs(Longitude[iGCP]) < 90 )
                    bHasLonNearZero = true;
            }
        }
        const char* pszShiftGCP =
                CPLGetConfigOption("HDF5_SHIFT_GCPX_BY_180", NULL);
        const bool bAdd180 = (bHasLonNearPlus180 && bHasLonNearMinus180 &&
                              !bHasLonNearZero && pszShiftGCP == NULL) ||
                             (pszShiftGCP != NULL && CPLTestBool(pszShiftGCP));

        for( int j = 0; j < nYLimit; j+=nDeltaLat )
        {
            for( int i = 0; i < nXLimit; i+=nDeltaLon )
            {
                const int iGCP =  j * nRasterXSize + i;
                pasGCPList[k].dfGCPX = static_cast<double>(Longitude[iGCP]);
                if( bAdd180 )
                    pasGCPList[k].dfGCPX += 180.0;
                pasGCPList[k].dfGCPY = static_cast<double>(Latitude[iGCP]);

                pasGCPList[k].dfGCPPixel = i + 0.5;
                pasGCPList[k++].dfGCPLine =  j + 0.5;
            }
        }

        CPLFree( Latitude );
        CPLFree( Longitude );
    }

    if( LatitudeDatasetID > 0 )
        H5Dclose(LatitudeDatasetID);
    if( LongitudeDatasetID > 0 )
        H5Dclose(LongitudeDatasetID);

    break;
  }
 }

 return CE_None;
}
Exemplo n.º 14
0
/* Matlab Gateway routine */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
	char	*pszSRS_WKT = NULL;
	GDALDatasetH	hSrcDS, hDstDS;
	GDALDriverH	hDriver;
	GDALRasterBandH hBand;
	OGRSpatialReference oSrcSRS, oDstSRS; 
	GDALResampleAlg	interpMethod = GRA_NearestNeighbour;
	GDALTransformerFunc pfnTransformer = NULL;
	CPLErr		eErr;
	GDAL_GCP	*pasGCPs = NULL;
	void		*hTransformArg;
	static int runed_once = FALSE;	/* It will be set to true if reaches end of main */

	int	nx, ny, i, j, m, n, c = 0, n_pts, n_fields;
	char	*pszSrcSRS = NULL, *pszSrcWKT = NULL;
	char	*pszDstSRS = NULL, *pszDstWKT = NULL;
	double	*in_data, *ptr_d, *x, *y, *z;
	mxArray	*mx_ptr;

	int	nGCPCount = 0, nOrder = 0;
	char	**papszMetadataOptions = NULL;
	char	*tmp, *txt;
	int	bInverse = FALSE;
	int	*bSuccess;
	char	**papszTO = NULL;


	if (nrhs == 2 && mxIsStruct(prhs[1])) {

		/* -------------------------------------------------- */

		/* -------- See for projection stuff ---------------- */
		mx_ptr = mxGetField(prhs[1], 0, "SrcProjSRS");
		if (mx_ptr != NULL)
			pszSrcSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "SrcProjWKT");
		if (mx_ptr != NULL)
			pszSrcWKT = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjSRS");
		if (mx_ptr != NULL)
			pszDstSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjWKT");
		if (mx_ptr != NULL)
			pszDstWKT = (char *)mxArrayToString(mx_ptr);
		/* -------------------------------------------------- */

		/* -------- Do we have GCPs? ----------------------- */
		mx_ptr = mxGetField(prhs[1], 0, "gcp");
		if (mx_ptr != NULL) {
			nGCPCount = mxGetM(mx_ptr);
			if (mxGetN(mx_ptr) != 4)
				mexErrMsgTxt("GDALWARP: GCPs must be a Mx4 array");
			ptr_d = mxGetPr(mx_ptr);
			pasGCPs = (GDAL_GCP *) mxCalloc( nGCPCount, sizeof(GDAL_GCP) );
			GDALInitGCPs( 1, pasGCPs + nGCPCount - 1 );
			for (i = 0; i < nGCPCount; i++) {
				pasGCPs[i].dfGCPPixel = ptr_d[i];
				pasGCPs[i].dfGCPLine = ptr_d[i+nGCPCount];
				pasGCPs[i].dfGCPX = ptr_d[i+2*nGCPCount];
				pasGCPs[i].dfGCPY = ptr_d[i+3*nGCPCount];
				pasGCPs[i].dfGCPZ = 0;
			}
		}
			/* ---- Have we an order request? --- */
		mx_ptr = mxGetField(prhs[1], 0, "order");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			nOrder = (int)*ptr_d;
			if (nOrder != -1 || nOrder != 0 || nOrder != 1 ||
				nOrder != 2 || nOrder != 3)
				nOrder = 0;
		}
		/* -------------------------------------------------- */
		mx_ptr = mxGetField(prhs[1], 0, "inverse");
		if (mx_ptr != NULL)
			bInverse = TRUE;

		mx_ptr = mxGetField(prhs[1], 0, "ResampleAlg");
		if (mx_ptr != NULL) {
			txt = (char *)mxArrayToString(mx_ptr);
			if (!strcmp(txt,"nearest"))
				interpMethod = GRA_NearestNeighbour;
			else if (!strcmp(txt,"bilinear"))
				interpMethod = GRA_Bilinear;
			else if (!strcmp(txt,"cubic") || !strcmp(txt,"bicubic"))
				interpMethod = GRA_Cubic;
			else if (!strcmp(txt,"spline"))
				interpMethod = GRA_CubicSpline;
		}

	}
	else {
		mexPrintf("Usage: out = gdaltransform_mex(IN,PAR_STRUCT)\n\n");
		mexPrintf("      IN is a Mx2 or Mx3 array of doubles with X, Y (,Z)\n");
		mexPrintf("      PAR_STRUCT is a structure with at most two of the next fields:\n");
		mexPrintf("\t\t'SrcProjSRS', 'SrcProjWKT' -> Source projection string\n");
		mexPrintf("\t\t'DstProjSRS', 'DstProjWKT' -> Target projection string\n");
		mexPrintf("\t\t\tSRS stands for a string of the type used by proj4\n");
		mexPrintf("\t\t\tWKT stands for a string on the 'Well Known Text' format\n\n");
		mexPrintf("\t\t\tIf one of the Src or Dst fields is absent a GEOGRAPHIC WGS84 is assumed\n");
		mexPrintf("\nOPTIONS\n");
		mexPrintf("\t\t'gcp' a [Mx4] array with Ground Control Points\n");
		mexPrintf("\t\t'inverse' reverse transformation. e.g from georef to rows-columns\n");

		if (!runed_once)		/* Do next call only at first time this MEX is loaded */
			GDALAllRegister();

        	mexPrintf( "The following format drivers are configured and support Create() method:\n" );
        	for( i = 0; i < GDALGetDriverCount(); i++ ) {
			hDriver = GDALGetDriver(i);
			if( GDALGetMetadataItem( hDriver, GDAL_DCAP_CREATE, NULL ) != NULL)
				mexPrintf("%s: %s\n", GDALGetDriverShortName(hDriver), 
							GDALGetDriverLongName(hDriver));
		}
		return;
	}


	if (!runed_once) 		/* Do next call only at first time this MEX is loaded */
		GDALAllRegister();


	/* ----- Check that first argument contains at least a mx2 table */
	n_pts = mxGetM (prhs[0]);
	n_fields = mxGetN(prhs[0]);
	if (!mxIsNumeric(prhs[0]) || (n_fields < 2)) {
		mexPrintf("GDALTRANSFORM ERROR: first argument must contain a mx2 (or mx3) table\n");
		mexErrMsgTxt("               with the x,y (,z) positions to convert.\n");
	}

DEBUGA(1);
	/* ---------- Set the Source projection ---------------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	if (pszSrcSRS == NULL && pszSrcWKT == NULL)
		oSrcSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszSrcWKT != NULL)
		oSrcSRS.importFromWkt( &pszSrcWKT );

	else {
		if( oSrcSRS.SetFromUserInput( pszSrcSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDALTRANSFORM: Translating source SRS failed.");
	}
	if (pszSrcWKT == NULL)
		oSrcSRS.exportToWkt( &pszSrcWKT );

	/* ------------------------------------------------------------------ */


DEBUGA(2);
	/* ---------- Set up the Target coordinate system ------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	CPLErrorReset();
	if (pszDstSRS == NULL && pszDstWKT == NULL)
		oDstSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszDstWKT != NULL)
		oDstSRS.importFromWkt( &pszDstWKT );
	else {
		if( oDstSRS.SetFromUserInput( pszDstSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDALTRANSFORM: Translating target SRS failed.");
	}
	if (pszDstWKT == NULL)
		oDstSRS.exportToWkt( &pszDstWKT );
	/* ------------------------------------------------------------------ */



	/* -------------------------------------------------------------------- */
	/*      Create a transformation object from the source to               */
	/*      destination coordinate system.                                  */
	/* -------------------------------------------------------------------- */
	if( nGCPCount != 0 && nOrder == -1 ) {
		pfnTransformer = GDALTPSTransform;
		hTransformArg = GDALCreateTPSTransformer( nGCPCount, pasGCPs, FALSE );
	}
	else if( nGCPCount != 0 ) {
DEBUGA(3);
		pfnTransformer = GDALGCPTransform;
		hTransformArg = GDALCreateGCPTransformer( nGCPCount, pasGCPs, nOrder, FALSE );
	}
	else {
		pfnTransformer = GDALGenImgProjTransform;
		//hTransformArg = GDALCreateGenImgProjTransformer2( hSrcDS, hDstDS, papszTO );
		hTransformArg = 
    			GDALCreateGenImgProjTransformer( NULL, pszSrcWKT, NULL, pszDstWKT, 
						 nGCPCount == 0 ? FALSE : TRUE, 0, nOrder );
	}

	//CSLDestroy( papszTO );
DEBUGA(4);

	if( hTransformArg == NULL )
		mexErrMsgTxt("GDALTRANSFORM: Generating transformer failed.");

	in_data = (double *)mxGetData(prhs[0]);

	if (n_pts == 1) {
		x = &in_data[0];
		y = &in_data[1];
		bSuccess = &c;
	}
	else {
		x = (double *)mxCalloc(n_pts, sizeof(double));
		y = (double *)mxCalloc(n_pts, sizeof(double));
		bSuccess = (int *)mxCalloc(n_pts, sizeof(int));

		for (j = 0; j < n_pts; j++) {
			x[j] = in_data[j];
			y[j] = in_data[j+n_pts];
		}
	}
DEBUGA(5);

	z = (double *)mxCalloc(n_pts, sizeof(double));
	if (n_fields == 3)
		for (j = 0; j < n_pts; j++)
			z[j] = in_data[j+2*n_pts];

	if ( !pfnTransformer( hTransformArg, bInverse, n_pts, x, y, z, bSuccess ) )
		mexPrintf( "Transformation failed.\n" );


DEBUGA(6);
	if( nGCPCount != 0 && nOrder == -1 )
		GDALDestroyTPSTransformer(hTransformArg);
	else if( nGCPCount != 0 )
		GDALDestroyGCPTransformer(hTransformArg);
	else
		GDALDestroyGenImgProjTransformer(hTransformArg);


	/* -------------- Copy the result into plhs  --------------------------------- */
	plhs[0] = mxCreateDoubleMatrix (n_pts,n_fields, mxREAL);
	ptr_d = mxGetPr(plhs[0]);

	for (j = 0; j < n_pts; j++) {
		ptr_d[j] = x[j];
		ptr_d[j+n_pts] = y[j];
	}

	if (n_pts > 1) {
		mxFree((void *)x);	mxFree((void *)y);	mxFree((void *)bSuccess);
	}

	if (n_fields == 3) {
		for (j = 0; j < n_pts; j++)
			ptr_d[j+2*n_pts] = z[j];
	}
	mxFree((void *)z);


	if (pszDstWKT && strlen(pszDstWKT) > 1 ) OGRFree(pszDstWKT);	
	if (pszSrcWKT && strlen(pszSrcWKT) > 1 ) OGRFree(pszSrcWKT);
	//OGRFree(pszSrcWKT);
	//OGRFree(pszDstWKT);
	if (nGCPCount > 0) {
		GDALDeinitGCPs( nGCPCount, pasGCPs );	// makes this mex crash in the next call
		mxFree((void *) pasGCPs );
	}

	runed_once = TRUE;	/* Signals that next call won't need to call GDALAllRegister() again */

}
Exemplo n.º 15
0
void PALSARJaxaDataset::ReadMetadata( PALSARJaxaDataset *poDS, FILE *fp ) {
    /* seek to the end fo the leader file descriptor */
    VSIFSeekL( fp, LEADER_FILE_DESCRIPTOR_LENGTH, SEEK_SET );
    if (poDS->nFileType == level_11) {
        poDS->SetMetadataItem( "PRODUCT_LEVEL", "1.1" );
        poDS->SetMetadataItem( "AZIMUTH_LOOKS", "1.0" );
    }
    else {
        poDS->SetMetadataItem( "PRODUCT_LEVEL", "1.5" );
        /* extract equivalent number of looks */
        VSIFSeekL( fp, LEADER_FILE_DESCRIPTOR_LENGTH + 
                  EFFECTIVE_LOOKS_AZIMUTH_OFFSET, SEEK_SET );
        char pszENL[17];
        double dfENL;
        READ_CHAR_FLOAT(dfENL, 16, fp);
        sprintf( pszENL, "%-16.1f", dfENL );
        poDS->SetMetadataItem( "AZIMUTH_LOOKS", pszENL );

        /* extract pixel spacings */
        VSIFSeekL( fp, LEADER_FILE_DESCRIPTOR_LENGTH +
                  DATA_SET_SUMMARY_LENGTH + PIXEL_SPACING_OFFSET, SEEK_SET );
        double dfPixelSpacing;
        double dfLineSpacing;
        char pszPixelSpacing[33];
        char pszLineSpacing[33];
        READ_CHAR_FLOAT(dfPixelSpacing, 16, fp);
        READ_CHAR_FLOAT(dfLineSpacing, 16, fp);
        sprintf( pszPixelSpacing, "%-32.1f",dfPixelSpacing );
        sprintf( pszLineSpacing, "%-32.1f", dfLineSpacing );
        poDS->SetMetadataItem( "PIXEL_SPACING", pszPixelSpacing );
        poDS->SetMetadataItem( "LINE_SPACING", pszPixelSpacing );

        /* Alphanumeric projection name */
        VSIFSeekL( fp, LEADER_FILE_DESCRIPTOR_LENGTH +
                  DATA_SET_SUMMARY_LENGTH + ALPHANUMERIC_PROJECTION_NAME_OFFSET,
                  SEEK_SET );
        char pszProjName[33];
        READ_STRING(pszProjName, 32, fp);
        poDS->SetMetadataItem( "PROJECTION_NAME", pszProjName );
		
        /* Extract corner GCPs */
        poDS->nGCPCount = 4;
        poDS->pasGCPList = (GDAL_GCP *)CPLCalloc( sizeof(GDAL_GCP), 
                                                  poDS->nGCPCount );
        GDALInitGCPs( poDS->nGCPCount, poDS->pasGCPList );

        /* setup the GCPs */
        int i;
        for (i = 0; i < poDS->nGCPCount; i++) {
            char pszID[2];
            sprintf( pszID, "%d", i + 1);
            CPLFree(poDS->pasGCPList[i].pszId);
            poDS->pasGCPList[i].pszId = CPLStrdup( pszID );
            poDS->pasGCPList[i].dfGCPZ = 0.0;
        }

        double dfTemp = 0.0;
        /* seek to start of GCPs */
        VSIFSeekL( fp, LEADER_FILE_DESCRIPTOR_LENGTH +
                  DATA_SET_SUMMARY_LENGTH + TOP_LEFT_LAT_OFFSET, SEEK_SET );
		
        /* top-left GCP */
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[0].dfGCPY = dfTemp;
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[0].dfGCPX = dfTemp;
        poDS->pasGCPList[0].dfGCPLine = 0.5;
        poDS->pasGCPList[0].dfGCPPixel = 0.5;

        /* top right GCP */
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[1].dfGCPY = dfTemp;
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[1].dfGCPX = dfTemp;
        poDS->pasGCPList[1].dfGCPLine = 0.5;
        poDS->pasGCPList[1].dfGCPPixel = poDS->nRasterYSize - 0.5;

        /* bottom right GCP */
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[2].dfGCPY = dfTemp;
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[2].dfGCPX = dfTemp;
        poDS->pasGCPList[2].dfGCPLine = poDS->nRasterYSize - 0.5;
        poDS->pasGCPList[2].dfGCPPixel = poDS->nRasterYSize - 0.5;

        /* bottom left GCP */
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[3].dfGCPY = dfTemp;
        READ_CHAR_FLOAT(dfTemp, 16, fp);
        poDS->pasGCPList[3].dfGCPX = dfTemp;
        poDS->pasGCPList[3].dfGCPLine = poDS->nRasterYSize - 0.5;
        poDS->pasGCPList[3].dfGCPPixel = 0.5;
    }

    /* some generic metadata items */
    poDS->SetMetadataItem( "SENSOR_BAND", "L" ); /* PALSAR is L-band */
    poDS->SetMetadataItem( "RANGE_LOOKS", "1.0" );

    /* Check if this is a PolSAR dataset */
    if ( poDS->GetRasterCount() == 4 ) {
        /* PALSAR data is only available from JAXA in Scattering Matrix form */
        poDS->SetMetadataItem( "MATRIX_REPRESENTATION", "SCATTERING" );
    }

}
Exemplo n.º 16
0
CPLErr VRTDataset::XMLInit( CPLXMLNode *psTree, const char *pszVRTPath )

{
    if( pszVRTPath != NULL )
        this->pszVRTPath = CPLStrdup(pszVRTPath);

/* -------------------------------------------------------------------- */
/*      Check for an SRS node.                                          */
/* -------------------------------------------------------------------- */
    if( strlen(CPLGetXMLValue(psTree, "SRS", "")) > 0 )
    {
        OGRSpatialReference oSRS;

        CPLFree( pszProjection );
        pszProjection = NULL;

        if( oSRS.SetFromUserInput( CPLGetXMLValue(psTree, "SRS", "") )
            == OGRERR_NONE )
            oSRS.exportToWkt( &pszProjection );
    }

/* -------------------------------------------------------------------- */
/*      Check for a GeoTransform node.                                  */
/* -------------------------------------------------------------------- */
    if( strlen(CPLGetXMLValue(psTree, "GeoTransform", "")) > 0 )
    {
        const char *pszGT = CPLGetXMLValue(psTree, "GeoTransform", "");
        char	**papszTokens;

        papszTokens = CSLTokenizeStringComplex( pszGT, ",", FALSE, FALSE );
        if( CSLCount(papszTokens) != 6 )
        {
            CPLError( CE_Warning, CPLE_AppDefined,
                      "GeoTransform node does not have expected six values.");
        }
        else
        {
            for( int iTA = 0; iTA < 6; iTA++ )
                adfGeoTransform[iTA] = atof(papszTokens[iTA]);
            bGeoTransformSet = TRUE;
        }

        CSLDestroy( papszTokens );
    }

/* -------------------------------------------------------------------- */
/*      Check for GCPs.                                                 */
/* -------------------------------------------------------------------- */
    CPLXMLNode *psGCPList = CPLGetXMLNode( psTree, "GCPList" );

    if( psGCPList != NULL )
    {
        CPLXMLNode *psXMLGCP;
        OGRSpatialReference oSRS;
        const char *pszRawProj = CPLGetXMLValue(psGCPList, "Projection", "");

        CPLFree( pszGCPProjection );

        if( strlen(pszRawProj) > 0 
            && oSRS.SetFromUserInput( pszRawProj ) == OGRERR_NONE )
            oSRS.exportToWkt( &pszGCPProjection );
        else
            pszGCPProjection = CPLStrdup("");

        // Count GCPs.
        int  nGCPMax = 0;
         
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
            nGCPMax++;
         
        pasGCPList = (GDAL_GCP *) CPLCalloc(sizeof(GDAL_GCP),nGCPMax);
         
        for( psXMLGCP = psGCPList->psChild; psXMLGCP != NULL; 
             psXMLGCP = psXMLGCP->psNext )
        {
            GDAL_GCP *psGCP = pasGCPList + nGCPCount;

            if( !EQUAL(psXMLGCP->pszValue,"GCP") || 
                psXMLGCP->eType != CXT_Element )
                continue;
             
            GDALInitGCPs( 1, psGCP );
             
            CPLFree( psGCP->pszId );
            psGCP->pszId = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Id",""));
             
            CPLFree( psGCP->pszInfo );
            psGCP->pszInfo = CPLStrdup(CPLGetXMLValue(psXMLGCP,"Info",""));
             
            psGCP->dfGCPPixel = atof(CPLGetXMLValue(psXMLGCP,"Pixel","0.0"));
            psGCP->dfGCPLine = atof(CPLGetXMLValue(psXMLGCP,"Line","0.0"));
             
            psGCP->dfGCPX = atof(CPLGetXMLValue(psXMLGCP,"X","0.0"));
            psGCP->dfGCPY = atof(CPLGetXMLValue(psXMLGCP,"Y","0.0"));
            psGCP->dfGCPZ = atof(CPLGetXMLValue(psXMLGCP,"Z","0.0"));

            nGCPCount++;
        }
    }
     
/* -------------------------------------------------------------------- */
/*      Apply any dataset level metadata.                               */
/* -------------------------------------------------------------------- */
    oMDMD.XMLInit( psTree, TRUE );

/* -------------------------------------------------------------------- */
/*      Create dataset mask band.                                       */
/* -------------------------------------------------------------------- */
    CPLXMLNode *psChild;

    /* Parse dataset mask band first */
    CPLXMLNode* psMaskBandNode = CPLGetXMLNode(psTree, "MaskBand");
    if (psMaskBandNode)
        psChild = psMaskBandNode->psChild;
    else
        psChild = NULL;
    for( ; psChild != NULL; psChild=psChild->psNext )
    {
        if( psChild->eType == CXT_Element
            && EQUAL(psChild->pszValue,"VRTRasterBand") )
        {
            VRTRasterBand  *poBand = NULL;
            const char *pszSubclass = CPLGetXMLValue( psChild, "subclass",
                                                      "VRTSourcedRasterBand" );

            if( EQUAL(pszSubclass,"VRTSourcedRasterBand") )
                poBand = new VRTSourcedRasterBand( this, 0 );
            else if( EQUAL(pszSubclass, "VRTDerivedRasterBand") )
                poBand = new VRTDerivedRasterBand( this, 0 );
            else if( EQUAL(pszSubclass, "VRTRawRasterBand") )
                poBand = new VRTRawRasterBand( this, 0 );
            else if( EQUAL(pszSubclass, "VRTWarpedRasterBand") )
                poBand = new VRTWarpedRasterBand( this, 0 );
            else
                CPLError( CE_Failure, CPLE_AppDefined,
                          "VRTRasterBand of unrecognised subclass '%s'.",
                          pszSubclass );

            if( poBand != NULL
                && poBand->XMLInit( psChild, pszVRTPath ) == CE_None )
            {
                SetMaskBand(poBand);
                break;
            }
            else
            {
                if( poBand )
                    delete poBand;
                return CE_Failure;
            }
        }
    }

/* -------------------------------------------------------------------- */
/*      Create band information objects.                                */
/* -------------------------------------------------------------------- */
    int		nBands = 0;
    for( psChild=psTree->psChild; psChild != NULL; psChild=psChild->psNext )
    {
        if( psChild->eType == CXT_Element
            && EQUAL(psChild->pszValue,"VRTRasterBand") )
        {
            VRTRasterBand  *poBand = NULL;
            const char *pszSubclass = CPLGetXMLValue( psChild, "subclass", 
                                                      "VRTSourcedRasterBand" );

            if( EQUAL(pszSubclass,"VRTSourcedRasterBand") )
                poBand = new VRTSourcedRasterBand( this, nBands+1 );
            else if( EQUAL(pszSubclass, "VRTDerivedRasterBand") )
                poBand = new VRTDerivedRasterBand( this, nBands+1 );
            else if( EQUAL(pszSubclass, "VRTRawRasterBand") )
                poBand = new VRTRawRasterBand( this, nBands+1 );
            else if( EQUAL(pszSubclass, "VRTWarpedRasterBand") )
                poBand = new VRTWarpedRasterBand( this, nBands+1 );
            else
                CPLError( CE_Failure, CPLE_AppDefined,
                          "VRTRasterBand of unrecognised subclass '%s'.",
                          pszSubclass );

            if( poBand != NULL 
                && poBand->XMLInit( psChild, pszVRTPath ) == CE_None )
            {
                SetBand( ++nBands, poBand );
            }
            else
            {
                if( poBand )
                    delete poBand; 
                return CE_Failure;
            }
        }
    }
    
    return CE_None;
}
Exemplo n.º 17
0
MAIN_START(argc, argv)

{
    // Check that we are running against at least GDAL 1.5.
    // Note to developers: if we use newer API, please change the requirement.
    if (atoi(GDALVersionInfo("VERSION_NUM")) < 1500)
    {
        fprintf(stderr,
                "At least, GDAL >= 1.5.0 is required for this version of %s, "
                "which was compiled against GDAL %s\n",
                argv[0], GDAL_RELEASE_NAME);
        exit(1);
    }

    GDALAllRegister();
    argc = GDALGeneralCmdLineProcessor( argc, &argv, 0 );
    if( argc < 1 )
        exit( -argc );

    const char         *pszSrcFilename = nullptr;
    const char         *pszDstFilename = nullptr;
    int                 nOrder = 0;
    void               *hTransformArg;
    GDALTransformerFunc pfnTransformer = nullptr;
    int                 nGCPCount = 0;
    GDAL_GCP            *pasGCPs = nullptr;
    int                 bInverse = FALSE;
    CPLStringList       aosTO;
    int                 bOutputXY = FALSE;
    double              dfX = 0.0;
    double              dfY = 0.0;
    double              dfZ = 0.0;
    double              dfT = 0.0;
    bool                bCoordOnCommandLine = false;

/* -------------------------------------------------------------------- */
/*      Parse arguments.                                                */
/* -------------------------------------------------------------------- */
    for( int i = 1; i < argc && argv[i] != nullptr; i++ )
    {
        if( EQUAL(argv[i], "--utility_version") )
        {
            printf("%s was compiled against GDAL %s and "
                   "is running against GDAL %s\n",
                   argv[0], GDAL_RELEASE_NAME, GDALVersionInfo("RELEASE_NAME"));
            CSLDestroy(argv);
            return 0;
        }
        else if( EQUAL(argv[i],"--help") )
        {
            Usage();
        }
        else if( EQUAL(argv[i],"-t_srs") )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(1);
            const char *pszSRS = argv[++i];
            if( !IsValidSRS(pszSRS) )
                exit(1);
            aosTO.SetNameValue("DST_SRS", pszSRS );
        }
        else if( EQUAL(argv[i],"-s_srs") )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(1);
            const char *pszSRS = argv[++i];
            if( !IsValidSRS(pszSRS) )
                exit(1);
            aosTO.SetNameValue("SRC_SRS", pszSRS );
        }
        else if( EQUAL(argv[i],"-ct") )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(1);
            const char *pszCT = argv[++i];
            aosTO.SetNameValue("COORDINATE_OPERATION", pszCT );
        }
        else if( EQUAL(argv[i],"-order") )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(1);
            nOrder = atoi(argv[++i]);
            aosTO.SetNameValue("MAX_GCP_ORDER", argv[i] );
        }
        else if( EQUAL(argv[i],"-tps") )
        {
            aosTO.SetNameValue("METHOD", "GCP_TPS" );
            nOrder = -1;
        }
        else if( EQUAL(argv[i],"-rpc") )
        {
            aosTO.SetNameValue("METHOD", "RPC" );
        }
        else if( EQUAL(argv[i],"-geoloc") )
        {
            aosTO.SetNameValue("METHOD", "GEOLOC_ARRAY" );
        }
        else if( EQUAL(argv[i],"-i") )
        {
            bInverse = TRUE;
        }
        else if( EQUAL(argv[i],"-to")  )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(1);
            aosTO.AddString( argv[++i] );
        }
        else if( EQUAL(argv[i],"-gcp") )
        {
            CHECK_HAS_ENOUGH_ADDITIONAL_ARGS(4);
            char* endptr = nullptr;
            /* -gcp pixel line easting northing [elev] */

            nGCPCount++;
            pasGCPs = static_cast<GDAL_GCP *>(
                CPLRealloc(pasGCPs, sizeof(GDAL_GCP) * nGCPCount));
            GDALInitGCPs( 1, pasGCPs + nGCPCount - 1 );

            pasGCPs[nGCPCount-1].dfGCPPixel = CPLAtof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPLine = CPLAtof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPX = CPLAtof(argv[++i]);
            pasGCPs[nGCPCount-1].dfGCPY = CPLAtof(argv[++i]);
            if( argv[i+1] != nullptr &&
                (CPLStrtod(argv[i+1], &endptr) != 0.0 || argv[i+1][0] == '0') )
            {
                // Check that last argument is really a number and not a
                // filename looking like a number (see ticket #863).
                if (endptr && *endptr == 0)
                    pasGCPs[nGCPCount-1].dfGCPZ = CPLAtof(argv[++i]);
            }

            /* should set id and info? */
        }
        else if( EQUAL(argv[i],"-output_xy") )
        {
            bOutputXY = TRUE;
        }
        else if( EQUAL(argv[i],"-coord")  && i + 2 < argc)
        {
            bCoordOnCommandLine = true;
            dfX = CPLAtof(argv[++i]);
            dfY = CPLAtof(argv[++i]);
            if( i + 1 < argc && CPLGetValueType(argv[i+1]) != CPL_VALUE_STRING )
                dfZ = CPLAtof(argv[++i]);
            if( i + 1 < argc && CPLGetValueType(argv[i+1]) != CPL_VALUE_STRING )
                dfT = CPLAtof(argv[++i]);
        }
        else if( argv[i][0] == '-' )
        {
            Usage(CPLSPrintf("Unknown option name '%s'", argv[i]));
        }
        else if( pszSrcFilename == nullptr )
        {
            pszSrcFilename = argv[i];
        }
        else if( pszDstFilename == nullptr )
        {
            pszDstFilename = argv[i];
        }
        else
        {
            Usage("Too many command options.");
        }
    }

/* -------------------------------------------------------------------- */
/*      Open src and destination file, if appropriate.                  */
/* -------------------------------------------------------------------- */
    GDALDatasetH hSrcDS = nullptr;
    if( pszSrcFilename != nullptr )
    {
        hSrcDS = GDALOpen( pszSrcFilename, GA_ReadOnly );
        if( hSrcDS == nullptr )
            exit( 1 );
    }

    GDALDatasetH hDstDS = nullptr;
    if( pszDstFilename != nullptr )
    {
        hDstDS = GDALOpen( pszDstFilename, GA_ReadOnly );
        if( hDstDS == nullptr )
            exit( 1 );
    }

    if( hSrcDS != nullptr && nGCPCount > 0 )
    {
        fprintf(stderr,
                "Command line GCPs and input file specified, "
                "specify one or the other.\n");
        exit( 1 );
    }

/* -------------------------------------------------------------------- */
/*      Create a transformation object from the source to               */
/*      destination coordinate system.                                  */
/* -------------------------------------------------------------------- */
    if( nGCPCount != 0 && nOrder == -1 )
    {
        pfnTransformer = GDALTPSTransform;
        hTransformArg =
            GDALCreateTPSTransformer( nGCPCount, pasGCPs, FALSE );
    }
    else if( nGCPCount != 0 )
    {
        pfnTransformer = GDALGCPTransform;
        hTransformArg =
            GDALCreateGCPTransformer( nGCPCount, pasGCPs, nOrder, FALSE );
    }
    else
    {
        pfnTransformer = GDALGenImgProjTransform;
        hTransformArg =
            GDALCreateGenImgProjTransformer2( hSrcDS, hDstDS, aosTO.List() );
    }

    if( hTransformArg == nullptr )
    {
        exit( 1 );
    }

/* -------------------------------------------------------------------- */
/*      Read points from stdin, transform and write to stdout.          */
/* -------------------------------------------------------------------- */
    double dfLastT = 0.0;

    while( bCoordOnCommandLine || !feof(stdin) )
    {
        if( !bCoordOnCommandLine )
        {
            char szLine[1024];

            if( fgets( szLine, sizeof(szLine)-1, stdin ) == nullptr )
                break;

            char **papszTokens = CSLTokenizeString(szLine);
            const int nCount = CSLCount(papszTokens);

            if( nCount < 2 )
            {
                CSLDestroy(papszTokens);
                continue;
            }

            dfX = CPLAtof(papszTokens[0]);
            dfY = CPLAtof(papszTokens[1]);
            if( nCount >= 3 )
                dfZ = CPLAtof(papszTokens[2]);
            else
                dfZ = 0.0;
            if( nCount == 4 )
                dfT = CPLAtof(papszTokens[3]);
            else 
                dfT = 0.0;
            CSLDestroy(papszTokens);
        }
        if( dfT != dfLastT && nGCPCount == 0 )
        {
            if( dfT != 0.0 )
            {
                aosTO.SetNameValue("COORDINATE_EPOCH", CPLSPrintf("%g", dfT));
            }
            else
            {
                aosTO.SetNameValue("COORDINATE_EPOCH", nullptr);
            }
            GDALDestroyGenImgProjTransformer(hTransformArg);
            hTransformArg =
                GDALCreateGenImgProjTransformer2( hSrcDS, hDstDS, aosTO.List() );
        }

        int bSuccess = TRUE;
        if( pfnTransformer( hTransformArg, bInverse, 1,
                            &dfX, &dfY, &dfZ, &bSuccess )
            && bSuccess )
        {
            if( bOutputXY )
                CPLprintf( "%.15g %.15g\n", dfX, dfY );
            else
                CPLprintf( "%.15g %.15g %.15g\n", dfX, dfY, dfZ );
        }
        else
        {
            printf( "transformation failed.\n" );
        }

        if( bCoordOnCommandLine )
            break;
        dfLastT = dfT;
    }

    if( nGCPCount != 0 && nOrder == -1 )
    {
        GDALDestroyTPSTransformer(hTransformArg);
    }
    else if( nGCPCount != 0 )
    {
        GDALDestroyGCPTransformer(hTransformArg);
    }
    else
    {
        GDALDestroyGenImgProjTransformer(hTransformArg);
    }

    if (nGCPCount)
    {
        GDALDeinitGCPs( nGCPCount, pasGCPs );
        CPLFree( pasGCPs );
    }

    if (hSrcDS)
        GDALClose(hSrcDS);

    if (hDstDS)
        GDALClose(hDstDS);

    GDALDumpOpenDatasets( stderr );
    GDALDestroyDriverManager();

    CSLDestroy( argv );

    return 0;
}
Exemplo n.º 18
0
void EnvisatDataset::ScanForGCPs_MERIS()

{
    int		nDatasetIndex, nNumDSR, nDSRSize;
    bool    isBrowseProduct ; 

/* -------------------------------------------------------------------- */
/*      Do we have a meaningful geolocation grid?  Seach for a          */
/*      DS_TYPE=A and a name containing "geolocation" or "tie           */
/*      points".                                                        */
/* -------------------------------------------------------------------- */
    nDatasetIndex = EnvisatFile_GetDatasetIndex( hEnvisatFile,
                                                 "Tie points ADS" );
    if( nDatasetIndex == -1 )
        return;

    if( EnvisatFile_GetDatasetInfo( hEnvisatFile, nDatasetIndex,
                                    NULL, NULL, NULL, NULL, NULL,
                                    &nNumDSR, &nDSRSize ) != SUCCESS )
        return;

    if( nNumDSR == 0 )
        return;

/* -------------------------------------------------------------------- */
/*      Figure out the tiepoint space, and how many we have.            */
/* -------------------------------------------------------------------- */
    int  nLinesPerTiePoint, nSamplesPerTiePoint;
    int  nTPPerLine, nTPPerColumn = nNumDSR;

    if( nNumDSR == 0 )
        return;

    nLinesPerTiePoint =
        EnvisatFile_GetKeyValueAsInt( hEnvisatFile, SPH,
                                      "LINES_PER_TIE_PT", 0 );
    nSamplesPerTiePoint =
        EnvisatFile_GetKeyValueAsInt( hEnvisatFile, SPH,
                                      "SAMPLES_PER_TIE_PT", 0 );

    if( nLinesPerTiePoint == 0 || nSamplesPerTiePoint == 0 )
        return;

    nTPPerLine = (GetRasterXSize() + nSamplesPerTiePoint - 1)
        / nSamplesPerTiePoint;

/* -------------------------------------------------------------------- */
/*      Find a Mesurement type dataset to use as a reference raster     */
/*      band.                                                           */
/* -------------------------------------------------------------------- */

    int		nMDSIndex;

    for( nMDSIndex = 0; TRUE; nMDSIndex++ )
    {
        char *pszDSType;
        if( EnvisatFile_GetDatasetInfo( hEnvisatFile, nMDSIndex,
            NULL, &pszDSType, NULL, NULL, NULL, NULL, NULL ) == FAILURE )
        {
            CPLDebug("EnvisatDataset",
                            "Unable to find MDS in Envisat file.") ;
            return ;
    }
        if( EQUAL(pszDSType,"M") ) break;
    }

/* -------------------------------------------------------------------- */
/*      Get subset of TP ADS records matching the MDS records	*/
/* -------------------------------------------------------------------- */

    /* get the MDS line sampling time interval */
    TimeDelta tdMDSSamplingInterval( 0 , 0 ,  
        EnvisatFile_GetKeyValueAsInt( hEnvisatFile, SPH,
                                      "LINE_TIME_INTERVAL", 0  ) );

    /* get range of TiePoint ADS records matching the measurements */
    ADSRangeLastAfter arTP( *hEnvisatFile , nDatasetIndex, 
        nMDSIndex , tdMDSSamplingInterval ) ; 
    
    /* check if there are any TPs to be used */ 
    if ( arTP.getDSRCount() <= 0 )
    {
        CPLDebug( "EnvisatDataset" , "No tiepoint covering "
            "the measurement records." ) ;
        return; /* No TPs - no extraction. */
    } 

    /* check if TPs cover the whole range of MDSRs */
    if(( arTP.getFirstOffset() < 0 )||( arTP.getLastOffset() < 0 ))
    {
        CPLDebug( "EnvisatDataset" , "The tiepoints do not cover "
            "whole range of measurement records." ) ;
        /* Not good but we can still extract some of the TPS, can we? */
    }

    /* check TP records spacing */
    if ((1+(arTP.getFirstOffset()+arTP.getLastOffset()+GetRasterYSize()-1) 
           / nLinesPerTiePoint ) != arTP.getDSRCount() )
    {
        CPLDebug( "EnvisatDataset", "Not enough tieponts per column! "
            "received=%d expected=%d", nTPPerColumn , 
                1 + (arTP.getFirstOffset()+arTP.getLastOffset()+
                      GetRasterYSize()-1) / nLinesPerTiePoint ) ; 
        return; /* That is far more serious - we risk missplaces TPs. */
    }

    if ( 50*nTPPerLine + 13 == nDSRSize ) /* regular product */
    {
        isBrowseProduct = false ; 
    } 
    else if ( 8*nTPPerLine + 13 == nDSRSize ) /* browse product */
    { 
        /* although BPs are rare there is no reason not to support them */
        isBrowseProduct = true ; 
    } 
    else 
    {
        CPLDebug( "EnvisatDataset", "Unexpectd size of 'Tie points ADS' !"
                " received=%d expected=%d or %d" , nDSRSize ,
                50*nTPPerLine+13, 8*nTPPerLine+13 ) ;
        return;
    }

/* -------------------------------------------------------------------- */
/*      Collect the first GCP set from each record.			*/
/* -------------------------------------------------------------------- */

    GByte	*pabyRecord = (GByte *) CPLMalloc(nDSRSize-13);
    int  	iGCP;

    GUInt32 *tpLat = ((GUInt32*)pabyRecord) + nTPPerLine*0 ; /* latitude */  
    GUInt32 *tpLon = ((GUInt32*)pabyRecord) + nTPPerLine*1 ; /* longitude */  
    GUInt32 *tpLtc = ((GUInt32*)pabyRecord) + nTPPerLine*4 ; /* lat. DEM correction */
    GUInt32 *tpLnc = ((GUInt32*)pabyRecord) + nTPPerLine*5 ; /* lon. DEM correction */ 

    nGCPCount = 0;
    pasGCPList = (GDAL_GCP *) CPLCalloc( sizeof(GDAL_GCP), 
                                        arTP.getDSRCount() * nTPPerLine );

    for( int ir = 0 ; ir < arTP.getDSRCount() ; ir++ )
    {
        int iRecord = ir + arTP.getFirstIndex() ; 

        double dfGCPLine = 0.5 + 
            ( iRecord*nLinesPerTiePoint - arTP.getFirstOffset() ) ; 

        if( EnvisatFile_ReadDatasetRecordChunk( hEnvisatFile, nDatasetIndex,
                    iRecord , pabyRecord, 13 , -1 ) != SUCCESS )
            continue;

        for( iGCP = 0; iGCP < nTPPerLine; iGCP++ )
        {
            char	szId[128];

            GDALInitGCPs( 1, pasGCPList + nGCPCount );

            CPLFree( pasGCPList[nGCPCount].pszId );

            sprintf( szId, "%d", nGCPCount+1 );
            pasGCPList[nGCPCount].pszId = CPLStrdup( szId );

            #define INT32(x)    ((GInt32)CPL_MSBWORD32(x)) 

            pasGCPList[nGCPCount].dfGCPX = 1e-6*INT32(tpLon[iGCP]) ; 
            pasGCPList[nGCPCount].dfGCPY = 1e-6*INT32(tpLat[iGCP]) ; 
            pasGCPList[nGCPCount].dfGCPZ = 0.0;

            if( !isBrowseProduct ) /* add DEM corrections */
            { 
                pasGCPList[nGCPCount].dfGCPX += 1e-6*INT32(tpLnc[iGCP]) ; 
                pasGCPList[nGCPCount].dfGCPY += 1e-6*INT32(tpLtc[iGCP]) ; 
            } 

            #undef INT32

            pasGCPList[nGCPCount].dfGCPLine = dfGCPLine ; 
            pasGCPList[nGCPCount].dfGCPPixel = iGCP*nSamplesPerTiePoint + 0.5;

            nGCPCount++;
        }
    }
    CPLFree( pabyRecord );
}
Exemplo n.º 19
0
void ERSDataset::ReadGCPs()

{
    const char *pszCP = 
        poHeader->Find( "RasterInfo.WarpControl.ControlPoints", NULL );

    if( pszCP == NULL )
        return;

/* -------------------------------------------------------------------- */
/*      Parse the control points.  They will look something like:       */
/*                                                                      */
/*   "1035" Yes No 2344.650885 3546.419458 483270.73 3620906.21 3.105   */
/* -------------------------------------------------------------------- */
    char **papszTokens = CSLTokenizeStringComplex( pszCP, "{ \t}", TRUE,FALSE);
    int nItemsPerLine;
    int nItemCount = CSLCount(papszTokens);

/* -------------------------------------------------------------------- */
/*      Work out if we have elevation values or not.                    */
/* -------------------------------------------------------------------- */
    if( nItemCount == 7 )
        nItemsPerLine = 7;
    else if( nItemCount == 8 )
        nItemsPerLine = 8;
    else if( nItemCount < 14 )
    {
        CPLAssert( FALSE );
        return;
    }
    else if( EQUAL(papszTokens[8],"Yes") || EQUAL(papszTokens[8],"No") )
        nItemsPerLine = 7;
    else if( EQUAL(papszTokens[9],"Yes") || EQUAL(papszTokens[9],"No") )
        nItemsPerLine = 8;
    else
    {
        CPLAssert( FALSE );
        return;
    }

/* -------------------------------------------------------------------- */
/*      Setup GCPs.                                                     */
/* -------------------------------------------------------------------- */
    int iGCP;

    CPLAssert( nGCPCount == 0 );

    nGCPCount = nItemCount / nItemsPerLine;
    pasGCPList = (GDAL_GCP *) CPLCalloc(nGCPCount,sizeof(GDAL_GCP));
    GDALInitGCPs( nGCPCount, pasGCPList );

    for( iGCP = 0; iGCP < nGCPCount; iGCP++ )
    {
        GDAL_GCP *psGCP = pasGCPList + iGCP;

        CPLFree( psGCP->pszId );
        psGCP->pszId = CPLStrdup(papszTokens[iGCP*nItemsPerLine+0]);
        psGCP->dfGCPPixel = atof(papszTokens[iGCP*nItemsPerLine+3]);
        psGCP->dfGCPLine  = atof(papszTokens[iGCP*nItemsPerLine+4]);
        psGCP->dfGCPX     = atof(papszTokens[iGCP*nItemsPerLine+5]);
        psGCP->dfGCPY     = atof(papszTokens[iGCP*nItemsPerLine+6]);
        if( nItemsPerLine == 8 )
            psGCP->dfGCPZ = atof(papszTokens[iGCP*nItemsPerLine+7]);
    }
    
    CSLDestroy( papszTokens );
    
/* -------------------------------------------------------------------- */
/*      Parse the GCP projection.                                       */
/* -------------------------------------------------------------------- */
    OGRSpatialReference oSRS;

    CPLString osProjection = poHeader->Find( 
        "RasterInfo.WarpControl.CoordinateSpace.Projection", "RAW" );
    CPLString osDatum = poHeader->Find( 
        "RasterInfo.WarpControl.CoordinateSpace.Datum", "WGS84" );
    CPLString osUnits = poHeader->Find( 
        "RasterInfo.WarpControl.CoordinateSpace.Units", "METERS" );

    oSRS.importFromERM( osProjection, osDatum, osUnits );

    CPLFree( pszGCPProjection );
    oSRS.exportToWkt( &pszGCPProjection );
}
Exemplo n.º 20
0
CPLErr HDF5ImageDataset::CreateProjections()
{
#define NBGCPLAT 100
#define NBGCPLON 30

    hid_t LatitudeDatasetID  = -1;
    hid_t LongitudeDatasetID = -1;
    hid_t LatitudeDataspaceID;
    hid_t LongitudeDataspaceID;
    float* Latitude;
    float* Longitude;
    int    i,j;
    int   nDeltaLat;
    int   nDeltaLon;

    nDeltaLat = nRasterYSize / NBGCPLAT;
    nDeltaLon = nRasterXSize / NBGCPLON;

    if( nDeltaLat == 0 || nDeltaLon == 0 )
        return CE_None;

/* -------------------------------------------------------------------- */
/*      Create HDF5 Data Hierarchy in a link list                       */
/* -------------------------------------------------------------------- */
    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup,  "Latitude" );
    if( !poH5Objects ) {
        return CE_None;
    }
/* -------------------------------------------------------------------- */
/*      The Lattitude and Longitude arrays must have a rank of 2 to     */
/*      retrieve GCPs.                                                  */
/* -------------------------------------------------------------------- */
    if( poH5Objects->nRank != 2 ) {
        return CE_None;
    }

/* -------------------------------------------------------------------- */
/*      Retrieve HDF5 data information                                  */
/* -------------------------------------------------------------------- */
    LatitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    LatitudeDataspaceID = H5Dget_space( dataset_id );

    poH5Objects=HDF5FindDatasetObjects( poH5RootGroup, "Longitude" );
    LongitudeDatasetID   = H5Dopen( hHDF5,poH5Objects->pszPath );
    LongitudeDataspaceID = H5Dget_space( dataset_id );

    if( ( LatitudeDatasetID > 0 ) && ( LongitudeDatasetID > 0) ) {

        Latitude         = ( float * ) CPLCalloc(  nRasterYSize*nRasterXSize,
                            sizeof( float ) );
        Longitude         = ( float * ) CPLCalloc( nRasterYSize*nRasterXSize,
                            sizeof( float ) );
        memset( Latitude, 0, nRasterXSize*nRasterYSize*sizeof(  float ) );
        memset( Longitude, 0, nRasterXSize*nRasterYSize*sizeof( float ) );

        H5Dread ( LatitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Latitude );

        H5Dread ( LongitudeDatasetID,
            H5T_NATIVE_FLOAT,
            H5S_ALL,
            H5S_ALL,
            H5P_DEFAULT,
            Longitude );

        oSRS.SetWellKnownGeogCS( "WGS84" );
        CPLFree(pszProjection);
        CPLFree(pszGCPProjection);
        oSRS.exportToWkt( &pszProjection );
        oSRS.exportToWkt( &pszGCPProjection );

    /* -------------------------------------------------------------------- */
    /*  Fill the GCPs list.                                                 */
    /* -------------------------------------------------------------------- */
        nGCPCount = nRasterYSize/nDeltaLat * nRasterXSize/nDeltaLon;

        pasGCPList = ( GDAL_GCP * )
            CPLCalloc( nGCPCount, sizeof( GDAL_GCP ) );

        GDALInitGCPs( nGCPCount, pasGCPList );
        int k=0;

        int nYLimit = ((int)nRasterYSize/nDeltaLat) * nDeltaLat;
        int nXLimit = ((int)nRasterXSize/nDeltaLon) * nDeltaLon;
        for( j = 0; j < nYLimit; j+=nDeltaLat )
        {
            for( i = 0; i < nXLimit; i+=nDeltaLon )
            {
                int iGCP =  j * nRasterXSize + i;
                pasGCPList[k].dfGCPX = ( double ) Longitude[iGCP]+180.0;
                pasGCPList[k].dfGCPY = ( double ) Latitude[iGCP];

                pasGCPList[k].dfGCPPixel = i + 0.5;
                pasGCPList[k++].dfGCPLine =  j + 0.5;

            }
        }

        CPLFree( Latitude );
        CPLFree( Longitude );
    }
    return CE_None;

}
Exemplo n.º 21
0
/** GDALComputeMatchingPoints. TODO document */
GDAL_GCP CPL_DLL *
GDALComputeMatchingPoints( GDALDatasetH hFirstImage,
                           GDALDatasetH hSecondImage,
                           char **papszOptions,
                           int *pnGCPCount )
{
    *pnGCPCount = 0;

/* -------------------------------------------------------------------- */
/*      Override default algorithm parameters.                          */
/* -------------------------------------------------------------------- */
    int nOctaveStart, nOctaveEnd;
    double dfSURFThreshold;

    nOctaveStart =atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_START", "2"));
    nOctaveEnd = atoi(CSLFetchNameValueDef(papszOptions, "OCTAVE_END", "2"));

    dfSURFThreshold = CPLAtof(
        CSLFetchNameValueDef(papszOptions, "SURF_THRESHOLD", "0.001"));
    const double dfMatchingThreshold = CPLAtof(
        CSLFetchNameValueDef(papszOptions, "MATCHING_THRESHOLD", "0.015"));

/* -------------------------------------------------------------------- */
/*      Identify the bands to use.  For now we are effectively          */
/*      limited to using RGB input so if we have one band only treat    */
/*      it as red=green=blue=band 1.  Disallow non eightbit imagery.    */
/* -------------------------------------------------------------------- */
    int anBandMap1[3] = { 1, 1, 1 };
    if( GDALGetRasterCount(hFirstImage) >= 3 )
    {
        anBandMap1[1] = 2;
        anBandMap1[2] = 3;
    }

    int anBandMap2[3] = { 1, 1, 1 };
    if( GDALGetRasterCount(hSecondImage) >= 3 )
    {
        anBandMap2[1] = 2;
        anBandMap2[2] = 3;
    }

/* -------------------------------------------------------------------- */
/*      Collect reference points on each image.                         */
/* -------------------------------------------------------------------- */
    std::vector<GDALFeaturePoint> *poFPCollection1 =
        GatherFeaturePoints(reinterpret_cast<GDALDataset *>(hFirstImage),
                            anBandMap1,
                            nOctaveStart, nOctaveEnd, dfSURFThreshold);
    if( poFPCollection1 == nullptr )
        return nullptr;

    std::vector<GDALFeaturePoint> *poFPCollection2 =
        GatherFeaturePoints(reinterpret_cast<GDALDataset *>(hSecondImage),
                            anBandMap2,
                            nOctaveStart, nOctaveEnd,
                            dfSURFThreshold);

    if( poFPCollection2 == nullptr )
    {
        delete poFPCollection1;
        return nullptr;
    }

/* -------------------------------------------------------------------- */
/*      Try to find corresponding locations.                            */
/* -------------------------------------------------------------------- */
    std::vector<GDALFeaturePoint *> oMatchPairs;

    if( CE_None != GDALSimpleSURF::MatchFeaturePoints(
        &oMatchPairs, poFPCollection1, poFPCollection2,
        dfMatchingThreshold ))
    {
        delete poFPCollection1;
        delete poFPCollection2;
        return nullptr;
    }

    *pnGCPCount = static_cast<int>(oMatchPairs.size()) / 2;

/* -------------------------------------------------------------------- */
/*      Translate these into GCPs - but with the output coordinate      */
/*      system being pixel/line on the second image.                    */
/* -------------------------------------------------------------------- */
    GDAL_GCP *pasGCPList =
        static_cast<GDAL_GCP*>(CPLCalloc(*pnGCPCount, sizeof(GDAL_GCP)));

    GDALInitGCPs(*pnGCPCount, pasGCPList);

    for( int i=0; i < *pnGCPCount; i++ )
    {
        GDALFeaturePoint *poPoint1 = oMatchPairs[i*2  ];
        GDALFeaturePoint *poPoint2 = oMatchPairs[i*2+1];

        pasGCPList[i].dfGCPPixel = poPoint1->GetX() + 0.5;
        pasGCPList[i].dfGCPLine = poPoint1->GetY() + 0.5;

        pasGCPList[i].dfGCPX = poPoint2->GetX() + 0.5;
        pasGCPList[i].dfGCPY = poPoint2->GetY() + 0.5;
        pasGCPList[i].dfGCPZ = 0.0;
    }

    // Cleanup the feature point lists.
    delete poFPCollection1;
    delete poFPCollection2;

/* -------------------------------------------------------------------- */
/*      Optionally transform into the georef coordinates of the         */
/*      output image.                                                   */
/* -------------------------------------------------------------------- */
    const bool bGeorefOutput =
        CPLTestBool(CSLFetchNameValueDef(papszOptions, "OUTPUT_GEOREF", "NO"));

    if( bGeorefOutput )
    {
        double adfGeoTransform[6] = {};

        GDALGetGeoTransform( hSecondImage, adfGeoTransform );

        for( int i=0; i < *pnGCPCount; i++ )
        {
            GDALApplyGeoTransform(adfGeoTransform,
                                  pasGCPList[i].dfGCPX,
                                  pasGCPList[i].dfGCPY,
                                  &(pasGCPList[i].dfGCPX),
                                  &(pasGCPList[i].dfGCPY));
        }
    }

    return pasGCPList;
}
Exemplo n.º 22
0
void NITFDensifyGCPs( GDAL_GCP **psGCPs, int *pnGCPCount )
{
    // Given the four corner points of an extent (UL, UR, LR, LL), this method
    // will add three points to each line segment and return a total of 16 points
    // including the four original corner points.

    if ( (*pnGCPCount != 4) || (psGCPs == NULL) ) return;

    const int  nDensifiedGCPs  = 16;
    GDAL_GCP  *psDensifiedGCPs = reinterpret_cast<GDAL_GCP *>(
        CPLMalloc( sizeof( GDAL_GCP ) * nDensifiedGCPs) );

    GDALInitGCPs( nDensifiedGCPs, psDensifiedGCPs );

    bool   ok          = true;
    double xLeftPt     = 0.0;
    double xMidPt      = 0.0;
    double xRightPt    = 0.0;
    double yLeftPt     = 0.0;
    double yMidPt      = 0.0;
    double yRightPt    = 0.0;
    int    count       = 0;
    int    idx         = 0;

    for( int ii = 0; ( (ii < *pnGCPCount) && (ok) ) ; ++ii )
    {
        idx = ( ii != 3 ) ? ii+1 : 0;

        try
        {
            psDensifiedGCPs[count].dfGCPX = (*psGCPs)[ii].dfGCPX;
            psDensifiedGCPs[count].dfGCPY = (*psGCPs)[ii].dfGCPY;

            xMidPt = ((*psGCPs)[ii].dfGCPX+(*psGCPs)[idx].dfGCPX) * 0.5;
            yMidPt = ((*psGCPs)[ii].dfGCPY+(*psGCPs)[idx].dfGCPY) * 0.5;

            xLeftPt = ((*psGCPs)[ii].dfGCPX+xMidPt) * 0.5;
            yLeftPt = ((*psGCPs)[ii].dfGCPY+yMidPt) * 0.5;

            xRightPt = (xMidPt+(*psGCPs)[idx].dfGCPX) * 0.5;
            yRightPt = (yMidPt+(*psGCPs)[idx].dfGCPY) * 0.5;

            psDensifiedGCPs[count+1].dfGCPX = xLeftPt;
            psDensifiedGCPs[count+1].dfGCPY = yLeftPt;
            psDensifiedGCPs[count+2].dfGCPX = xMidPt;
            psDensifiedGCPs[count+2].dfGCPY = yMidPt;
            psDensifiedGCPs[count+3].dfGCPX = xRightPt;
            psDensifiedGCPs[count+3].dfGCPY = yRightPt;

            count += *pnGCPCount;

        }
        catch (...)
        {
            ok = false;
        }
    }

    if( !ok )
    {
        GDALDeinitGCPs( nDensifiedGCPs, psDensifiedGCPs );
        CPLFree( psDensifiedGCPs );
        psDensifiedGCPs = NULL;

        return;
    }

    GDALDeinitGCPs( *pnGCPCount, *psGCPs );
    CPLFree( *psGCPs );

    *psGCPs         = psDensifiedGCPs;
    *pnGCPCount     = nDensifiedGCPs;
    psDensifiedGCPs = NULL;
}
Exemplo n.º 23
0
GDALDataset *FASTDataset::Open( GDALOpenInfo * poOpenInfo )

{
    if( poOpenInfo->nHeaderBytes < 1024)
        return NULL;

    if( !EQUALN((const char *) poOpenInfo->pabyHeader + 52,
                "ACQUISITION DATE =", 18)
        && !EQUALN((const char *) poOpenInfo->pabyHeader + 36,
                "ACQUISITION DATE =", 18) )
        return NULL;

/* -------------------------------------------------------------------- */
/*  Create a corresponding GDALDataset.                                 */
/* -------------------------------------------------------------------- */
    FASTDataset *poDS = new FASTDataset();

    poDS->fpHeader = VSIFOpenL(poOpenInfo->pszFilename, "rb");
    if (poDS->fpHeader == NULL)
    {
        delete poDS;
        return NULL;
    }

    poDS->pszFilename = poOpenInfo->pszFilename;
    poDS->pszDirname = CPLStrdup( CPLGetDirname( poOpenInfo->pszFilename ) );

/* -------------------------------------------------------------------- */
/*  Read the administrative record.                                     */
/* -------------------------------------------------------------------- */
    char *pszHeader =
        static_cast<char *>( CPLMalloc( ADM_HEADER_SIZE + 1 ) );

    size_t nBytesRead = 0;
    if( VSIFSeekL( poDS->fpHeader, 0, SEEK_SET ) >= 0 )
        nBytesRead = VSIFReadL( pszHeader, 1, ADM_HEADER_SIZE, poDS->fpHeader );
    if ( nBytesRead < ADM_MIN_HEADER_SIZE )
    {
        CPLDebug( "FAST", "Header file too short. Reading failed" );
        CPLFree(pszHeader);
        delete poDS;
        return NULL;
    }
    pszHeader[nBytesRead] = '\0';

    // Read acquisition date
    char *pszTemp = GetValue( pszHeader, ACQUISITION_DATE,
                              ACQUISITION_DATE_SIZE, TRUE );
    if (pszTemp == NULL)
    {
        CPLDebug( "FAST", "Cannot get ACQUISITION_DATE, using empty value." );
        pszTemp = CPLStrdup("");
    }
    poDS->SetMetadataItem( "ACQUISITION_DATE", pszTemp );
    CPLFree( pszTemp );

    // Read satellite name (will read the first one only)
    pszTemp = GetValue( pszHeader, SATELLITE_NAME, SATELLITE_NAME_SIZE, TRUE );
    if (pszTemp == NULL)
    {
        CPLDebug( "FAST", "Cannot get SATELLITE_NAME, using empty value." );
        pszTemp = CPLStrdup( "" );
    }
    poDS->SetMetadataItem( "SATELLITE", pszTemp );
    if ( STARTS_WITH_CI(pszTemp, "LANDSAT") )
        poDS->iSatellite = LANDSAT;
    // TODO(schwehr): Was this a bug that both are IRS?
    // else if ( STARTS_WITH_CI(pszTemp, "IRS") )
    //    poDS->iSatellite = IRS;
    else
      poDS->iSatellite = IRS;  // TODO(schwehr): Should this be FAST_UNKNOWN?
    CPLFree( pszTemp );

    // Read sensor name (will read the first one only)
    pszTemp = GetValue( pszHeader, SENSOR_NAME, SENSOR_NAME_SIZE, TRUE );
    if (pszTemp == NULL)
    {
        CPLDebug( "FAST", "Cannot get SENSOR_NAME, using empty value." );
        pszTemp = CPLStrdup("");
    }
    poDS->SetMetadataItem( "SENSOR", pszTemp );
    CPLFree( pszTemp );

    // Read filenames
    poDS->nBands = 0;

    if (strstr( pszHeader, FILENAME ) == NULL)
    {
        if (strstr(pszHeader, "GENERATING AGENCY =EUROMAP"))
        {
            // If we don't find the FILENAME field, let's try with the Euromap
            // PAN / LISS3 / WIFS IRS filename convention.
            if ((EQUAL(poDS->GetMetadataItem("SATELLITE"), "IRS 1C") ||
                 EQUAL(poDS->GetMetadataItem("SATELLITE"), "IRS 1D")) &&
                (EQUAL(poDS->GetMetadataItem("SENSOR"), "PAN") ||
                 EQUAL(poDS->GetMetadataItem("SENSOR"), "LISS3") ||
                 EQUAL(poDS->GetMetadataItem("SENSOR"), "WIFS")))
            {
                poDS->TryEuromap_IRS_1C_1D_ChannelNameConvention();
            }
            else if (EQUAL(poDS->GetMetadataItem("SATELLITE"), "CARTOSAT-1") &&
                     (EQUAL(poDS->GetMetadataItem("SENSOR"), "FORE") ||
                      EQUAL(poDS->GetMetadataItem("SENSOR"), "AFT")))
            {
                // See appendix F in
                // http://www.euromap.de/download/p5fast_20050301.pdf
                const CPLString osSuffix = CPLGetExtension( poDS->pszFilename );
                const char *papszBasenames[] =
                    { "BANDF", "bandf", "BANDA", "banda" };
                for ( int i = 0; i < 4; i++ )
                {
                    const CPLString osChannelFilename =
                        CPLFormFilename( poDS->pszDirname, papszBasenames[i],
                                         osSuffix );
                    if( poDS->OpenChannel( osChannelFilename, 0 ) )
                    {
                        poDS->nBands = 1;
                        break;
                    }
                }
            }
            else if( EQUAL(poDS->GetMetadataItem("SATELLITE"), "IRS P6") )
            {
                // If BANDS_PRESENT="2345", the file bands are "BAND2.DAT",
                // "BAND3.DAT", etc.
                pszTemp =
                    GetValue( pszHeader, BANDS_PRESENT, BANDS_PRESENT_SIZE,
                              TRUE );
                if (pszTemp)
                {
                    for( int i=0; pszTemp[i] != '\0'; i++ )
                    {
                        if( pszTemp[i] >= '2' && pszTemp[i] <= '5' )
                        {
                            if( poDS->FOpenChannel(
                                   poDS->pszFilename,
                                   poDS->nBands, pszTemp[i] - '0'))
                                poDS->nBands++;
                        }
                    }
                    CPLFree( pszTemp );
                }
            }
        }
    }

    // If the previous lookup for band files didn't success, fallback to the
    // standard way of finding them, either by the FILENAME field, either with
    // the usual patterns like bandX.dat, etc.
    if( !poDS->nBands )
    {
        pszTemp = pszHeader;
        for ( int i = 0; i < 7; i++ )
        {
            char *pszFilename = NULL ;
            if ( pszTemp )
                pszTemp = strstr( pszTemp, FILENAME );
            if ( pszTemp )
            {
                // Skip the parameter name
                pszTemp += strlen(FILENAME);
                // Skip whitespaces and equal signs
                while ( *pszTemp == ' ' )
                    pszTemp++;
                while ( *pszTemp == '=' )
                    pszTemp++;
                pszFilename =
                    CPLScanString( pszTemp, FILENAME_SIZE, TRUE, FALSE );
            }
            else
                pszTemp = NULL;
            if ( poDS->FOpenChannel( pszFilename, poDS->nBands,
                                     poDS->nBands + 1 ) )
                poDS->nBands++;
            if ( pszFilename )
                CPLFree( pszFilename );
        }
    }

    if ( !poDS->nBands )
    {
        CPLError( CE_Failure, CPLE_NotSupported,
                  "Failed to find and open band data files." );
        CPLFree(pszHeader);
        delete poDS;
        return NULL;
    }

    // Read number of pixels/lines and bit depth
    pszTemp = GetValue( pszHeader, PIXELS, PIXELS_SIZE, FALSE );
    if ( pszTemp )
    {
        poDS->nRasterXSize = atoi( pszTemp );
        CPLFree( pszTemp );
    }
    else
    {
        CPLDebug( "FAST", "Failed to find number of pixels in line." );
        CPLFree(pszHeader);
        delete poDS;
        return NULL;
    }

    pszTemp = GetValue( pszHeader, LINES1, LINES_SIZE, FALSE );
    if ( !pszTemp )
        pszTemp = GetValue( pszHeader, LINES2, LINES_SIZE, FALSE );
    if ( pszTemp )
    {
        poDS->nRasterYSize = atoi( pszTemp );
        CPLFree( pszTemp );
    }
    else
    {
        CPLDebug( "FAST", "Failed to find number of lines in raster." );
        CPLFree(pszHeader);
        delete poDS;
        return NULL;
    }

    if (!GDALCheckDatasetDimensions(poDS->nRasterXSize, poDS->nRasterYSize))
    {
        CPLFree(pszHeader);
        delete poDS;
        return NULL;
    }

    pszTemp = GetValue( pszHeader, BITS_PER_PIXEL, BITS_PER_PIXEL_SIZE, FALSE );
    if ( pszTemp )
    {
        switch( atoi(pszTemp) )
        {
            case 8:
            default:
                poDS->eDataType = GDT_Byte;
                break;
            // For a strange reason, some Euromap products declare 10 bits
            // output, but are 16 bits.
            case 10:
            case 16:
                poDS->eDataType = GDT_UInt16;
                break;
        }
        CPLFree( pszTemp );
    }
    else
    {
        poDS->eDataType = GDT_Byte;
    }

/* -------------------------------------------------------------------- */
/*  Read radiometric record.                                            */
/* -------------------------------------------------------------------- */
    const char *pszFirst = NULL;
    const char *pszSecond = NULL;

    // Read gains and biases. This is a trick!
    pszTemp = strstr( pszHeader, "BIASES" );// It may be "BIASES AND GAINS"
                                            // or "GAINS AND BIASES"
    const char* pszGains = strstr( pszHeader, "GAINS" );
    if( pszTemp == NULL || pszGains == NULL )
    {
        CPLDebug( "FAST", "No BIASES and/or GAINS" );
        CPLFree( pszHeader );
        delete poDS;
        return NULL;
    }
    if ( pszTemp > pszGains )
    {
        pszFirst = "GAIN%d";
        pszSecond = "BIAS%d";
    }
    else
    {
        pszFirst = "BIAS%d";
        pszSecond = "GAIN%d";
    }

    // Now search for the first number occurrence after that string.
    for ( int i = 1; i <= poDS->nBands; i++ )
    {
        char *pszValue = NULL;
        size_t nValueLen = VALUE_SIZE;

        pszTemp = strpbrk( pszTemp, "-.0123456789" );
        if ( pszTemp )
        {
            nValueLen = strspn( pszTemp, "+-.0123456789" );
            pszValue =
                CPLScanString( pszTemp, static_cast<int>(nValueLen),
                               TRUE, TRUE );
            poDS->SetMetadataItem( CPLSPrintf(pszFirst, i ), pszValue );
            CPLFree( pszValue );
        }
        pszTemp += nValueLen;
        pszTemp = strpbrk( pszTemp, "-.0123456789" );
        if ( pszTemp )
        {
            nValueLen = strspn( pszTemp, "+-.0123456789" );
            pszValue =
                CPLScanString( pszTemp, static_cast<int>(nValueLen),
                               TRUE, TRUE );
            poDS->SetMetadataItem( CPLSPrintf(pszSecond, i ), pszValue );
            CPLFree( pszValue );
        }
        pszTemp += nValueLen;
    }

/* -------------------------------------------------------------------- */
/*  Read geometric record.                                              */
/* -------------------------------------------------------------------- */
   // Coordinates of pixel's centers
    double dfULX = 0.0;
    double dfULY = 0.0;
    double dfURX = 0.0;
    double dfURY = 0.0;
    double dfLLX = 0.0;
    double dfLLY = 0.0;
    double dfLRX = 0.0;
    double dfLRY = 0.0;

    // Read projection name
    pszTemp = GetValue( pszHeader, PROJECTION_NAME,
                        PROJECTION_NAME_SIZE, FALSE );
    long iProjSys = 0;
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
        iProjSys = USGSMnemonicToCode( pszTemp );
    else
        iProjSys = 1L;  // UTM by default
    CPLFree( pszTemp );

    // Read ellipsoid name
    pszTemp = GetValue( pszHeader, ELLIPSOID_NAME, ELLIPSOID_NAME_SIZE, FALSE );
    long iDatum = 0;   // Clarke, 1866 (NAD1927) by default.
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
        iDatum = USGSEllipsoidToCode( pszTemp );
    CPLFree( pszTemp );

    // Read zone number.
    pszTemp = GetValue( pszHeader, ZONE_NUMBER, ZONE_NUMBER_SIZE, FALSE );
    long iZone = 0;
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
        iZone = atoi( pszTemp );
    CPLFree( pszTemp );

    // Read 15 USGS projection parameters
    double adfProjParms[15] = { 0.0 };
    pszTemp = strstr( pszHeader, USGS_PARAMETERS );
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
    {
        pszTemp += strlen( USGS_PARAMETERS );
        for ( int i = 0; i < 15; i++ )
        {
            pszTemp = strpbrk( pszTemp, "-.0123456789" );
            if ( pszTemp )
                adfProjParms[i] = CPLScanDouble( pszTemp, VALUE_SIZE );
            pszTemp = strpbrk( pszTemp, " \t" );
        }
    }

    // Coordinates should follow the word "PROJECTION", otherwise we can
    // be confused by other occurrences of the corner keywords.
    char *pszGeomRecord = strstr( pszHeader, "PROJECTION" );
    // Read corner coordinates
    pszTemp = strstr( pszGeomRecord, CORNER_UPPER_LEFT );
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
    {
        pszTemp += strlen( CORNER_UPPER_LEFT ) + 28;
        dfULX = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
        pszTemp += CORNER_VALUE_SIZE + 1;
        dfULY = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
    }

    pszTemp = strstr( pszGeomRecord, CORNER_UPPER_RIGHT );
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
    {
        pszTemp += strlen( CORNER_UPPER_RIGHT ) + 28;
        dfURX = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
        pszTemp += CORNER_VALUE_SIZE + 1;
        dfURY = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
    }

    pszTemp = strstr( pszGeomRecord, CORNER_LOWER_LEFT );
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
    {
        pszTemp += strlen( CORNER_LOWER_LEFT ) + 28;
        dfLLX = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
        pszTemp += CORNER_VALUE_SIZE + 1;
        dfLLY = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
    }

    pszTemp = strstr( pszGeomRecord, CORNER_LOWER_RIGHT );
    if ( pszTemp && !EQUAL( pszTemp, "" ) )
    {
        pszTemp += strlen( CORNER_LOWER_RIGHT ) + 28;
        dfLRX = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
        pszTemp += CORNER_VALUE_SIZE + 1;
        dfLRY = CPLScanDouble( pszTemp, CORNER_VALUE_SIZE );
    }

    if ( dfULX != 0.0 && dfULY != 0.0
         && dfURX != 0.0 && dfURY != 0.0
         && dfLLX != 0.0 && dfLLY != 0.0
         && dfLRX != 0.0 && dfLRY != 0.0 )
    {
        // Strip out zone number from the easting values, if either
        if ( dfULX >= 1000000.0 )
            dfULX -= static_cast<double>( iZone ) * 1000000.0;
        if ( dfURX >= 1000000.0 )
            dfURX -= static_cast<double>( iZone ) * 1000000.0;
        if ( dfLLX >= 1000000.0 )
            dfLLX -= static_cast<double>( iZone ) * 1000000.0;
        if ( dfLRX >= 1000000.0 )
            dfLRX -= static_cast<double>( iZone ) * 1000000.0;

        // In EOSAT FAST Rev C, the angles are in decimal degrees
        // otherwise they are in packed DMS format.
        const int bAnglesInPackedDMSFormat =
            strstr( pszHeader, "REV            C" ) == NULL;

        // Create projection definition
        OGRSpatialReference oSRS;
        OGRErr eErr =
            oSRS.importFromUSGS( iProjSys, iZone, adfProjParms, iDatum, bAnglesInPackedDMSFormat );
        if ( eErr != OGRERR_NONE )
            CPLDebug( "FAST", "Import projection from USGS failed: %d", eErr );
        oSRS.SetLinearUnits( SRS_UL_METER, 1.0 );

        // Read datum name
        pszTemp = GetValue( pszHeader, DATUM_NAME, DATUM_NAME_SIZE, FALSE );
        if ( pszTemp )
        {
            if ( EQUAL( pszTemp, "WGS84" ) )
                oSRS.SetWellKnownGeogCS( "WGS84" );
            else if ( EQUAL( pszTemp, "NAD27" ) )
                oSRS.SetWellKnownGeogCS( "NAD27" );
            else if ( EQUAL( pszTemp, "NAD83" ) )
                oSRS.SetWellKnownGeogCS( "NAD83" );
            CPLFree( pszTemp );
        }
        else
        {
            // Reasonable fallback
            oSRS.SetWellKnownGeogCS( "WGS84" );
        }

        if ( poDS->pszProjection )
            CPLFree( poDS->pszProjection );
        eErr = oSRS.exportToWkt( &poDS->pszProjection );
        if ( eErr != OGRERR_NONE )
            CPLDebug("FAST", "Export projection to WKT USGS failed: %d", eErr);

        // Generate GCPs
        GDAL_GCP *pasGCPList
            = static_cast<GDAL_GCP *>( CPLCalloc( sizeof( GDAL_GCP ), 4 ) );
        GDALInitGCPs( 4, pasGCPList );
        CPLFree(pasGCPList[0].pszId);
        CPLFree(pasGCPList[1].pszId);
        CPLFree(pasGCPList[2].pszId);
        CPLFree(pasGCPList[3].pszId);

        /* Let's order the GCP in TL, TR, BR, BL order to benefit from the */
        /* GDALGCPsToGeoTransform optimization */
        pasGCPList[0].pszId = CPLStrdup("UPPER_LEFT");
        pasGCPList[0].dfGCPX = dfULX;
        pasGCPList[0].dfGCPY = dfULY;
        pasGCPList[0].dfGCPZ = 0.0;
        pasGCPList[0].dfGCPPixel = 0.5;
        pasGCPList[0].dfGCPLine = 0.5;
        pasGCPList[1].pszId = CPLStrdup("UPPER_RIGHT");
        pasGCPList[1].dfGCPX = dfURX;
        pasGCPList[1].dfGCPY = dfURY;
        pasGCPList[1].dfGCPZ = 0.0;
        pasGCPList[1].dfGCPPixel = poDS->nRasterXSize-0.5;
        pasGCPList[1].dfGCPLine = 0.5;
        pasGCPList[2].pszId = CPLStrdup("LOWER_RIGHT");
        pasGCPList[2].dfGCPX = dfLRX;
        pasGCPList[2].dfGCPY = dfLRY;
        pasGCPList[2].dfGCPZ = 0.0;
        pasGCPList[2].dfGCPPixel = poDS->nRasterXSize-0.5;
        pasGCPList[2].dfGCPLine = poDS->nRasterYSize-0.5;
        pasGCPList[3].pszId = CPLStrdup("LOWER_LEFT");
        pasGCPList[3].dfGCPX = dfLLX;
        pasGCPList[3].dfGCPY = dfLLY;
        pasGCPList[3].dfGCPZ = 0.0;
        pasGCPList[3].dfGCPPixel = 0.5;
        pasGCPList[3].dfGCPLine = poDS->nRasterYSize-0.5;

        // Calculate transformation matrix, if accurate
        const bool transform_ok
            = CPL_TO_BOOL(
                GDALGCPsToGeoTransform( 4, pasGCPList,
                                        poDS->adfGeoTransform, 0 ) );
        if( !transform_ok )
        {
            poDS->adfGeoTransform[0] = 0.0;
            poDS->adfGeoTransform[1] = 1.0;
            poDS->adfGeoTransform[2] = 0.0;
            poDS->adfGeoTransform[3] = 0.0;
            poDS->adfGeoTransform[4] = 0.0;
            poDS->adfGeoTransform[5] = 1.0;
            if ( poDS->pszProjection )
                CPLFree( poDS->pszProjection );
            poDS->pszProjection = CPLStrdup("");
        }

        GDALDeinitGCPs(4, pasGCPList);
        CPLFree(pasGCPList);
    }

/* -------------------------------------------------------------------- */
/*      Create band information objects.                                */
/* -------------------------------------------------------------------- */
    const int nPixelOffset = GDALGetDataTypeSize(poDS->eDataType) / 8;
    const int nLineOffset = poDS->nRasterXSize * nPixelOffset;

    for( int i = 1; i <= poDS->nBands; i++ )
    {
        poDS->SetBand( i, new FASTRasterBand( poDS, i, poDS->fpChannels[i - 1],
            0, nPixelOffset, nLineOffset, poDS->eDataType, TRUE));
    }

    CPLFree( pszHeader );

/* -------------------------------------------------------------------- */
/*      Initialize any PAM information.                                 */
/* -------------------------------------------------------------------- */
    poDS->SetDescription( poOpenInfo->pszFilename );
    poDS->TryLoadXML();

    // opens overviews.
    poDS->oOvManager.Initialize(poDS, poDS->pszFilename);

/* -------------------------------------------------------------------- */
/*      Confirm the requested access is supported.                      */
/* -------------------------------------------------------------------- */
    if( poOpenInfo->eAccess == GA_Update )
    {
        delete poDS;
        CPLError( CE_Failure, CPLE_NotSupported,
                  "The FAST driver does not support update access to existing"
                  " datasets." );
        return NULL;
    }

    return poDS;
}
Exemplo n.º 24
0
void EnvisatDataset::ScanForGCPs_MERIS()

{
    int		nDatasetIndex, nNumDSR, nDSRSize, iRecord;

/* -------------------------------------------------------------------- */
/*      Do we have a meaningful geolocation grid?  Seach for a          */
/*      DS_TYPE=A and a name containing "geolocation" or "tie           */
/*      points".                                                        */
/* -------------------------------------------------------------------- */
    nDatasetIndex = EnvisatFile_GetDatasetIndex( hEnvisatFile,
                                                 "Tie points ADS" );
    if( nDatasetIndex == -1 )
        return;

    if( EnvisatFile_GetDatasetInfo( hEnvisatFile, nDatasetIndex,
                                    NULL, NULL, NULL, NULL, NULL,
                                    &nNumDSR, &nDSRSize ) != SUCCESS )
        return;

    if( nNumDSR == 0 )
        return;

/* -------------------------------------------------------------------- */
/*      Figure out the tiepoint space, and how many we have.            */
/* -------------------------------------------------------------------- */
    int  nLinesPerTiePoint, nSamplesPerTiePoint;
    int  nTPPerLine, nTPPerColumn = nNumDSR;

    if( nNumDSR == 0 )
        return;

    nLinesPerTiePoint =
        EnvisatFile_GetKeyValueAsInt( hEnvisatFile, SPH,
                                      "LINES_PER_TIE_PT", 0 );
    nSamplesPerTiePoint =
        EnvisatFile_GetKeyValueAsInt( hEnvisatFile, SPH,
                                      "SAMPLES_PER_TIE_PT", 0 );

    if( nLinesPerTiePoint == 0 || nSamplesPerTiePoint == 0 )
        return;

    nTPPerLine = (GetRasterXSize() + nSamplesPerTiePoint - 1)
        / nSamplesPerTiePoint;

    if( (GetRasterYSize() + nLinesPerTiePoint - 1)
        / nLinesPerTiePoint != nTPPerColumn )
    {
        CPLDebug( "EnvisatDataset", "Got %d instead of %d nTPPerColumn.",
                  (GetRasterYSize()+nLinesPerTiePoint-1)/nLinesPerTiePoint,
                  nTPPerColumn );
        return;
    }

    if( 50*nTPPerLine + 13 != nDSRSize )
    {
        CPLDebug( "EnvisatDataset",
                  "DSRSize=%d instead of expected %d for tiepoints ADS.",
                  nDSRSize, 50*nTPPerLine + 13 );
        return;
    }

/* -------------------------------------------------------------------- */
/*      Collect the first GCP set from each record.			*/
/* -------------------------------------------------------------------- */
    GByte	*pabyRecord = (GByte *) CPLMalloc(nDSRSize);
    int  	iGCP;
    GUInt32 	unValue;

    nGCPCount = 0;
    pasGCPList = (GDAL_GCP *)
        CPLCalloc(sizeof(GDAL_GCP),nNumDSR * nTPPerLine);

    for( iRecord = 0; iRecord < nNumDSR; iRecord++ )
    {
        if( EnvisatFile_ReadDatasetRecord( hEnvisatFile, nDatasetIndex,
                                           iRecord, pabyRecord ) != SUCCESS )
            continue;

        memcpy( &unValue, pabyRecord + 13, 4 );

        for( iGCP = 0; iGCP < nTPPerLine; iGCP++ )
        {
            char	szId[128];

            GDALInitGCPs( 1, pasGCPList + nGCPCount );

            CPLFree( pasGCPList[nGCPCount].pszId );

            sprintf( szId, "%d", nGCPCount+1 );
            pasGCPList[nGCPCount].pszId = CPLStrdup( szId );

            memcpy( &unValue, pabyRecord + 13 + nTPPerLine*4 + iGCP*4, 4 );
            pasGCPList[nGCPCount].dfGCPX =
                ((int)CPL_MSBWORD32(unValue))*0.000001;

            memcpy( &unValue, pabyRecord + 13 + iGCP*4, 4 );
            pasGCPList[nGCPCount].dfGCPY =
                ((int)CPL_MSBWORD32(unValue))*0.000001;

            pasGCPList[nGCPCount].dfGCPZ = 0.0;

            pasGCPList[nGCPCount].dfGCPLine = iRecord*nLinesPerTiePoint + 0.5;
            pasGCPList[nGCPCount].dfGCPPixel = iGCP*nSamplesPerTiePoint + 0.5;

            nGCPCount++;
        }
    }
    CPLFree( pabyRecord );
}
Exemplo n.º 25
0
/* Matlab Gateway routine */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
	int	nXYSize;
	double	adfGeoTransform[6] = {0,1,0,0,0,1}, adfDstGeoTransform[6];
	char	*pszSRS_WKT = NULL;
	char	**papszWarpOptions = NULL;
	GDALDatasetH	hSrcDS, hDstDS;
	GDALDriverH	hDriver;
	GDALRasterBandH hBand;
	GDALColorTableH	hColorTable = NULL;
	OGRSpatialReference oSrcSRS, oDstSRS; 
	GDALResampleAlg	interpMethod = GRA_NearestNeighbour;
	GDALTransformerFunc pfnTransformer = NULL;
	CPLErr		eErr;
	GDAL_GCP	*pasGCPs = NULL;
	static int runed_once = FALSE;	/* It will be set to true if reaches end of main */

	const int *dim_array;
	int	nx, ny, i, j, m, n, c, nBands, registration = 1;
	int	n_dims, typeCLASS, nBytes;
	char	*pszSrcSRS = NULL, *pszSrcWKT = NULL;
	char	*pszDstSRS = NULL, *pszDstWKT = NULL;
	void	*in_data;
	mxArray	*mx_ptr;

	unsigned char *tmpByte, *outByte;
	unsigned short int *tmpUI16, *outUI16;
	short int *tmpI16, *outI16;
	int	*tmpI32, *outI32;
	int	nPixels=0, nLines=0, nForceWidth=0, nForceHeight=0;
	int	nGCPCount = 0, nOrder = 0;
	unsigned int *tmpUI32, *outUI32;
	float	*tmpF32, *outF32;
	double	*tmpF64, *outF64, *ptr_d;
	double	dfMinX=0, dfMaxX=0, dfMinY=0, dfMaxY=0, dfResX=0, dfResY=0;
	double	adfExtent[4];
	double	dfXRes=0.0, dfYRes=0.0;
	double	dfWarpMemoryLimit = 0.0;
	double	*pdfDstNodata = NULL; 
	char	**papszMetadataOptions = NULL;
	char	*tmp, *txt;


	if (nrhs == 2 && mxIsStruct(prhs[1])) {
		mx_ptr = mxGetField(prhs[1], 0, "ULx");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'ULx' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[0] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "Xinc");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'Xinc' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[1] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "ULy");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'ULy' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[3] = *ptr_d;

		mx_ptr = mxGetField(prhs[1], 0, "Yinc");
		if (mx_ptr == NULL)
			mexErrMsgTxt("GDALWARP 'Yinc' field not provided");
		ptr_d = mxGetPr(mx_ptr);
		adfGeoTransform[5] = -*ptr_d;

		/* -------- See for resolution requests ------------ */
		mx_ptr = mxGetField(prhs[1], 0, "t_size");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			if (mxGetN(mx_ptr) == 2) {
				nForceWidth  = (int)ptr_d[0];
				nForceHeight = (int)ptr_d[1];
			}
			else if (mxGetN(mx_ptr) == 1) {	/* pick max(nrow,ncol) */
				if (mxGetM(prhs[0]) > getNK(prhs[0],1))
					nForceHeight = mxGetM(prhs[0]);
				else
					nForceWidth  = getNK(prhs[0], 1);
			}
			else {
				nForceHeight = mxGetM(prhs[0]);
				nForceWidth  = getNK(prhs[0], 1);
			}
		}

		mx_ptr = mxGetField(prhs[1], 0, "t_res");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			if (mxGetN(mx_ptr) == 2) {
				dfXRes = ptr_d[0];
				dfYRes = ptr_d[1];
			}
			else if (mxGetN(mx_ptr) == 1) {
				dfXRes = dfYRes = ptr_d[0];
			}
		}
		/* -------------------------------------------------- */

		/* -------- Change Warping cache size?  ------------ */
		mx_ptr = mxGetField(prhs[1], 0, "wm");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			dfWarpMemoryLimit = *ptr_d * 1024 * 1024;
		}
		/* -------------------------------------------------- */

		/* -------- Have a nodata value order? -------------- */
		mx_ptr = mxGetField(prhs[1], 0, "nodata");
		if (mx_ptr != NULL) {
			pdfDstNodata = mxGetPr(mx_ptr);
		}
		/* -------------------------------------------------- */

		/* -------- See for projection stuff ---------------- */
		mx_ptr = mxGetField(prhs[1], 0, "SrcProjSRS");
		if (mx_ptr != NULL)
			pszSrcSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "SrcProjWKT");
		if (mx_ptr != NULL)
			pszSrcWKT = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjSRS");
		if (mx_ptr != NULL)
			pszDstSRS = (char *)mxArrayToString(mx_ptr);

		mx_ptr = mxGetField(prhs[1], 0, "DstProjWKT");
		if (mx_ptr != NULL)
			pszDstWKT = (char *)mxArrayToString(mx_ptr);
		/* -------------------------------------------------- */

		/* -------- Do we have GCPs? ----------------------- */
		mx_ptr = mxGetField(prhs[1], 0, "gcp");
		if (mx_ptr != NULL) {
			nGCPCount = mxGetM(mx_ptr);
			if (mxGetN(mx_ptr) != 4)
				mexErrMsgTxt("GDALWARP: GCPs must be a Mx4 array");
			ptr_d = mxGetPr(mx_ptr);
			pasGCPs = (GDAL_GCP *) mxCalloc( nGCPCount, sizeof(GDAL_GCP) );
			GDALInitGCPs( 1, pasGCPs + nGCPCount - 1 );
			for (i = 0; i < nGCPCount; i++) {
				pasGCPs[i].dfGCPPixel = ptr_d[i];
				pasGCPs[i].dfGCPLine = ptr_d[i+nGCPCount];
				pasGCPs[i].dfGCPX = ptr_d[i+2*nGCPCount];
				pasGCPs[i].dfGCPY = ptr_d[i+3*nGCPCount];
				pasGCPs[i].dfGCPZ = 0;
			}
		}
			/* ---- Have we an order request? --- */
		mx_ptr = mxGetField(prhs[1], 0, "order");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			nOrder = (int)*ptr_d;
			if (nOrder != -1 || nOrder != 0 || nOrder != 1 || nOrder != 2 || nOrder != 3)
				nOrder = 0;
		}
		/* -------------------------------------------------- */

		mx_ptr = mxGetField(prhs[1], 0, "ResampleAlg");
		if (mx_ptr != NULL) {
			txt = (char *)mxArrayToString(mx_ptr);
			if (!strcmp(txt,"nearest"))
				interpMethod = GRA_NearestNeighbour;
			else if (!strcmp(txt,"bilinear"))
				interpMethod = GRA_Bilinear;
			else if (!strcmp(txt,"cubic") || !strcmp(txt,"bicubic"))
				interpMethod = GRA_Cubic;
			else if (!strcmp(txt,"spline"))
				interpMethod = GRA_CubicSpline;
		}

		/* If grid limits were in grid registration, convert them to pixel reg */
		mx_ptr = mxGetField(prhs[1], 0, "Reg");
		if (mx_ptr != NULL) {
			ptr_d = mxGetPr(mx_ptr);
			registration = (int)ptr_d[0];
		}

		if (registration == 0) {
			adfGeoTransform[0] -= adfGeoTransform[1]/2.;
			adfGeoTransform[3] -= adfGeoTransform[5]/2.;
		}
	}
	else {
		mexPrintf("Usage: B = gdalwarp_mex(IMG,HDR_STRUCT)\n\n");
		mexPrintf("\tIMG -> is a Mx2 or Mx3 array with an grid/image data to reproject\n");
		mexPrintf("\tHDR_STRUCT -> is a structure with the following fields:\n");
		mexPrintf("\t\t'ULx' X coordinate of the uper left corner\n");
		mexPrintf("\t\t'ULy' Y coordinate of the uper left corner\n");
		mexPrintf("\t\t'Xinc' distance between columns in target grid/image coordinates\n");
		mexPrintf("\t\t'Yinc' distance between rows in target grid/image coordinates\n");
		mexPrintf("\t\t'SrcProjSRS', 'SrcProjWKT' -> Source projection string\n");
		mexPrintf("\t\t'DstProjSRS', 'DstProjWKT' -> Target projection string\n");
		mexPrintf("\t\t\tSRS stands for a string of the type used by proj4\n");
		mexPrintf("\t\t\tWKT stands for a string on the 'Well Known Text' format\n\n");
		mexPrintf("\t\t\tIf one of the Src or Dst fields is absent a GEOGRAPHIC WGS84 is assumed\n");
		mexPrintf("\nOPTIONS\n");
		mexPrintf("\t\t'gcp' a [Mx4] array with Ground Control Points\n");
		mexPrintf("\t\t't_size' a [width height] vector to set output file size in pixels\n");
		mexPrintf("\t\t't_res' a [xres yres] vector to set output file resolution (in target georeferenced units)\n");
		mexPrintf("\t\t'wm' amount of memory (in megabytes) that the warp API is allowed to use for caching\n");
		mexPrintf("\t\t'nodata' Set nodata values for output bands.\n");
		mexPrintf("\t\t'ResampleAlg' To set up the algorithm used during warp operation. Options are: \n");
		mexPrintf("\t\t\t'nearest' Use nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).\n");
		mexPrintf("\t\t\t'bilinear' Use bilinear resampling.\n");
		mexPrintf("\t\t\t'cubic' Use cubic resampling.\n");
		mexPrintf("\t\t\t'spline' Use cubic spline resampling.\n\n");

		if (!runed_once)		/* Do next call only at first time this MEX is loaded */
			GDALAllRegister();

        	mexPrintf( "The following format drivers are configured and support Create() method:\n" );
        	for( i = 0; i < GDALGetDriverCount(); i++ ) {
			hDriver = GDALGetDriver(i);
			if( GDALGetMetadataItem( hDriver, GDAL_DCAP_CREATE, NULL ) != NULL)
				mexPrintf("%s: %s\n", GDALGetDriverShortName(hDriver), 
							GDALGetDriverLongName(hDriver));
		}
		return;
	}

	n_dims = mxGetNumberOfDimensions(prhs[0]);
	dim_array=mxGetDimensions(prhs[0]);
	ny = dim_array[0];
	nx = dim_array[1];
	nBands = dim_array[2];

	if (n_dims == 2)	/* Otherwise it would stay undefined */
		nBands = 1;

	/* Find out in which data type was given the input array */
	if (mxIsUint8(prhs[0])) {
		typeCLASS = GDT_Byte;		nBytes = 1;
		outByte = (unsigned char *)mxMalloc (nx*ny * sizeof(unsigned char));
	}
	else if (mxIsUint16(prhs[0])) {
		typeCLASS = GDT_UInt16;		nBytes = 2;
		outUI16 = (unsigned short int *)mxMalloc (nx*ny * sizeof(short int));
	}
	else if (mxIsInt16(prhs[0])) {
		typeCLASS = GDT_Int16;		nBytes = 2;
		outI16 = (short int *)mxMalloc (nx*ny * sizeof(short int));
	}
	else if (mxIsInt32(prhs[0])) {
		typeCLASS = GDT_Int32;		nBytes = 4;
		outI32 = (int *)mxMalloc (nx*ny * sizeof(int));
	}
	else if (mxIsUint32(prhs[0])) {
		typeCLASS = GDT_UInt32;		nBytes = 4;
		outUI32 = (unsigned int *)mxMalloc (nx*ny * sizeof(int));
	}
	else if (mxIsSingle(prhs[0])) {
		typeCLASS = GDT_Float32;	nBytes = 4;
		outF32 = (float *)mxMalloc (nx*ny * sizeof(float));
	}
	else if (mxIsDouble(prhs[0])) {
		typeCLASS = GDT_Float64;	nBytes = 8;
		outF64 = (double *)mxMalloc (nx*ny * sizeof(double));
	}
	else
		mexErrMsgTxt("GDALWARP Unknown input data class!");


	in_data = (void *)mxGetData(prhs[0]);

	if (!runed_once)		/* Do next call only at first time this MEX is loaded */
		GDALAllRegister();

	hDriver = GDALGetDriverByName( "MEM" ); 

	hSrcDS = GDALCreate( hDriver, "mem", nx, ny, nBands, (GDALDataType)typeCLASS, NULL );
	if (hSrcDS == NULL) {
		mexPrintf ("GDALOpen failed - %d\n%s\n", CPLGetLastErrorNo(), CPLGetLastErrorMsg());
		return;
	}
	GDALSetGeoTransform( hSrcDS, adfGeoTransform ); 

	/* ---------- Set the Source projection ---------------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	if (pszSrcSRS == NULL && pszSrcWKT == NULL)
		oSrcSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszSrcWKT != NULL)
		oSrcSRS.importFromWkt( &pszSrcWKT );

	else {
		if( oSrcSRS.SetFromUserInput( pszSrcSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDAL_WARP_MEX: Translating source SRS failed.");
	}
	if (pszSrcWKT == NULL)
		oSrcSRS.exportToWkt( &pszSrcWKT );

	GDALSetProjection( hSrcDS, pszSrcWKT );	
	//pszSrcWKT = (char *)GDALGetProjectionRef( hSrcDS );
	CPLAssert( pszSrcWKT != NULL && strlen(pszSrcWKT) > 0 );
	/* ------------------------------------------------------------------ */


	/* -------------- Copy input data into the hSrcDS dataset ----------- */
	for (i = 1; i <= nBands; i++) {
		hBand = GDALGetRasterBand( hSrcDS, i ); 
		nXYSize = (i-1)*nx*ny;
		switch( typeCLASS ) {
			case GDT_Byte:
			 	tmpByte = (unsigned char *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outByte[c++] = tmpByte[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outByte, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_UInt16:
			 	tmpUI16 = (unsigned short int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outUI16[c++] = tmpUI16[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outUI16, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Int16:
			 	tmpI16 = (short int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outI16[c++] = tmpI16[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outI16, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_UInt32:
			 	tmpUI32 = (unsigned int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outUI32[c++] = tmpUI32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outUI32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Int32:
			 	tmpI32 = (int *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outI32[c++] = tmpI32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outI32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Float32:
			 	tmpF32 = (float *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outF32[c++] = tmpF32[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outF32, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
			case GDT_Float64:
			 	tmpF64 = (double *)in_data;	
				for (m = ny-1, c = 0; m >= 0; m--) for (n = 0; n < nx; n++)
					outF64[c++] = tmpF64[m + n*ny + nXYSize];
				GDALRasterIO( hBand, GF_Write, 0, 0, nx, ny,outF64, nx, ny, (GDALDataType)typeCLASS, 0, 0 );
				break;
		}
	}

	/* ---------- Set up the Target coordinate system ------------------- */
	/* If it was not provided assume it is Geog WGS84 */
	CPLErrorReset();
	if (pszDstSRS == NULL && pszDstWKT == NULL)
		oDstSRS.SetWellKnownGeogCS( "WGS84" ); 
	else if (pszDstWKT != NULL)
		oDstSRS.importFromWkt( &pszDstWKT );
	else {
		if( oDstSRS.SetFromUserInput( pszDstSRS ) != OGRERR_NONE )
			mexErrMsgTxt("GDAL_WARP_MEX: Translating target SRS failed.");
	}
	if (pszDstWKT == NULL)
		oDstSRS.exportToWkt( &pszDstWKT );
	/* ------------------------------------------------------------------ */

	if ( nGCPCount != 0 ) {
		if (GDALSetGCPs(hSrcDS, nGCPCount, pasGCPs, "") != CE_None)
			mexPrintf("GDALWARP WARNING: writing GCPs failed.\n");
	}

	/* Create a transformer that maps from source pixel/line coordinates
	   to destination georeferenced coordinates (not destination pixel line) 
	   We do that by omitting the destination dataset handle (setting it to NULL). */

	void *hTransformArg;

	hTransformArg = GDALCreateGenImgProjTransformer(hSrcDS, pszSrcWKT, NULL, pszDstWKT, 
											nGCPCount == 0 ? FALSE : TRUE, 0, nOrder);
	if( hTransformArg == NULL )
		mexErrMsgTxt("GDALTRANSFORM: Generating transformer failed.");

	GDALTransformerInfo *psInfo = (GDALTransformerInfo*)hTransformArg;

	/* -------------------------------------------------------------------------- */
	/*      Get approximate output georeferenced bounds and resolution for file
	/* -------------------------------------------------------------------------- */
	if (GDALSuggestedWarpOutput2(hSrcDS, GDALGenImgProjTransform, hTransformArg, 
	                             adfDstGeoTransform, &nPixels, &nLines, adfExtent,
	                             0) != CE_None ) {
	    GDALClose(hSrcDS);
		mexErrMsgTxt("GDALWARP: GDALSuggestedWarpOutput2 failed.");
	}

	if (CPLGetConfigOption( "CHECK_WITH_INVERT_PROJ", NULL ) == NULL) {
		double MinX = adfExtent[0];
		double MaxX = adfExtent[2];
		double MaxY = adfExtent[3];
		double MinY = adfExtent[1];
		int bSuccess = TRUE;
            
		/* Check that the the edges of the target image are in the validity area */
		/* of the target projection */
#define N_STEPS 20
		for (i = 0; i <= N_STEPS && bSuccess; i++) {
			for (j = 0; j <= N_STEPS && bSuccess; j++) {
				double dfRatioI = i * 1.0 / N_STEPS;
				double dfRatioJ = j * 1.0 / N_STEPS;
				double expected_x = (1 - dfRatioI) * MinX + dfRatioI * MaxX;
				double expected_y = (1 - dfRatioJ) * MinY + dfRatioJ * MaxY;
				double x = expected_x;
				double y = expected_y;
				double z = 0;
				/* Target SRS coordinates to source image pixel coordinates */
				if (!psInfo->pfnTransform(hTransformArg, TRUE, 1, &x, &y, &z, &bSuccess) || !bSuccess)
					bSuccess = FALSE;
				/* Source image pixel coordinates to target SRS coordinates */
				if (!psInfo->pfnTransform(hTransformArg, FALSE, 1, &x, &y, &z, &bSuccess) || !bSuccess)
					bSuccess = FALSE;
				if (fabs(x - expected_x) > (MaxX - MinX) / nPixels ||
					fabs(y - expected_y) > (MaxY - MinY) / nLines)
					bSuccess = FALSE;
			}
		}
            
		/* If not, retry with CHECK_WITH_INVERT_PROJ=TRUE that forces ogrct.cpp */
		/* to check the consistency of each requested projection result with the */
		/* invert projection */
		if (!bSuccess) {
			CPLSetConfigOption( "CHECK_WITH_INVERT_PROJ", "TRUE" );
			CPLDebug("WARP", "Recompute out extent with CHECK_WITH_INVERT_PROJ=TRUE");

			if (GDALSuggestedWarpOutput2(hSrcDS, GDALGenImgProjTransform, hTransformArg, 
			                             adfDstGeoTransform, &nPixels, &nLines, adfExtent,
			                              0) != CE_None ) {
			    GDALClose(hSrcDS);
				mexErrMsgTxt("GDALWARO: GDALSuggestedWarpOutput2 failed.");
			}
		}
	}

	/* -------------------------------------------------------------------- */
	/*      Expand the working bounds to include this region, ensure the    */
	/*      working resolution is no more than this resolution.             */
	/* -------------------------------------------------------------------- */
	if( dfMaxX == 0.0 && dfMinX == 0.0 ) {
		dfMinX = adfExtent[0];
		dfMaxX = adfExtent[2];
		dfMaxY = adfExtent[3];
		dfMinY = adfExtent[1];
		dfResX = adfDstGeoTransform[1];
		dfResY = ABS(adfDstGeoTransform[5]);
	}
	else {
		dfMinX = MIN(dfMinX,adfExtent[0]);
		dfMaxX = MAX(dfMaxX,adfExtent[2]);
		dfMaxY = MAX(dfMaxY,adfExtent[3]);
		dfMinY = MIN(dfMinY,adfExtent[1]);
		dfResX = MIN(dfResX,adfDstGeoTransform[1]);
		dfResY = MIN(dfResY,ABS(adfDstGeoTransform[5]));
	}

	GDALDestroyGenImgProjTransformer( hTransformArg );

	/* -------------------------------------------------------------------- */
	/*      Turn the suggested region into a geotransform and suggested     */
	/*      number of pixels and lines.                                     */
	/* -------------------------------------------------------------------- */

	adfDstGeoTransform[0] = dfMinX;
	adfDstGeoTransform[1] = dfResX;
	adfDstGeoTransform[2] = 0.0;
	adfDstGeoTransform[3] = dfMaxY;
	adfDstGeoTransform[4] = 0.0;
	adfDstGeoTransform[5] = -1 * dfResY;

	nPixels = (int) ((dfMaxX - dfMinX) / dfResX + 0.5);
	nLines  = (int) ((dfMaxY - dfMinY) / dfResY + 0.5);

	/* -------------------------------------------------------------------- */
	/*      Did the user override some parameters?                          */
	/* -------------------------------------------------------------------- */
	if( dfXRes != 0.0 && dfYRes != 0.0 ) {
		dfMinX = adfDstGeoTransform[0];
		dfMaxX = adfDstGeoTransform[0] + adfDstGeoTransform[1] * nPixels;
		dfMaxY = adfDstGeoTransform[3];
		dfMinY = adfDstGeoTransform[3] + adfDstGeoTransform[5] * nLines;

		nPixels = (int) ((dfMaxX - dfMinX + (dfXRes/2.0)) / dfXRes);
		nLines = (int) ((dfMaxY - dfMinY + (dfYRes/2.0)) / dfYRes);
		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;
	}
	else if( nForceWidth != 0 && nForceHeight != 0 ) {
		dfXRes = (dfMaxX - dfMinX) / nForceWidth;
		dfYRes = (dfMaxY - dfMinY) / nForceHeight;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = nForceWidth;
		nLines = nForceHeight;
	}
	else if( nForceWidth != 0) {
		dfXRes = (dfMaxX - dfMinX) / nForceWidth;
		dfYRes = dfXRes;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = nForceWidth;
		nLines = (int) ((dfMaxY - dfMinY + (dfYRes/2.0)) / dfYRes);
	}
	else if( nForceHeight != 0) {
		dfYRes = (dfMaxY - dfMinY) / nForceHeight;
		dfXRes = dfYRes;

		adfDstGeoTransform[0] = dfMinX;
		adfDstGeoTransform[3] = dfMaxY;
		adfDstGeoTransform[1] = dfXRes;
		adfDstGeoTransform[5] = -dfYRes;

		nPixels = (int) ((dfMaxX - dfMinX + (dfXRes/2.0)) / dfXRes);
		nLines = nForceHeight;
	}

	/* --------------------- Create the output --------------------------- */
	hDstDS = GDALCreate( hDriver, "mem", nPixels, nLines, 
			GDALGetRasterCount(hSrcDS), (GDALDataType)typeCLASS, NULL );
    
	CPLAssert( hDstDS != NULL );

	/* -------------- Write out the projection definition ---------------- */
	GDALSetProjection( hDstDS, pszDstWKT );
	GDALSetGeoTransform( hDstDS, adfDstGeoTransform );

	/* --------------------- Setup warp options -------------------------- */
	GDALWarpOptions *psWO = GDALCreateWarpOptions();

	psWO->hSrcDS = hSrcDS;
	psWO->hDstDS = hDstDS;

	psWO->nBandCount = nBands;
	psWO->panSrcBands = (int *) CPLMalloc(psWO->nBandCount * sizeof(int) );
	psWO->panDstBands = (int *) CPLMalloc(psWO->nBandCount * sizeof(int) );
	for( i = 0; i < nBands; i++ ) {
		psWO->panSrcBands[i] = i+1;
		psWO->panDstBands[i] = i+1;
	}

	if( dfWarpMemoryLimit != 0.0 )
		psWO->dfWarpMemoryLimit = dfWarpMemoryLimit;

	/* --------------------- Setup the Resampling Algo ------------------- */
	psWO->eResampleAlg = interpMethod;


	/* --------------------- Setup NODATA options ------------------------ */
	papszWarpOptions = CSLSetNameValue(papszWarpOptions, "INIT_DEST", "NO_DATA" );

	if ( pdfDstNodata == NULL && (typeCLASS == GDT_Float32 || typeCLASS == GDT_Float64) ) {
		pdfDstNodata = (double *) mxCalloc((size_t)1, sizeof(double));
		*pdfDstNodata = mxGetNaN();
	}
	else if (pdfDstNodata != NULL) {
#define CLAMP(val,type,minval,maxval) \
    do { if (val < minval) { val = minval; } \
    else if (val > maxval) { val = maxval; } \
    else if (val != (type)val) { val = (type)(val + 0.5); } } \
    while(0)
		switch( typeCLASS ) {
			case GDT_Byte:
				CLAMP(pdfDstNodata[0], GByte, 0.0, 255.0);
				break;
			case GDT_UInt16:
				CLAMP(pdfDstNodata[0], GInt16, -32768.0, 32767.0);
				break;
			case GDT_Int16:
				CLAMP(pdfDstNodata[0], GUInt16, 0.0, 65535.0);
				break;
			case GDT_UInt32:
				CLAMP(pdfDstNodata[0], GInt32, -2147483648.0, 2147483647.0);
				break;
			case GDT_Int32:
				CLAMP(pdfDstNodata[0], GUInt32, 0.0, 4294967295.0);
				break;
			default:
				break;
		}
	}

	psWO->papszWarpOptions = CSLDuplicate(papszWarpOptions);

	if (pdfDstNodata != NULL) {
		psWO->padfDstNoDataReal = (double *) CPLMalloc(psWO->nBandCount*sizeof(double));
		psWO->padfDstNoDataImag = (double *) CPLMalloc(psWO->nBandCount*sizeof(double));
		for (i = 0; i < nBands; i++) {
                        psWO->padfDstNoDataReal[i] = pdfDstNodata[0];
                        psWO->padfDstNoDataImag[i] = 0.0;
			GDALSetRasterNoDataValue( GDALGetRasterBand(hDstDS, i+1), pdfDstNodata[0]);
		}
	}

	/* ------------ Establish reprojection transformer ------------------- */
	psWO->pTransformerArg = GDALCreateGenImgProjTransformer( hSrcDS, GDALGetProjectionRef(hSrcDS), 
							hDstDS, GDALGetProjectionRef(hDstDS), 
							nGCPCount == 0 ? FALSE : TRUE, 0.0, nOrder );
	psWO->pfnTransformer = GDALGenImgProjTransform;

	/* ----------- Initialize and execute the warp operation ------------- */
	GDALWarpOperation oOperation;

	oOperation.Initialize( psWO );
	eErr = oOperation.ChunkAndWarpImage( 0, 0, GDALGetRasterXSize( hDstDS ),
						GDALGetRasterYSize( hDstDS ) );
	CPLAssert( eErr == CE_None );

	GDALDestroyGenImgProjTransformer( psWO->pTransformerArg );
	GDALDestroyWarpOptions( psWO );
	GDALClose( hSrcDS );

	/* ------------ Free memory used to fill the hSrcDS dataset ---------- */
	switch( typeCLASS ) {
		case GDT_Byte:		mxFree((void *)outByte);	break;
		case GDT_UInt16:	mxFree((void *)outUI16);	break; 
		case GDT_Int16:		mxFree((void *)outI16);		break; 
		case GDT_UInt32:	mxFree((void *)outUI32);	break; 
		case GDT_Int32:		mxFree((void *)outI32);		break; 
		case GDT_Float32:	mxFree((void *)outF32);		break; 
		case GDT_Float64:	mxFree((void *)outF64);		break; 
	}

	int out_dims[3];
	out_dims[0] = nLines;
	out_dims[1] = nPixels;
	out_dims[2] = nBands;
	plhs[0] = mxCreateNumericArray (n_dims,out_dims,mxGetClassID(prhs[0]), mxREAL);
	tmp = (char *)mxCalloc(nPixels * nLines, nBytes);

	/* ------ Allocate memory to be used in filling the hDstDS dataset ---- */
	switch( typeCLASS ) {
		case GDT_Byte:
			outByte = (unsigned char *)mxGetData(plhs[0]);		break;
		case GDT_UInt16:
			outUI16 = (unsigned short int *)mxGetData(plhs[0]);	break;
		case GDT_Int16:
			outI16 = (short int *)mxGetData(plhs[0]);		break;
		case GDT_UInt32:
			outUI32 = (unsigned int *)mxGetData(plhs[0]);		break;
		case GDT_Int32:
			outI32 = (int *)mxGetData(plhs[0]);			break;
		case GDT_Float32:
			outF32 = (float *)mxGetData(plhs[0]);			break;
		case GDT_Float64:
			outF64 = (double *)mxGetData(plhs[0]);			break;
	}

	/* ----------- Copy the output hSrcDS dataset data into plhs  ---------- */
	for (i = 1; i <= nBands; i++) {
		hBand = GDALGetRasterBand( hDstDS, i ); 
		GDALRasterIO( hBand, GF_Read, 0, 0, nPixels, nLines, tmp, nPixels, nLines,
				(GDALDataType)typeCLASS, 0, 0 );
		nXYSize = (i-1) * nPixels * nLines;
		switch( typeCLASS ) {
			case GDT_Byte:
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outByte[m + n*nLines + nXYSize] = tmp[c++];
				break;
			case GDT_UInt16:
				tmpUI16 = (GUInt16 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outUI16[m + n*nLines + nXYSize] = tmpUI16[c++];
				break;
			case GDT_Int16:
				tmpI16 = (GInt16 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outI16[m + n*nLines + nXYSize] = tmpI16[c++];
				break;
			case GDT_UInt32:
				tmpUI32 = (GUInt32 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outUI32[m + n*nLines + nXYSize] = tmpUI32[c++];
				break;
			case GDT_Int32:
				tmpI32 = (GInt32 *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outI32[m + n*nLines + nXYSize] = tmpI32[c++];
				break;
			case GDT_Float32:
				tmpF32 = (float *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outF32[m + n*nLines + nXYSize] = tmpF32[c++];
				break;
			case GDT_Float64:
				tmpF64 = (double *) tmp;
				for (m = nLines-1, c = 0; m >= 0; m--) for (n = 0; n < nPixels; n++)
					outF64[m + n*nLines + nXYSize] = tmpF64[c++];
				break;
		}
	}

	mxFree(tmp);
	if (nGCPCount) {
		GDALDeinitGCPs( nGCPCount, pasGCPs );	/* makes this mex crash in the next call - Is it still true??? */
		mxFree((void *) pasGCPs );
	}

	if (nlhs == 2)
		plhs[1] = populate_metadata_struct (hDstDS, 1);

	runed_once = TRUE;	/* Signals that next call won't need to call GDALAllRegister() again */

	/*GDALDestroyDriverManager();
	OGRFree(pszDstWKT);*/
	GDALClose( hDstDS );
	CSLDestroy( papszWarpOptions );
	if (pszDstWKT && strlen(pszDstWKT) > 1 ) OGRFree(pszDstWKT);	
	if (pszSrcWKT && strlen(pszSrcWKT) > 1 ) OGRFree(pszSrcWKT);
}