int main(int argc, char** argv) { GammaFunction<size_t> G_1; std::cout << "G_1(1): " << G_1(1) << std::endl; if (G_1(1) != 1) return 1; std::cout << "G_1(2): " << G_1(2) << std::endl; if (G_1(2) != 1) return 1; try { std::cout << "G_1(0): " << G_1(0) << std::endl; } catch (BadArgumentException<size_t>& e) { std::cout << e.what() << std::endl; } FactorialFunction f; if (G_1(10) != f(9)) return 1; GammaFunction<double> G_2; std::cout << "G_2(0.5): " << G_2(0.5) << std::endl; if (fabs(G_2(0.5) - sqrt(M_PI)) > std::numeric_limits<double>::epsilon()) return 1; std::cout << "G_2(1.0): " << G_2(1.0) << std::endl; if (fabs(G_2(1.0) - 1.0) > std::numeric_limits<double>::epsilon()) return 1; return 0; }
void SurfaceScalarGradient<EvalT, Traits>:: evaluateFields(typename Traits::EvalData workset) { ScalarT midPlaneAvg; for (int cell=0; cell < workset.numCells; ++cell) { for (int pt=0; pt < numQPs; ++pt) { Intrepid2::Vector<MeshScalarT> G_0(3, refDualBasis, cell, pt, 0, 0); Intrepid2::Vector<MeshScalarT> G_1(3, refDualBasis, cell, pt, 1, 0); Intrepid2::Vector<MeshScalarT> G_2(3, refDualBasis, cell, pt, 2, 0); Intrepid2::Vector<MeshScalarT> N(3, refNormal,cell, pt, 0); Intrepid2::Vector<ScalarT> scalarGradPerpendicular(0, 0, 0); Intrepid2::Vector<ScalarT> scalarGradParallel(0, 0, 0); // Need to inverse basis [G_0 ; G_1; G_2] and none of them should be normalized Intrepid2::Tensor<MeshScalarT> gBasis(3, refDualBasis,cell, pt, 0, 0); Intrepid2::Tensor<MeshScalarT> invRefDualBasis(3); // This map the position vector from parent to current configuration in R^3 gBasis = Intrepid2::transpose(gBasis); invRefDualBasis = Intrepid2::inverse(gBasis); Intrepid2::Vector<MeshScalarT> invG_0(3, &invRefDualBasis( 0, 0)); Intrepid2::Vector<MeshScalarT> invG_1(3, &invRefDualBasis( 1, 0)); Intrepid2::Vector<MeshScalarT> invG_2(3, &invRefDualBasis( 2, 0)); // in-plane (parallel) contribution for (int node(0); node < numPlaneNodes; ++node) { int topNode = node + numPlaneNodes; midPlaneAvg = 0.5 * (nodalScalar(cell, node) + nodalScalar(cell, topNode)); for (int i(0); i < numDims; ++i) { scalarGradParallel(i) += refGrads(node, pt, 0) * midPlaneAvg * invG_0(i) + refGrads(node, pt, 1) * midPlaneAvg * invG_1(i); } } // normal (perpendicular) contribution for (int i(0); i < numDims; ++i) { scalarGradPerpendicular(i) = jump(cell,pt) / thickness *invG_2(i); } // assign components to MDfield ScalarGrad for (int i(0); i < numDims; ++i ) scalarGrad(cell, pt, i) = scalarGradParallel(i) + scalarGradPerpendicular(i); } } }
void SurfaceBasis<EvalT, Traits>::computeJacobian( const PHX::MDField<MeshScalarT, Cell, QuadPoint, Dim, Dim> basis, const PHX::MDField<MeshScalarT, Cell, QuadPoint, Dim, Dim> dualBasis, PHX::MDField<MeshScalarT, Cell, QuadPoint> area) { const std::size_t worksetSize = basis.dimension(0); for (std::size_t cell(0); cell < worksetSize; ++cell) { for (std::size_t pt(0); pt < numQPs; ++pt) { Intrepid::Tensor<MeshScalarT> dPhiInv(3, &dualBasis(cell, pt, 0, 0)); Intrepid::Tensor<MeshScalarT> dPhi(3, &basis(cell, pt, 0, 0)); Intrepid::Vector<MeshScalarT> G_2(3, &basis(cell, pt, 2, 0)); MeshScalarT j0 = Intrepid::det(dPhi); MeshScalarT jacobian = j0 * std::sqrt( Intrepid::dot(Intrepid::dot(G_2, Intrepid::transpose(dPhiInv) * dPhiInv), G_2)); area(cell, pt) = jacobian * refWeights(pt); } } }
void SurfaceVectorGradient<EvalT, Traits>:: evaluateFields(typename Traits::EvalData workset) { for (std::size_t cell=0; cell < workset.numCells; ++cell) { for (std::size_t pt=0; pt < numQPs; ++pt) { Intrepid::Vector<ScalarT> g_0(3, ¤tBasis(cell, pt, 0, 0)); Intrepid::Vector<ScalarT> g_1(3, ¤tBasis(cell, pt, 1, 0)); Intrepid::Vector<ScalarT> g_2(3, ¤tBasis(cell, pt, 2, 0)); Intrepid::Vector<ScalarT> G_2(3, &refNormal(cell, pt, 0)); Intrepid::Vector<ScalarT> d(3, &jump(cell, pt, 0)); Intrepid::Vector<ScalarT> G0(3, &refDualBasis(cell, pt, 0, 0)); Intrepid::Vector<ScalarT> G1(3, &refDualBasis(cell, pt, 1, 0)); Intrepid::Vector<ScalarT> G2(3, &refDualBasis(cell, pt, 2, 0)); Intrepid::Tensor<ScalarT> Fpar(Intrepid::bun(g_0, G0) + Intrepid::bun(g_1, G1) + Intrepid::bun(g_2, G2)); // for Jay: bun() Intrepid::Tensor<ScalarT> Fper((1 / thickness) * Intrepid::bun(d, G_2)); Intrepid::Tensor<ScalarT> F = Fpar + Fper; defGrad(cell, pt, 0, 0) = F(0, 0); defGrad(cell, pt, 0, 1) = F(0, 1); defGrad(cell, pt, 0, 2) = F(0, 2); defGrad(cell, pt, 1, 0) = F(1, 0); defGrad(cell, pt, 1, 1) = F(1, 1); defGrad(cell, pt, 1, 2) = F(1, 2); defGrad(cell, pt, 2, 0) = F(2, 0); defGrad(cell, pt, 2, 1) = F(2, 1); defGrad(cell, pt, 2, 2) = F(2, 2); J(cell,pt) = Intrepid::det(F); } } if (weightedAverage) { ScalarT Jbar, wJbar, vol; for (std::size_t cell=0; cell < workset.numCells; ++cell) { Jbar = 0.0; vol = 0.0; for (std::size_t qp=0; qp < numQPs; ++qp) { Jbar += weights(cell,qp) * std::log( J(cell,qp) ); vol += weights(cell,qp); } Jbar /= vol; // Jbar = std::exp(Jbar); for (std::size_t qp=0; qp < numQPs; ++qp) { for (std::size_t i=0; i < numDims; ++i) { for (std::size_t j=0; j < numDims; ++j) { wJbar = std::exp( (1-alpha) * Jbar + alpha * std::log( J(cell,qp) ) ); defGrad(cell,qp,i,j) *= std::pow( wJbar / J(cell,qp) ,1./3. ); } } J(cell,qp) = wJbar; } } } }