Exemplo n.º 1
0
// the following two functions are based on code and comments provided by Preda Mihailescu
static bool ProvePrime(const Integer &p, const Integer &q)
{
	assert(p < q*q*q);
	assert(p % q == 1);

// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
// or be prime. The next two lines build the discriminant of a quadratic equation
// which holds iff p is built up of two factors (excercise ... )

	Integer r = (p-1)/q;
	if (((r%q).Squared()-4*(r/q)).IsSquare())
		return false;

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	assert(primeTableSize >= 50);
	for (int i=0; i<50; i++) 
	{
		Integer b = a_exp_b_mod_c(primeTable[i], r, p);
		if (b != 1) 
			return a_exp_b_mod_c(b, q, p) == 1;
	}
	return false;
}
Exemplo n.º 2
0
void PrimeSieve::DoSieve()
{
	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	const unsigned int maxSieveSize = 32768;
	unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();

	m_sieve.clear();
	m_sieve.resize(sieveSize, false);

	if (m_delta == 0)
	{
		for (unsigned int i = 0; i < primeTableSize; ++i)
			SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
	}
	else
	{
		assert(m_step%2==0);
		Integer qFirst = (m_first-m_delta) >> 1;
		Integer halfStep = m_step >> 1;
		for (unsigned int i = 0; i < primeTableSize; ++i)
		{
			word16 p = primeTable[i];
			word16 stepInv = (word16)m_step.InverseMod(p);
			SieveSingle(m_sieve, p, m_first, m_step, stepInv);

			word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
			SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
		}
	}
}
Exemplo n.º 3
0
bool IsSmallPrime(const Integer &p)
{
	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (p.IsPositive() && p <= primeTable[primeTableSize-1])
		return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
	else
		return false;
}
Exemplo n.º 4
0
bool TrialDivision(const Integer &p, unsigned bound)
{
	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	assert(primeTable[primeTableSize-1] >= bound);

	unsigned int i;
	for (i = 0; primeTable[i]<bound; i++)
		if ((p % primeTable[i]) == 0)
			return true;

	if (bound == primeTable[i])
		return (p % bound == 0);
	else
		return false;
}
// computes g as h ** ( mult (qi ** n) )
// where qi are all primes smaller than B
Integer get_g(const Integer &n, const Integer &h) {

    const word16 *primes;
    unsigned available_primes;

    // get the array of primes
    primes = GetPrimeTable(available_primes);
    if (available_primes <= B) {
        throw ProtocolException("not enough primes");
    }

    Integer mult = 1;
    for(int i = 0; primes[i] < B; ++i) {
        mult *= exp(primes[i], BITS);
    }
    return a_exp_b_mod_c(h, mult, n);
}
Exemplo n.º 6
0
Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
	const unsigned smallPrimeBound = 29, c_opt=10;
	Integer p;

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (bits < smallPrimeBound)
	{
		do
			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
		while (TrialDivision(p, 1 << ((bits+1)/2)));
	}
	else
	{
		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
		double relativeSize;
		do
			relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
		while (bits * relativeSize >= bits - margin);

		Integer a,b;
		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
		Integer I = Integer::Power2(bits-2)/q;
		Integer I2 = I << 1;
		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
		bool success = false;
		while (!success)
		{
			p.Randomize(rng, I, I2, Integer::ANY);
			p *= q; p <<= 1; ++p;
			if (!TrialDivision(p, trialDivisorBound))
			{
				a.Randomize(rng, 2, p-1, Integer::ANY);
				b = a_exp_b_mod_c(a, (p-1)/q, p);
				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
			}
		}
	}
	return p;
}
Exemplo n.º 7
0
bool SmallDivisorsTest(const Integer &p)
{
	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);
	return !TrialDivision(p, primeTable[primeTableSize-1]);
}
Exemplo n.º 8
0
bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
{
	assert(!equiv.IsNegative() && equiv < mod);

	Integer gcd = GCD(equiv, mod);
	if (gcd != Integer::One())
	{
		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
		if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
		{
			p = gcd;
			return true;
		}
		else
			return false;
	}

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (p <= primeTable[primeTableSize-1])
	{
		const word16 *pItr;

		--p;
		if (p.IsPositive())
			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
		else
			pItr = primeTable;

		while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
			++pItr;

		if (pItr < primeTable+primeTableSize)
		{
			p = *pItr;
			return p <= max;
		}

		p = primeTable[primeTableSize-1]+1;
	}

	assert(p > primeTable[primeTableSize-1]);

	if (mod.IsOdd())
		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);

	p += (equiv-p)%mod;

	if (p>max)
		return false;

	PrimeSieve sieve(p, max, mod);

	while (sieve.NextCandidate(p))
	{
		if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
			return true;
	}

	return false;
}