Exemplo n.º 1
0
/*!
   \brief transform 2d vector features to 3d

   \param In input vector
   \param Out output vector
   \param type feature type to be transformed
   \param height fixed height (used only if column is NULL)
   \param field layer number
   \param column attribute column used for height

   \return number of writen features
   \return -1 on error
 */
int trans2d(struct Map_info *In, struct Map_info *Out, int type,
	    double height, const char *field_name, const char *column)
{
    int i, ltype, line, field;
    int cat;
    int ret, ctype;

    struct line_pnts *Points;
    struct line_cats *Cats;

    dbCatValArray cvarr;

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    db_CatValArray_init(&cvarr);

    field = Vect_get_field_number(In, field_name);
    
    if (column) {
	struct field_info *Fi;

	dbDriver *driver;

	Fi = Vect_get_field(In, field);
	if (!Fi) {
	    G_warning(_("Database connection not defined for layer <%s>"),
		      field_name);
	    return -1;
	}

	driver = db_start_driver_open_database(Fi->driver, Fi->database);
	if (!driver) {
	    G_warning(_("Unable to open database <%s> by driver <%s>"),
		      Fi->database, Fi->driver);
	    return -1;
	}

	/* column type must numeric */
	ctype = db_column_Ctype(driver, Fi->table, column);
	if (ctype == -1) {
	    G_warning(_("Column <%s> not found in table <%s>"),
		      column, Fi->table);
	    return -1;
	}
	if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE) {
	    G_warning(_("Column must be numeric"));
	    return -1;
	}

	db_select_CatValArray(driver, Fi->table, Fi->key,
			      column, NULL, &cvarr);

	G_debug(3, "%d records selected", cvarr.n_values);

	db_close_database_shutdown_driver(driver);
    }

    line = 1;
    while (1) {
	ltype = Vect_read_next_line(In, Points, Cats);
	if (ltype == -1) {
	    G_warning(_("Unable to read vector map"));
	    return -1;
	}
	if (ltype == -2) {	/* EOF */
	    break;
	}

	if (G_verbose() > G_verbose_min() && (line - 1) % 1000 == 0) {
	    fprintf(stderr, "%7d\b\b\b\b\b\b\b", (line - 1));
	}

	if (!(ltype & type))
	    continue;

	if (field != -1 && !Vect_cat_get(Cats, field, &cat))
	    continue;
	
	if (column) {
	    Vect_cat_get(Cats, field, &cat);
	    if (cat < 0) {
		G_warning(_("Skipping feature without category"));
		continue;
	    }

	    if (ctype == DB_C_TYPE_DOUBLE)
		ret = db_CatValArray_get_value_double(&cvarr, cat, &height);
	    else {		/* integer */

		int height_i;

		ret = db_CatValArray_get_value_int(&cvarr, cat, &height_i);
		height = (double)height_i;
	    }

	    if (ret != DB_OK)
		G_warning(_("Unable to get height for feature category %d"),
			  cat);
	}

	for (i = 0; i < Points->n_points; i++) {
	    Points->z[i] = height;
	}

	Vect_write_line(Out, ltype, Points, Cats);

	line++;
    }

    if (G_verbose() > G_verbose_min())
	fprintf(stderr, "\r");


    Vect_destroy_line_struct(Points);
    Vect_destroy_cats_struct(Cats);

    return line - 1;
}
Exemplo n.º 2
0
Arquivo: main.c Projeto: caomw/grass
static void read_png(void)
{
    unsigned char sig_buf[8];
    png_bytep png_buffer;
    png_bytep *png_rows;
    int linesize;
    struct Cell_head cellhd;
    unsigned int y, c;
    png_color_8p sig_bit;
    int sbit, interlace;
    FILE *ifp;

    /* initialize input stream and PNG library */

    ifp = fopen(input, "rb");
    if (!ifp)
	G_fatal_error(_("Unable to open PNG file '%s'"), input);

    if (fread(sig_buf, sizeof(sig_buf), 1, ifp) != 1)
	G_fatal_error(_("Input file empty or too short"));

    if (png_sig_cmp(sig_buf, 0, sizeof(sig_buf)) != 0)
	G_fatal_error(_("Input file not a PNG file"));

    png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
    if (!png_ptr)
	G_fatal_error(_("Unable to allocate PNG structure"));

    info_ptr = png_create_info_struct(png_ptr);
    if (!info_ptr)
	G_fatal_error(_("Unable to allocate PNG structure"));

    if (setjmp(png_jmpbuf(png_ptr)))
	G_fatal_error(_("PNG error"));

    png_init_io(png_ptr, ifp);
    png_set_sig_bytes(png_ptr, sizeof(sig_buf));

    png_read_info(png_ptr, info_ptr);

    png_get_IHDR(png_ptr, info_ptr, &width, &height, &bit_depth,
		 &color_type, &interlace_type, &compression_type, &filter_type);

    if (Header || G_verbose() == G_verbose_max())
	print_header();

    if (Header)
    {
	fclose(ifp);    
	exit(0);
    }

    /* read image parameters and set up data conversions */

    if (png_get_bit_depth(png_ptr, info_ptr) < 8)
	png_set_packing(png_ptr);

    sbit = png_get_sBIT(png_ptr, info_ptr, &sig_bit);
    if (sbit)
        png_set_shift(png_ptr, sig_bit);

    if (!png_get_gAMA(png_ptr, info_ptr, &f_gamma))
	f_gamma = 0.0;

    if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))
	png_set_tRNS_to_alpha(png_ptr);

    if (Float && color_type == PNG_COLOR_TYPE_PALETTE)
        png_set_palette_to_rgb(png_ptr);

    png_read_update_info(png_ptr, info_ptr);

    interlace = (interlace_type != PNG_INTERLACE_NONE);

    ialpha = (int) (alpha * channels[C_A].maxval);

    t_gamma = (f_gamma != 0.0 && d_gamma != 0.0)
	? f_gamma * d_gamma
	: 1.0;

    /* allocate input buffer */

    linesize = png_get_rowbytes(png_ptr, info_ptr);

    png_buffer = G_malloc(interlace
			  ? height * linesize
			  : linesize);

    if (interlace)
    {
	png_rows = G_malloc(height * sizeof(png_bytep));
	for (y = 0; y < height; y++)
	    png_rows[y] = png_buffer + y * linesize;
    }

    /* initialize cell header */

    Rast_get_window(&cellhd);

    cellhd.rows = height;
    cellhd.cols = width;
    cellhd.north = cellhd.rows;
    cellhd.south = 0.0;
    cellhd.east = cellhd.cols;
    cellhd.west = 0.0;
    cellhd.ns_res = 1;
    cellhd.ew_res = 1;

    Rast_set_window(&cellhd);

    /* initialize channel information */

    switch (color_type)
    {
    case PNG_COLOR_TYPE_GRAY:
	init_channel(&channels[C_Y]);
	break;

    case PNG_COLOR_TYPE_GRAY_ALPHA:
	init_channel(&channels[C_Y]);
	init_channel(&channels[C_A]);
	break;

    case PNG_COLOR_TYPE_PALETTE:
	init_channel(&channels[C_P]);
	break;

    case PNG_COLOR_TYPE_RGB:
	init_channel(&channels[C_R]);
	init_channel(&channels[C_G]);
	init_channel(&channels[C_B]);
	break;

    case PNG_COLOR_TYPE_RGB_ALPHA:
	init_channel(&channels[C_R]);
	init_channel(&channels[C_G]);
	init_channel(&channels[C_B]);
	init_channel(&channels[C_A]);
	break;
    }

    if (sbit)
    {
	channels[C_R].maxval = (1 << sig_bit->red  ) - 1;
	channels[C_G].maxval = (1 << sig_bit->green) - 1;
	channels[C_B].maxval = (1 << sig_bit->blue ) - 1;
	channels[C_Y].maxval = (1 << sig_bit->gray ) - 1;
	channels[C_A].maxval = (1 << sig_bit->alpha) - 1;
    }
    else
    {
	channels[C_R].maxval = (1 << bit_depth) - 1;
	channels[C_G].maxval = (1 << bit_depth) - 1;
	channels[C_B].maxval = (1 << bit_depth) - 1;
	channels[C_Y].maxval = (1 << bit_depth) - 1;
	channels[C_A].maxval = (1 << bit_depth) - 1;
    }

    /* read image and write raster layers */

    if (interlace)
	png_read_image(png_ptr, png_rows);

    for (y = 0; y < height; y++)
    {
	png_bytep p;

	if (interlace)
	    p = png_rows[y];
	else
	{
	    png_read_row(png_ptr, png_buffer, NULL);
	    p = png_buffer;
	}

	if (Float)
	    write_row_float(p);
	else
	    write_row_int(p);
    }

    png_read_end(png_ptr, NULL);

    fclose(ifp);

    /* close output files */

    for (c = 0; c < 6; c++)
    {
	channel *ch = &channels[c];

	if (!ch->active)
	    continue;

	Rast_close(ch->fd);

	if (Float)
	    G_free(ch->fbuf);
	else
	    G_free(ch->buf);
    }

    /* write title and color table */

    G_verbose_message(_("Creating support files for <%s>..."), output);

    for (c = 0; c < 6; c++)
    {
	channel *ch = &channels[c];

	if (!ch->active)
	    continue;

	if (title && *title)
	    Rast_put_cell_title(ch->name, title);

	if (Float)
	    write_colors_float(c);
	else
	    write_colors_int(c);
    }

    G_free(png_buffer);
    if (interlace)
	G_free(png_rows);

    png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
}
Exemplo n.º 3
0
int main(int argc, char *argv[])
{
    struct History history;
    struct GModule *module;
    char *desc;

    struct Cell_head cellhd, orig_cellhd;

    void *inrast, *outrast;
    int infd, outfd;
    void *ptr;
    int nrows, ncols, row, col;

    RASTER_MAP_TYPE in_data_type;

    struct Option *input_prefix, *output_prefix, *metfn, *sensor, *adate,
	*pdate, *elev, *bgain, *metho, *perc, *dark, *atmo, *lsatmet, *oscale;
    char *inputname, *met, *outputname, *sensorname;
    struct Flag *frad, *print_meta, *named;

    lsat_data lsat;
    char band_in[GNAME_MAX], band_out[GNAME_MAX];
    int i, j, q, method, pixel, dn_dark[MAX_BANDS], dn_mode[MAX_BANDS], dn_sat;
    int overwrite;
    double qcal, rad, ref, percent, ref_mode, rayleigh, scale;
    unsigned long hist[QCALMAX], h_max;

    struct Colors colors;
    struct FPRange range;
    double min, max;

    /* initialize GIS environment */
    G_gisinit(argv[0]);

    /* initialize module */
    module = G_define_module();
    module->description =
	_("Calculates top-of-atmosphere radiance or reflectance and temperature for Landsat MSS/TM/ETM+/OLI");
    G_add_keyword(_("imagery"));
    G_add_keyword(_("radiometric conversion"));
    G_add_keyword(_("radiance"));
    G_add_keyword(_("reflectance"));
    G_add_keyword(_("brightness temperature"));
    G_add_keyword(_("Landsat"));
    G_add_keyword(_("atmospheric correction"));
    module->overwrite = TRUE;

    /* It defines the different parameters */
    input_prefix = G_define_standard_option(G_OPT_R_BASENAME_INPUT);
    input_prefix->label = _("Base name of input raster bands");
    input_prefix->description = _("Example: 'B.' for B.1, B.2, ...");

    output_prefix = G_define_standard_option(G_OPT_R_BASENAME_OUTPUT);
    output_prefix->label = _("Prefix for output raster maps");
    output_prefix->description =
	_("Example: 'B.toar.' generates B.toar.1, B.toar.2, ...");

    metfn = G_define_standard_option(G_OPT_F_INPUT);
    metfn->key = "metfile";
    metfn->required = NO;
    metfn->description = _("Name of Landsat metadata file (.met or MTL.txt)");
    metfn->guisection = _("Metadata");

    sensor = G_define_option();
    sensor->key = "sensor";
    sensor->type = TYPE_STRING;
    sensor->label = _("Spacecraft sensor");
    sensor->description = _("Required only if 'metfile' not given (recommended for sanity)");
    sensor->options = "mss1,mss2,mss3,mss4,mss5,tm4,tm5,tm7,oli8";
    desc = NULL;
    G_asprintf(&desc,
	        "mss1;%s;mss2;%s;mss3;%s;mss4;%s;mss5;%s;tm4;%s;tm5;%s;tm7;%s;oli8;%s",
	        _("Landsat-1 MSS"),
	        _("Landsat-2 MSS"),
	        _("Landsat-3 MSS"),
	        _("Landsat-4 MSS"),
	        _("Landsat-5 MSS"),
	        _("Landsat-4 TM"),
	        _("Landsat-5 TM"),
	        _("Landsat-7 ETM+"),
	        _("Landsat_8 OLI/TIRS"));
    sensor->descriptions = desc;
    sensor->required = NO;	/* perhaps YES for clarity */
    sensor->guisection = _("Metadata");

    metho = G_define_option();
    metho->key = "method";
    metho->type = TYPE_STRING;
    metho->required = NO;
    metho->options = "uncorrected,dos1,dos2,dos2b,dos3,dos4";
    metho->label = _("Atmospheric correction method");
    metho->description = _("Atmospheric correction method");
    metho->answer = "uncorrected";
    metho->guisection = _("Metadata");

    adate = G_define_option();
    adate->key = "date";
    adate->type = TYPE_STRING;
    adate->required = NO;
    adate->key_desc = "yyyy-mm-dd";
    adate->label = _("Image acquisition date (yyyy-mm-dd)");
    adate->description = _("Required only if 'metfile' not given");
    adate->guisection = _("Metadata");

    elev = G_define_option();
    elev->key = "sun_elevation";
    elev->type = TYPE_DOUBLE;
    elev->required = NO;
    elev->label = _("Sun elevation in degrees");
    elev->description = _("Required only if 'metfile' not given");
    elev->guisection = _("Metadata");

    pdate = G_define_option();
    pdate->key = "product_date";
    pdate->type = TYPE_STRING;
    pdate->required = NO;
    pdate->key_desc = "yyyy-mm-dd";
    pdate->label = _("Image creation date (yyyy-mm-dd)");
    pdate->description = _("Required only if 'metfile' not given");
    pdate->guisection = _("Metadata");

    bgain = G_define_option();
    bgain->key = "gain";
    bgain->type = TYPE_STRING;
    bgain->required = NO;
    bgain->label = _("Gain (H/L) of all Landsat ETM+ bands (1-5,61,62,7,8)");
    bgain->description = _("Required only if 'metfile' not given");
    bgain->guisection = _("Settings");

    perc = G_define_option();
    perc->key = "percent";
    perc->type = TYPE_DOUBLE;
    perc->required = NO;
    perc->label = _("Percent of solar radiance in path radiance");
    perc->description = _("Required only if 'method' is any DOS");
    perc->answer = "0.01";
    perc->guisection = _("Settings");

    dark = G_define_option();
    dark->key = "pixel";
    dark->type = TYPE_INTEGER;
    dark->required = NO;
    dark->label =
	_("Minimum pixels to consider digital number as dark object");
    dark->description = _("Required only if 'method' is any DOS");
    dark->answer = "1000";
    dark->guisection = _("Settings");

    atmo = G_define_option();
    atmo->key = "rayleigh";
    atmo->type = TYPE_DOUBLE;
    atmo->required = NO;
    atmo->label = _("Rayleigh atmosphere (diffuse sky irradiance)");	/* scattering coefficient? */
    atmo->description = _("Required only if 'method' is DOS3");
    atmo->answer = "0.0";
    atmo->guisection = _("Settings");

    lsatmet = G_define_option();
    lsatmet->key = "lsatmet";
    lsatmet->type = TYPE_STRING;
    lsatmet->required = NO;
    lsatmet->multiple = YES;
    lsatmet->label = _("return value stored for a given metadata");
    lsatmet->description = _("Required only if 'metfile' and -p given");
    lsatmet->options =
	"number,creation,date,sun_elev,sensor,bands,sunaz,time";
    desc = NULL;
    G_asprintf(&desc,
	       "number;%s;creation;%s;date;%s;sun_elev;%s;sensor;%s;bands;%s;sunaz;%s;time;%s",
	       _("Landsat Number"),
	       _("Creation timestamp"),
	       _("Date"),
	       _("Sun Elevation"),
	       _("Sensor"),
	       _("Bands count"), _("Sun Azimuth Angle"), _("Time"));
    lsatmet->descriptions = desc;
    lsatmet->guisection = _("Settings");

    oscale = G_define_option();
    oscale->key = "scale";
    oscale->type = TYPE_DOUBLE;
    oscale->answer = "1.0";
    oscale->required = NO;
    oscale->description = _("Scale factor for output");

    /* define the different flags */
    frad = G_define_flag();
    frad->key = 'r';
    frad->description =
	_("Output at-sensor radiance instead of reflectance for all bands");

    named = G_define_flag();
    named->key = 'n';
    named->description =
	_("Input raster maps use as extension the number of the band instead the code");

    print_meta = G_define_flag();
    print_meta->key = 'p';
    print_meta->description = _("Print output metadata info");

    /* options and afters parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


  /*****************************************
  * ---------- START --------------------
  * Stores options and flags to variables
  *****************************************/
    met = metfn->answer;
    inputname = input_prefix->answer;
    outputname = output_prefix->answer;
    sensorname = sensor->answer ? sensor->answer : "";

    overwrite = G_check_overwrite(argc, argv);

    Rast_get_window(&orig_cellhd);

    G_zero(&lsat, sizeof(lsat));

    if (adate->answer != NULL) {
	strncpy(lsat.date, adate->answer, 11);
	lsat.date[10] = '\0';
	if (strlen(lsat.date) != 10)
	    G_fatal_error(_("Illegal date format: [%s] (yyyy-mm-dd)"),
			  lsat.date);
    }

    if (pdate->answer != NULL) {
	strncpy(lsat.creation, pdate->answer, 11);
	lsat.creation[10] = '\0';
	if (strlen(lsat.creation) != 10)
	    G_fatal_error(_("Illegal date format: [%s] (yyyy-mm-dd)"),
			  lsat.creation);
    }

    lsat.sun_elev = elev->answer == NULL ? 0. : atof(elev->answer);

    percent = atof(perc->answer);
    pixel = atoi(dark->answer);
    rayleigh = atof(atmo->answer);
    scale = atof(oscale->answer);

    /*
     * Data from metadata file
     */
    lsat.flag = NOMETADATAFILE;	/* Unnecessary because G_zero filled, but for sanity */
    if (met != NULL) {
	lsat.flag = METADATAFILE;
	lsat_metadata(met, &lsat);
	if (print_meta->answer) {
	    char *lsatmeta;

	    if (lsatmet->answer == NULL) {
		G_fatal_error(_("Please use a metadata keyword with -p"));
	    }

	    for (i = 0; lsatmet->answers[i] != NULL; i++) {
		lsatmeta = lsatmet->answers[i];

		if (strcmp(lsatmeta, "number") == 0) {
		    fprintf(stdout, "number=%d\n", lsat.number);
		}
		if (strcmp(lsatmeta, "creation") == 0) {
		    fprintf(stdout, "creation=%s\n", lsat.creation);
		}
		if (strcmp(lsatmeta, "date") == 0) {
		    fprintf(stdout, "date=%s\n", lsat.date);
		}
		if (strcmp(lsatmeta, "sun_elev") == 0) {
		    fprintf(stdout, "sun_elev=%f\n", lsat.sun_elev);
		}
		if (strcmp(lsatmeta, "sunaz") == 0) {
		    fprintf(stdout, "sunaz=%f\n", lsat.sun_az);
		}
		if (strcmp(lsatmeta, "sensor") == 0) {
		    fprintf(stdout, "sensor=%s\n", lsat.sensor);
		}
		if (strcmp(lsatmeta, "bands") == 0) {
		    fprintf(stdout, "bands=%d\n", lsat.bands);
		}
		if (strcmp(lsatmet->answer, "time") == 0) {
		    fprintf(stdout, "%f\n", lsat.time);
		}
	    }
	    exit(EXIT_SUCCESS);
	}
	G_debug(1, "lsat.number = %d, lsat.sensor = [%s]",
		lsat.number, lsat.sensor);

	if (!lsat.sensor || lsat.number > 8 || lsat.number < 1)
	    G_fatal_error(_("Failed to identify satellite"));

	G_debug(1, "Landsat-%d %s with data set in metadata file [%s]",
		lsat.number, lsat.sensor, met);

	if (elev->answer != NULL) {
	    lsat.sun_elev = atof(elev->answer);
	    G_warning("Overwriting solar elevation of metadata file");
	}
    }
    /*
     * Data from command line
     */
    else if (adate->answer == NULL || elev->answer == NULL) {
	G_fatal_error(_("Lacking '%s' and/or '%s' for this satellite"),
		      adate->key, elev->key);
    }
    else {
	if (strcmp(sensorname, "tm7") == 0) {
	    if (bgain->answer == NULL || strlen(bgain->answer) != 9)
		G_fatal_error(_("Landsat-7 requires band gain with 9 (H/L) characters"));
	    set_ETM(&lsat, bgain->answer);
	}
	else if (strcmp(sensorname, "oli8") == 0)
	    set_OLI(&lsat);
	else if (strcmp(sensorname, "tm5") == 0)
	    set_TM5(&lsat);
	else if (strcmp(sensorname, "tm4") == 0)
	    set_TM4(&lsat);
	else if (strcmp(sensorname, "mss5") == 0)
	    set_MSS5(&lsat);
	else if (strcmp(sensorname, "mss4") == 0)
	    set_MSS4(&lsat);
	else if (strcmp(sensorname, "mss3") == 0)
	    set_MSS3(&lsat);
	else if (strcmp(sensorname, "mss2") == 0)
	    set_MSS2(&lsat);
	else if (strcmp(sensorname, "mss1") == 0)
	    set_MSS1(&lsat);
	else
	    G_fatal_error(_("Unknown satellite type (defined by '%s')"),
			  sensorname);
    }

	/*****************************************
	* ------------ PREPARATION --------------
	*****************************************/
    if (strcasecmp(metho->answer, "corrected") == 0)	/* deleted 2013 */
	method = CORRECTED;
    else if (strcasecmp(metho->answer, "dos1") == 0)
	method = DOS1;
    else if (strcasecmp(metho->answer, "dos2") == 0)
	method = DOS2;
    else if (strcasecmp(metho->answer, "dos2b") == 0)
	method = DOS2b;
    else if (strcasecmp(metho->answer, "dos3") == 0)
	method = DOS3;
    else if (strcasecmp(metho->answer, "dos4") == 0)
	method = DOS4;
    else
	method = UNCORRECTED;

    /*
       if (metho->answer[3] == '2') method = (metho->answer[4] == '\0') ? DOS2 : DOS2b;
       else if (metho->answer[3] == '1') method = DOS1;
       else if (metho->answer[3] == '3') method = DOS3;
       else if (metho->answer[3] == '4') method = DOS4;
       else method = UNCORRECTED;
     */

    for (i = 0; i < lsat.bands; i++) {
	dn_mode[i] = 0;
	dn_dark[i] = (int)lsat.band[i].qcalmin;
	dn_sat = (int)(0.90 * lsat.band[i].qcalmax);
	/* Begin: calculate dark pixel */
	if (method > DOS && !lsat.band[i].thermal) {
	    for (q = 0; q <= lsat.band[i].qcalmax; q++)
		hist[q] = 0L;

	    sprintf(band_in, "%s%d", inputname, lsat.band[i].code);
	    Rast_get_cellhd(band_in, "", &cellhd);
	    Rast_set_window(&cellhd);
	    if ((infd = Rast_open_old(band_in, "")) < 0)
		G_fatal_error(_("Unable to open raster map <%s>"), band_in);

	    in_data_type = Rast_get_map_type(infd);
	    if (in_data_type < 0)
		G_fatal_error(_("Unable to read data type of raster map <%s>"), band_in);
	    inrast = Rast_allocate_buf(in_data_type);

	    nrows = Rast_window_rows();
	    ncols = Rast_window_cols();

	    G_message("Calculating dark pixel of <%s>... ", band_in);
	    for (row = 0; row < nrows; row++) {
		Rast_get_row(infd, inrast, row, in_data_type);
		for (col = 0; col < ncols; col++) {
		    switch (in_data_type) {
		    case CELL_TYPE:
			ptr = (void *)((CELL *) inrast + col);
			q = (int)*((CELL *) ptr);
			break;
		    case FCELL_TYPE:
			ptr = (void *)((FCELL *) inrast + col);
			q = (int)*((FCELL *) ptr);
			break;
		    case DCELL_TYPE:
			ptr = (void *)((DCELL *) inrast + col);
			q = (int)*((DCELL *) ptr);
			break;
		    default:
			ptr = NULL;
			q = -1.;
		    }
		    if (!Rast_is_null_value(ptr, in_data_type) &&
			q >= lsat.band[i].qcalmin &&
			q <= lsat.band[i].qcalmax)
			hist[q]++;
		}
	    }
	    /* DN of dark object */
	    for (j = lsat.band[i].qcalmin; j <= lsat.band[i].qcalmax; j++) {
		if (hist[j] >= (unsigned int)pixel) {
		    dn_dark[i] = j;
		    break;
		}
	    }
	    /* Mode of DN (exclude potentially saturated) */
	    h_max = 0L;
	    for (j = lsat.band[i].qcalmin; j < dn_sat; j++) {
		/* G_debug(5, "%d-%ld", j, hist[j]); */
		if (hist[j] > h_max) {
		    h_max = hist[j];
		    dn_mode[i] = j;
		}
	    }
	    G_verbose_message
		("... DN = %.2d [%lu] : mode %.2d [%lu], excluding DN > %d",
		 dn_dark[i], hist[dn_dark[i]], dn_mode[i], hist[dn_mode[i]],
		 dn_sat);

	    G_free(inrast);
	    Rast_close(infd);
	}
	/* End: calculate dark pixel */

	/* Calculate transformation constants */
	lsat_bandctes(&lsat, i, method, percent, dn_dark[i], rayleigh);
    }

    /*
     * unnecessary or necessary with more checking as acquisition date,...
     * if (strlen(lsat.creation) == 0)
     * G_fatal_error(_("Unknown production date (defined by '%s')"), pdate->key);
     */

    if (G_verbose() > G_verbose_std()) {
	fprintf(stderr, "\n LANDSAT: %d SENSOR: %s\n", lsat.number,
		lsat.sensor);
	fprintf(stderr, " ACQUISITION DATE %s [production date %s]\n",
		lsat.date, lsat.creation);
	fprintf(stderr, "   Earth-sun distance    = %.8lf\n", lsat.dist_es);
	fprintf(stderr, "   Solar elevation angle = %.8lf\n", lsat.sun_elev);
	fprintf(stderr, "   Atmospheric correction: %s\n",
		(method == UNCORRECTED ? "UNCORRECTED" : metho->answer));
	if (method > DOS) {
	    fprintf(stderr,
		    "   Percent of solar irradiance in path radiance = %.4lf\n",
		    percent);
	}
	for (i = 0; i < lsat.bands; i++) {
	    fprintf(stderr, "-------------------\n");
	    fprintf(stderr, " BAND %d %s(code %d)\n", lsat.band[i].number,
		    (lsat.band[i].thermal ? "thermal " : ""),
		    lsat.band[i].code);
	    fprintf(stderr,
		    "   calibrated digital number (DN): %.1lf to %.1lf\n",
		    lsat.band[i].qcalmin, lsat.band[i].qcalmax);
	    fprintf(stderr, "   calibration constants (L): %.5lf to %.5lf\n",
		    lsat.band[i].lmin, lsat.band[i].lmax);
	    fprintf(stderr, "   at-%s radiance = %.8lf * DN + %.5lf\n",
		    (method > DOS ? "surface" : "sensor"), lsat.band[i].gain,
		    lsat.band[i].bias);
	    if (lsat.band[i].thermal) {
		fprintf(stderr,
			"   at-sensor temperature = %.5lf / log[(%.5lf / radiance) + 1.0]\n",
			lsat.band[i].K2, lsat.band[i].K1);
	    }
	    else {
		fprintf(stderr,
			"   mean solar exoatmospheric irradiance (ESUN): %.5lf\n",
			lsat.band[i].esun);
		fprintf(stderr, "   at-%s reflectance = radiance / %.5lf\n",
			(method > DOS ? "surface" : "sensor"),
			lsat.band[i].K1);
		if (method > DOS) {
		    fprintf(stderr,
			    "   the darkness DN with a least %d pixels is %d\n",
			    pixel, dn_dark[i]);
		    fprintf(stderr, "   the DN mode is %d\n", dn_mode[i]);
		}
	    }
	}
	fprintf(stderr, "-------------------\n");
	fflush(stderr);
    }

    /*****************************************
    * ------------ CALCULUS -----------------
    *****************************************/

    G_message(_("Calculating..."));
    for (i = 0; i < lsat.bands; i++) {
	sprintf(band_in, "%s%d", inputname,
		(named->answer ? lsat.band[i].number : lsat.band[i].code));
	sprintf(band_out, "%s%d", outputname, lsat.band[i].code);

	/* set same size as original band raster */
	Rast_get_cellhd(band_in, "", &cellhd);
	Rast_set_window(&cellhd);
	if ((infd = Rast_open_old(band_in, "")) < 0)
	    G_fatal_error(_("Unable to open raster map <%s>"), band_in);

	if (G_find_raster2(band_out, "")) {
	    if (overwrite) {
		G_warning(_("Raster map <%s> already exists and will be overwritten"),
			  band_out);
	    }
	    else {
		G_warning(_("Raster map <%s> exists. Skipping."), band_out);
		continue;
	    }
	}

	in_data_type = Rast_get_map_type(infd);
	if (in_data_type < 0)
	    G_fatal_error(_("Unable to read data type of raster map <%s>"), band_in);

	/* controlling, if we can write the raster */
	if (G_legal_filename(band_out) < 0)
	    G_fatal_error(_("<%s> is an illegal file name"), band_out);

	if ((outfd = Rast_open_new(band_out, DCELL_TYPE)) < 0)
	    G_fatal_error(_("Unable to create raster map <%s>"), band_out);

	/* allocate input and output buffer */
	inrast = Rast_allocate_buf(in_data_type);
	outrast = Rast_allocate_buf(DCELL_TYPE);

	nrows = Rast_window_rows();
	ncols = Rast_window_cols();

	G_important_message(_("Writing %s of <%s> to <%s>..."),
			    (frad->
			     answer ? _("radiance") : (lsat.band[i].
						       thermal) ?
			     _("temperature") : _("reflectance")), band_in,
			    band_out);
	for (row = 0; row < nrows; row++) {
	    G_percent(row, nrows, 2);

	    Rast_get_row(infd, inrast, row, in_data_type);
	    for (col = 0; col < ncols; col++) {
		switch (in_data_type) {
		case CELL_TYPE:
		    ptr = (void *)((CELL *) inrast + col);
		    qcal = (double)((CELL *) inrast)[col];
		    break;
		case FCELL_TYPE:
		    ptr = (void *)((FCELL *) inrast + col);
		    qcal = (double)((FCELL *) inrast)[col];
		    break;
		case DCELL_TYPE:
		    ptr = (void *)((DCELL *) inrast + col);
		    qcal = (double)((DCELL *) inrast)[col];
		    break;
		default:
		    ptr = NULL;
		    qcal = -1.;
		}
		if (Rast_is_null_value(ptr, in_data_type) ||
		    qcal < lsat.band[i].qcalmin) {
		    Rast_set_d_null_value((DCELL *) outrast + col, 1);
		}
		else {
		    rad = lsat_qcal2rad(qcal, &lsat.band[i]);
		    if (frad->answer) {
			ref = rad;
		    }
		    else {
			if (lsat.band[i].thermal) {
			    ref = lsat_rad2temp(rad, &lsat.band[i]);
			}
			else {
			    ref = lsat_rad2ref(rad, &lsat.band[i]) * scale;
			    if (ref < 0. && method > DOS)
				ref = 0.;
			}
		    }
		    ((DCELL *) outrast)[col] = ref;
		}
	    }
	    Rast_put_row(outfd, outrast, DCELL_TYPE);
	}
	G_percent(1, 1, 1);

	ref_mode = 0.;
	if (method > DOS && !lsat.band[i].thermal) {
	    ref_mode = lsat_qcal2rad(dn_mode[i], &lsat.band[i]);
	    ref_mode = lsat_rad2ref(ref_mode, &lsat.band[i]);
	}


	G_free(inrast);
	Rast_close(infd);
	G_free(outrast);
	Rast_close(outfd);


	/*
	 * needed?
	 * if (out_type != CELL_TYPE)
	 * G_quantize_fp_map_range(band_out, G_mapset(), 0., 360., 0,
	 * 360);
	 */

	/* set grey255 colortable */
	Rast_init_colors(&colors);
	Rast_read_fp_range(band_out, G_mapset(), &range);
	Rast_get_fp_range_min_max(&range, &min, &max);
	Rast_make_grey_scale_fp_colors(&colors, min, max);
	Rast_write_colors(band_out, G_mapset(), &colors);

	/* Initialize the 'history' structure with basic info */
	Rast_short_history(band_out, "raster", &history);
	Rast_append_format_history(&history,
				   " %s of Landsat-%d %s (method %s)",
				   (frad->
				    answer ? "Radiance" : (lsat.band[i].
							   thermal ?
							   "Temperature" :
							   "Reflectance")),
				   lsat.number, lsat.sensor, metho->answer);
	Rast_append_history(&history,
			    "-----------------------------------------------------------------");
	Rast_append_format_history(&history,
				   " Acquisition date (and time) ........... %s (%.4lf h)",
				   lsat.date, lsat.time);
	Rast_append_format_history(&history,
				   " Production date ....................... %s\n",
				   lsat.creation);
	Rast_append_format_history(&history,
				   " Earth-sun distance (d) ................ %.7lf",
				   lsat.dist_es);
	Rast_append_format_history(&history,
				   " Sun elevation (and azimuth) ........... %.5lf (%.5lf)",
				   lsat.sun_elev, lsat.sun_az);
	Rast_append_format_history(&history,
				   " Digital number (DN) range ............. %.0lf to %.0lf",
				   lsat.band[i].qcalmin,
				   lsat.band[i].qcalmax);
	Rast_append_format_history(&history,
				   " Calibration constants (Lmin to Lmax) .. %+.5lf to %+.5lf",
				   lsat.band[i].lmin, lsat.band[i].lmax);
	Rast_append_format_history(&history,
				   " DN to Radiance (gain and bias) ........ %+.5lf and %+.5lf",
				   lsat.band[i].gain, lsat.band[i].bias);
	if (lsat.band[i].thermal) {
	    Rast_append_format_history(&history,
				       " Temperature (K1 and K2) ............... %.3lf and %.3lf",
				       lsat.band[i].K1, lsat.band[i].K2);
	}
	else {
	    Rast_append_format_history(&history,
				       " Mean solar irradiance (ESUN) .......... %.3lf",
				       lsat.band[i].esun);
	    Rast_append_format_history(&history,
				       " Radiance to Reflectance (divide by) ... %+.5lf",
				       lsat.band[i].K1);
	    if (method > DOS) {
		Rast_append_format_history(&history, " ");
		Rast_append_format_history(&history,
					   " Dark object (%4d pixels) DN = ........ %d",
					   pixel, dn_dark[i]);
		Rast_append_format_history(&history,
					   " Mode in reflectance histogram ......... %.5lf",
					   ref_mode);
	    }
	}
	Rast_append_history(&history,
			    "------------------------------------------------------------------");

	Rast_command_history(&history);
	Rast_write_history(band_out, &history);

	if (lsat.band[i].thermal)
	    Rast_write_units(band_out, "Kelvin");
	else if (frad->answer)
	    Rast_write_units(band_out, "W/(m^2 sr um)");
	else
	    Rast_write_units(band_out, "unitless");

	/*  set raster timestamp from acq date? (see r.timestamp module)  */
    }
    Rast_set_window(&orig_cellhd);

    exit(EXIT_SUCCESS);
}
Exemplo n.º 4
0
Arquivo: main.c Projeto: caomw/grass
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer;		/* buffer that holds one output row     */

    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord2,		/* temporary x coordinates      */
      ycoord2,			/* temporary y coordinates      */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("Default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->answer = "300";
    memory->label = _("Maximum memory to be used (in MB)");
    memory->description = _("Cache size for raster rows");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input mapset and exit");
    list->guisection = _("Print");
    
    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Print");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Print");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	!print_bounds->answer && !gprint_bounds->answer &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G_create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	outcellhd.north = -1e9;
	outcellhd.south =  1e9;
	outcellhd.east  = -1e9;
	outcellhd.west  =  1e9;
	bordwalk2(&incellhd, &outcellhd, &iproj, &oproj);
	inorth = outcellhd.north;
	isouth = outcellhd.south;
	ieast  = outcellhd.east;
	iwest  = outcellhd.west;

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G_switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G_switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G_switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);

    G_important_message(_("Projecting..."));
    for (row = 0; row < outcellhd.rows; row++) {
	/* obufptr = obuffer */;

        G_percent(row, outcellhd.rows - 1, 2);

#if 0
	/* parallelization does not always work,
	 * segfaults in the interpolation functions 
	 * can happen */
        #pragma omp parallel for schedule (static)
#endif

	for (col = 0; col < outcellhd.cols; col++) {
	    void *obufptr = (void *)((const unsigned char *)obuffer + col * cell_size);

	    double xcoord1 = xcoord2 + (col) * outcellhd.ew_res;
	    double ycoord1 = ycoord2;

	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */

		/* column index in input matrix */
		double col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		/* row index in input matrix    */
		double row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    col_idx, row_idx, &incellhd);
	    }

	    /* obufptr = G_incr_void_ptr(obufptr, cell_size); */
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
    }

    Rast_close(fdo);
    release_cache(ibuffer);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
Exemplo n.º 5
0
int main(int argc, char **argv)
{
    char *mapset;
    int ret, level;
    int i, stat = 0, type, display;
    int chcat = 0;
    int r, g, b;
    int has_color, has_fcolor;
    struct color_rgb color, fcolor;
    double size;
    int default_width;
    double width_scale;
    int verbose = FALSE;
    double minreg, maxreg, reg;
    char map_name[128];
    struct GModule *module;
    struct Option *map_opt;
    struct Option *color_opt, *fcolor_opt, *rgbcol_opt, *zcol_opt;
    struct Option *type_opt, *display_opt;
    struct Option *icon_opt, *size_opt, *sizecolumn_opt, *rotcolumn_opt;
    struct Option *where_opt;
    struct Option *field_opt, *cat_opt, *lfield_opt;
    struct Option *lcolor_opt, *bgcolor_opt, *bcolor_opt;
    struct Option *lsize_opt, *font_opt, *xref_opt, *yref_opt;
    struct Option *attrcol_opt, *maxreg_opt, *minreg_opt;
    struct Option *width_opt, *wcolumn_opt, *wscale_opt;
    struct Option *render_opt;
    struct Flag *verbose_flag;	/* please remove before GRASS 7 released */
    struct Flag *id_flag, *table_acolors_flag, *cats_acolors_flag, *x_flag,
	*zcol_flag;
    struct cat_list *Clist;
    int *cats, ncat;
    LATTR lattr;
    struct Map_info Map;
    struct field_info *fi;
    dbDriver *driver;
    dbHandle handle;
    struct Cell_head window;
    BOUND_BOX box;
    double overlap;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("display, vector");
    module->description = _("Displays user-specified vector map "
			    "in the active graphics frame.");
    
    map_opt = G_define_standard_option(G_OPT_V_MAP);

    display_opt = G_define_option();
    display_opt->key = "display";
    display_opt->type = TYPE_STRING;
    display_opt->required = YES;
    display_opt->multiple = YES;
    display_opt->answer = "shape";
    display_opt->options = "shape,cat,topo,dir,attr,zcoor";
    display_opt->description = _("Display");
    display_opt->descriptions = _("shape;Display geometry of features;"
				  "cat;Display category numbers of features;"
				  "topo;Display topology information (nodes, edges);"
				  "dir;Display direction of linear features;"
				  "attr;Display selected attribute based on 'attrcol';"
				  "zcoor;Display z-coordinate of features (only for 3D vector maps)");
    
    /* Query */
    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->answer = "point,line,boundary,centroid,area,face";
    type_opt->options = "point,line,boundary,centroid,area,face";
    type_opt->guisection = _("Selection");

    field_opt = G_define_standard_option(G_OPT_V_FIELD);
    field_opt->label =
	_("Layer number (if -1, all layers are displayed)");
    field_opt->gisprompt = "old_layer,layer,layer_all";
    field_opt->guisection = _("Selection");

    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");

    where_opt = G_define_standard_option(G_OPT_WHERE);
    where_opt->guisection = _("Selection");

    /* Colors */
    color_opt = G_define_option();
    color_opt->key = "color";
    color_opt->type = TYPE_STRING;
    color_opt->answer = DEFAULT_FG_COLOR;
    color_opt->label = _("Feature color");
    color_opt->guisection = _("Colors");
    color_opt->gisprompt = "old_color,color,color_none";
    color_opt->description =
	_("Either a standard GRASS color, R:G:B triplet, or \"none\"");

    fcolor_opt = G_define_option();
    fcolor_opt->key = "fcolor";
    fcolor_opt->type = TYPE_STRING;
    fcolor_opt->answer = "200:200:200";
    fcolor_opt->label = _("Area fill color");
    fcolor_opt->guisection = _("Colors");
    fcolor_opt->gisprompt = "old_color,color,color_none";
    fcolor_opt->description =
	_("Either a standard GRASS color, R:G:B triplet, or \"none\"");

    rgbcol_opt = G_define_standard_option(G_OPT_COLUMN);
    rgbcol_opt->key = "rgb_column";
    rgbcol_opt->guisection = _("Colors");
    rgbcol_opt->description = _("Name of color definition column (for use with -a flag)");
    rgbcol_opt->answer = "GRASSRGB";

    zcol_opt = G_define_option();
    zcol_opt->key = "zcolor";
    zcol_opt->key_desc = "style";
    zcol_opt->type = TYPE_STRING;
    zcol_opt->required = NO;
    zcol_opt->description = _("Type of color table (for use with -z flag)");
    zcol_opt->answer = "terrain";
    zcol_opt->guisection = _("Colors");

    /* Lines */
    width_opt = G_define_option();
    width_opt->key = "width";
    width_opt->type = TYPE_INTEGER;
    width_opt->answer = "0";
    width_opt->guisection = _("Lines");
    width_opt->description = _("Line width");

    wcolumn_opt = G_define_standard_option(G_OPT_COLUMN);
    wcolumn_opt->key = "wcolumn";
    wcolumn_opt->guisection = _("Lines");
    wcolumn_opt->description =
	_("Name of column for line widths (these values will be scaled by wscale)");

    wscale_opt = G_define_option();
    wscale_opt->key = "wscale";
    wscale_opt->type = TYPE_DOUBLE;
    wscale_opt->answer = "1";
    wscale_opt->guisection = _("Lines");
    wscale_opt->description = _("Scale factor for wcolumn");

    /* Symbols */
    icon_opt = G_define_option();
    icon_opt->key = "icon";
    icon_opt->type = TYPE_STRING;
    icon_opt->required = NO;
    icon_opt->multiple = NO;
    icon_opt->guisection = _("Symbols");
    icon_opt->answer = "basic/x";
    /* This could also use ->gisprompt = "old,symbol,symbol" instead of ->options */
    icon_opt->options = icon_files();
    icon_opt->description = _("Point and centroid symbol");

    size_opt = G_define_option();
    size_opt->key = "size";
    size_opt->type = TYPE_DOUBLE;
    size_opt->answer = "5";
    size_opt->guisection = _("Symbols");
    size_opt->label = _("Symbol size");
    size_opt->description =
	_("When used with the size_column option this becomes the scale factor");

    sizecolumn_opt = G_define_standard_option(G_OPT_COLUMN);
    sizecolumn_opt->key = "size_column";
    sizecolumn_opt->guisection = _("Symbols");
    sizecolumn_opt->description =
	_("Name of numeric column containing symbol size");

    rotcolumn_opt = G_define_standard_option(G_OPT_COLUMN);
    rotcolumn_opt->key = "rot_column";
    rotcolumn_opt->guisection = _("Symbols");
    rotcolumn_opt->label =
	_("Name of numeric column containing symbol rotation angle");
    rotcolumn_opt->description =
	_("Measured in degrees CCW from east");

    /* Labels */
    lfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    lfield_opt->key = "llayer";
    lfield_opt->guisection = _("Labels");
    lfield_opt->description =
	_("Layer number for labels (default: the given layer number)");

    attrcol_opt = G_define_standard_option(G_OPT_COLUMN);
    attrcol_opt->key = "attrcol";
    attrcol_opt->multiple = NO;	/* or fix attr.c, around line 102 */
    attrcol_opt->guisection = _("Labels");
    attrcol_opt->description = _("Name of column to be displayed");

    lcolor_opt = G_define_option();
    lcolor_opt->key = "lcolor";
    lcolor_opt->type = TYPE_STRING;
    lcolor_opt->answer = "red";
    lcolor_opt->label = _("Label color");
    lcolor_opt->guisection = _("Labels");
    lcolor_opt->gisprompt = "old_color,color,color";
    lcolor_opt->description = _("Either a standard color name or R:G:B triplet");

    bgcolor_opt = G_define_option();
    bgcolor_opt->key = "bgcolor";
    bgcolor_opt->type = TYPE_STRING;
    bgcolor_opt->answer = "none";
    bgcolor_opt->guisection = _("Labels");
    bgcolor_opt->label = _("Label background color");
    bgcolor_opt->gisprompt = "old_color,color,color_none";
    bgcolor_opt->description =
	_("Either a standard GRASS color, R:G:B triplet, or \"none\"");

    bcolor_opt = G_define_option();
    bcolor_opt->key = "bcolor";
    bcolor_opt->type = TYPE_STRING;
    bcolor_opt->answer = "none";
    bcolor_opt->guisection = _("Labels");
    bcolor_opt->label = _("Label border color");
    bcolor_opt->gisprompt = "old_color,color,color_none";
    bcolor_opt->description =
	_("Either a standard GRASS color, R:G:B triplet, or \"none\"");

    lsize_opt = G_define_option();
    lsize_opt->key = "lsize";
    lsize_opt->type = TYPE_INTEGER;
    lsize_opt->answer = "8";
    lsize_opt->guisection = _("Labels");
    lsize_opt->description = _("Label size (pixels)");

    font_opt = G_define_option();
    font_opt->key = "font";
    font_opt->type = TYPE_STRING;
    font_opt->guisection = _("Labels");
    font_opt->description = _("Font name");

    xref_opt = G_define_option();
    xref_opt->key = "xref";
    xref_opt->type = TYPE_STRING;
    xref_opt->guisection = _("Labels");
    xref_opt->answer = "left";
    xref_opt->options = "left,center,right";
    xref_opt->description = _("Label horizontal justification");

    yref_opt = G_define_option();
    yref_opt->key = "yref";
    yref_opt->type = TYPE_STRING;
    yref_opt->guisection = _("Labels");
    yref_opt->answer = "center";
    yref_opt->options = "top,center,bottom";
    yref_opt->description = _("Label vertical justification");

    minreg_opt = G_define_option();
    minreg_opt->key = "minreg";
    minreg_opt->type = TYPE_DOUBLE;
    minreg_opt->required = NO;
    minreg_opt->description =
	_("Minimum region size (average from height and width) "
	  "when map is displayed");

    maxreg_opt = G_define_option();
    maxreg_opt->key = "maxreg";
    maxreg_opt->type = TYPE_DOUBLE;
    maxreg_opt->required = NO;
    maxreg_opt->description =
	_("Maximum region size (average from height and width) "
	  "when map is displayed");

    render_opt = G_define_option();
    render_opt->key = "render";
    render_opt->type = TYPE_STRING;
    render_opt->required = NO;
    render_opt->multiple = NO;
    render_opt->answer = "c";
    render_opt->options = "g,r,d,c,l";
    render_opt->description = _("Rendering method for filled polygons");
    render_opt->descriptions =
	_("g;use the libgis render functions (features: clipping);"
	  "r;use the raster graphics library functions (features: polylines);"
	  "d;use the display library basic functions (features: polylines);"
	  "c;use the display library clipping functions (features: clipping);"
	  "l;use the display library culling functions (features: culling, polylines)");

    /* please remove before GRASS 7 released */
    verbose_flag = G_define_flag();
    verbose_flag->key = 'v';
    verbose_flag->description = _("Run verbosely");

    /* Colors */
    table_acolors_flag = G_define_flag();
    table_acolors_flag->key = 'a';
    table_acolors_flag->guisection = _("Colors");
    table_acolors_flag->description =
	_("Get colors from map table column (of form RRR:GGG:BBB)");

    cats_acolors_flag = G_define_flag();
    cats_acolors_flag->key = 'c';
    cats_acolors_flag->guisection = _("Colors");
    cats_acolors_flag->description =
	_("Random colors according to category number "
	  "(or layer number if 'layer=-1' is given)");

    /* Query */
    id_flag = G_define_flag();
    id_flag->key = 'i';
    id_flag->guisection = _("Selection");
    id_flag->description = _("Use values from 'cats' option as feature id");

    x_flag = G_define_flag();
    x_flag->key = 'x';
    x_flag->description =
	_("Don't add to list of vectors and commands in monitor "
	  "(it won't be drawn if the monitor is refreshed)");

    zcol_flag = G_define_flag();
    zcol_flag->key = 'z';
    zcol_flag->description = _("Colorize polygons according to z height");
    zcol_flag->guisection = _("Colors");

    /* Check command line */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (G_strcasecmp(render_opt->answer, "g") == 0)
	render = RENDER_GPP;
    else if (G_strcasecmp(render_opt->answer, "r") == 0)
	render = RENDER_RPA;
    else if (G_strcasecmp(render_opt->answer, "d") == 0)
	render = RENDER_DP;
    else if (G_strcasecmp(render_opt->answer, "c") == 0)
	render = RENDER_DPC;
    else if (G_strcasecmp(render_opt->answer, "l") == 0)
	render = RENDER_DPL;
    else
	render = RENDER_GPP;

    /* please remove -v flag before GRASS 7 released */
    if (verbose_flag->answer) {
	G_putenv("GRASS_VERBOSE", "3");
	G_warning(_("The '-v' flag is superseded and will be removed "
		    "in future. Please use '--verbose' instead."));
    }
    /* but keep this */
    if (G_verbose() > G_verbose_std())
	verbose = TRUE;

    G_get_set_window(&window);

    if (R_open_driver() != 0)
	G_fatal_error(_("No graphics device selected"));

    /* Read map options */

    /* Check min/max region */
    reg = ((window.east - window.west) + (window.north - window.south)) / 2;
    if (minreg_opt->answer) {
	minreg = atof(minreg_opt->answer);

	if (reg < minreg) {
	    G_message(_("Region size is lower than minreg, nothing displayed."));
	    D_add_to_list(G_recreate_command());
	    exit(EXIT_SUCCESS);
	}
    }
    if (maxreg_opt->answer) {
	maxreg = atof(maxreg_opt->answer);

	if (reg > maxreg) {
	    G_message(_("Region size is greater than maxreg, nothing displayed."));
	    D_add_to_list(G_recreate_command());
	    exit(EXIT_SUCCESS);
	}
    }

    G_strcpy(map_name, map_opt->answer);

    default_width = atoi(width_opt->answer);
    if (default_width < 0)
	default_width = 0;
    width_scale = atof(wscale_opt->answer);

    if (table_acolors_flag->answer && cats_acolors_flag->answer) {
	cats_acolors_flag->answer = '\0';
	G_warning(_("The '-c' and '-a' flags cannot be used together, "
		    "the '-c' flag will be ignored!"));
    }

    color = G_standard_color_rgb(WHITE);
    ret = G_str_to_color(color_opt->answer, &r, &g, &b);
    if (ret == 1) {
	has_color = 1;
	color.r = r;
	color.g = g;
	color.b = b;
    }
    else if (ret == 2) {	/* none */
	has_color = 0;
    }
    else if (ret == 0) {	/* error */
	G_fatal_error(_("Unknown color: [%s]"), color_opt->answer);
    }

    fcolor = G_standard_color_rgb(WHITE);
    ret = G_str_to_color(fcolor_opt->answer, &r, &g, &b);
    if (ret == 1) {
	has_fcolor = 1;
	fcolor.r = r;
	fcolor.g = g;
	fcolor.b = b;
    }
    else if (ret == 2) {	/* none */
	has_fcolor = 0;
    }
    else if (ret == 0) {	/* error */
	G_fatal_error(_("Unknown color: '%s'"), fcolor_opt->answer);
    }

    size = atof(size_opt->answer);

    /* Make sure map is available */
    mapset = G_find_vector2(map_name, "");

    if (mapset == NULL)
	G_fatal_error(_("Vector map <%s> not found"), map_name);

    /* if where_opt was specified select categories from db 
     * otherwise parse cat_opt */
    Clist = Vect_new_cat_list();
    Clist->field = atoi(field_opt->answer);

    /* open vector */
    level = Vect_open_old(&Map, map_name, mapset);

    if (where_opt->answer) {
	if (Clist->field < 1)
	    G_fatal_error(_("'layer' must be > 0 for 'where'."));
	chcat = 1;
	if ((fi = Vect_get_field(&Map, Clist->field)) == NULL)
	    G_fatal_error(_("Database connection not defined"));
	if (fi != NULL) {
	    driver = db_start_driver(fi->driver);
	    if (driver == NULL)
		G_fatal_error(_("Unable to start driver <%s>"), fi->driver);

	    db_init_handle(&handle);
	    db_set_handle(&handle, fi->database, NULL);
	    if (db_open_database(driver, &handle) != DB_OK)
		G_fatal_error(_("Unable to open database <%s>"),
			      fi->database);

	    ncat =
		db_select_int(driver, fi->table, fi->key, where_opt->answer,
			      &cats);

	    db_close_database(driver);
	    db_shutdown_driver(driver);

	    Vect_array_to_cat_list(cats, ncat, Clist);
	}
    }
    else if (cat_opt->answer) {
	if (Clist->field < 1)
	    G_fatal_error(_("'layer' must be > 0 for 'cats'."));
	chcat = 1;
	ret = Vect_str_to_cat_list(cat_opt->answer, Clist);
	if (ret > 0)
	    G_warning(_("%d errors in cat option"), ret);
    }

    type = Vect_option_to_types(type_opt); 

    i = 0;
    display = 0;
    while (display_opt->answers[i]) {
	switch (display_opt->answers[i][0]) {
	case 's':
	    display |= DISP_SHAPE;
	    break;
	case 'c':
	    display |= DISP_CAT;
	    break;
	case 't':
	    display |= DISP_TOPO;
	    break;
	case 'd':
	    display |= DISP_DIR;
	    break;
	case 'a':
	    display |= DISP_ATTR;
	    break;
	case 'z':
	    display |= DISP_ZCOOR;
	    break;
	}
	i++;
    }

    /* Read label options */
    if (lfield_opt->answer != NULL)
	lattr.field = atoi(lfield_opt->answer);
    else
	lattr.field = Clist->field;

    lattr.color.R = lattr.color.G = lattr.color.B = 255;
    if (G_str_to_color(lcolor_opt->answer, &r, &g, &b)) {
	lattr.color.R = r;
	lattr.color.G = g;
	lattr.color.B = b;
    }
    lattr.has_bgcolor = 0;
    if (G_str_to_color(bgcolor_opt->answer, &r, &g, &b) == 1) {
	lattr.has_bgcolor = 1;
	lattr.bgcolor.R = r;
	lattr.bgcolor.G = g;
	lattr.bgcolor.B = b;
    }
    lattr.has_bcolor = 0;
    if (G_str_to_color(bcolor_opt->answer, &r, &g, &b) == 1) {
	lattr.has_bcolor = 1;
	lattr.bcolor.R = r;
	lattr.bcolor.G = g;
	lattr.bcolor.B = b;
    }

    lattr.size = atoi(lsize_opt->answer);
    lattr.font = font_opt->answer;
    switch (xref_opt->answer[0]) {
    case 'l':
	lattr.xref = LLEFT;
	break;
    case 'c':
	lattr.xref = LCENTER;
	break;
    case 'r':
	lattr.xref = LRIGHT;
	break;
    }
    switch (yref_opt->answer[0]) {
    case 't':
	lattr.yref = LTOP;
	break;
    case 'c':
	lattr.yref = LCENTER;
	break;
    case 'b':
	lattr.yref = LBOTTOM;
	break;
    }

    D_setup(0);

    G_setup_plot(D_get_d_north(), D_get_d_south(),
		 D_get_d_west(), D_get_d_east(), D_move_abs, D_cont_abs);

    if (verbose)
	G_message(_("Plotting ..."));

    if (level >= 2)
	Vect_get_map_box(&Map, &box);

    if (level >= 2 && (window.north < box.S || window.south > box.N ||
		       window.east < box.W ||
		       window.west > G_adjust_easting(box.E, &window))) {
	G_message(_("The bounding box of the map is outside the current region, "
		   "nothing drawn."));
	stat = 0;
    }
    else {
	overlap =
	    G_window_percentage_overlap(&window, box.N, box.S, box.E, box.W);
	G_debug(1, "overlap = %f \n", overlap);
	if (overlap < 1)
	    Vect_set_constraint_region(&Map, window.north, window.south,
				       window.east, window.west,
				       PORT_DOUBLE_MAX, -PORT_DOUBLE_MAX);

	/* default line width */
	if (!wcolumn_opt->answer)
	    D_line_width(default_width);

	if (type & GV_AREA) {
	    if (level >= 2) {
		if (display & DISP_SHAPE) {
		    stat = darea(&Map, Clist,
				 has_color ? &color : NULL,
				 has_fcolor ? &fcolor : NULL, chcat,
				 (int)id_flag->answer,
				 table_acolors_flag->answer,
				 cats_acolors_flag->answer, &window,
				 rgbcol_opt->answer, default_width,
				 wcolumn_opt->answer, width_scale,
				 zcol_flag->answer, zcol_opt->answer);
		}
		if (wcolumn_opt->answer)
		    D_line_width(default_width);
	    }
	    else
		G_warning(_("Unable to display areas, topology not available"));
	}

	if (display & DISP_SHAPE) {
	    if (id_flag->answer && level < 2) {
		G_warning(_("Unable to display lines by id, topology not available"));
	    }
	    else {
		stat = plot1(&Map, type, Clist,
			     has_color ? &color : NULL,
			     has_fcolor ? &fcolor : NULL, chcat, icon_opt->answer,
			     size, sizecolumn_opt->answer, rotcolumn_opt->answer,
			     (int)id_flag->answer, table_acolors_flag->answer,
			     cats_acolors_flag->answer, rgbcol_opt->answer,
			     default_width, wcolumn_opt->answer, width_scale,
			     zcol_flag->answer, zcol_opt->answer);
		if (wcolumn_opt->answer)
		    D_line_width(default_width);
	    }
	}

	if (has_color) {
	    R_RGB_color(color.r, color.g, color.b);
	    if (display & DISP_DIR)
                stat = dir(&Map, type, Clist, chcat, size);
	}

	/* reset line width: Do we need to get line width from display
	 * driver (not implemented)?  It will help restore previous line
	 * width (not just 0) determined by another module (e.g.,
	 * d.linewidth). */
	if (!wcolumn_opt->answer)
	    R_line_width(0);

	if (display & DISP_CAT)
	    stat = label(&Map, type, Clist, &lattr, chcat);

	if (display & DISP_ATTR)
	    stat =
		attr(&Map, type, attrcol_opt->answer, Clist, &lattr, chcat);

	if (display & DISP_ZCOOR)
	    stat = zcoor(&Map, type, &lattr);

	if (display & DISP_TOPO) {
	    if (level >= 2)
		stat = topo(&Map, type, &lattr);
	    else
		G_warning(_("Unable to display topology, not available"));
	}
    }

    if (!x_flag->answer) {
	D_add_to_list(G_recreate_command());

	D_set_dig_name(G_fully_qualified_name(map_name, mapset));
	D_add_to_dig_list(G_fully_qualified_name(map_name, mapset));
    }

    R_close_driver();

    if (verbose)
	G_done_msg(" ");

    Vect_close(&Map);
    Vect_destroy_cat_list(Clist);

    exit(stat);
}