Exemplo n.º 1
0
void GrGLPerlinNoise::emitCode(EmitArgs& args) {
    const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>();

    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);

    fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                   kVec2f_GrSLType, kDefault_GrSLPrecision,
                                                   "baseFrequency");
    const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);

    const char* stitchDataUni = nullptr;
    if (pne.stitchTiles()) {
        fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                                                    kVec2f_GrSLType, kDefault_GrSLPrecision,
                                                    "stitchData");
        stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
    }

    // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
    const char* chanCoordR  = "0.125";
    const char* chanCoordG  = "0.375";
    const char* chanCoordB  = "0.625";
    const char* chanCoordA  = "0.875";
    const char* chanCoord   = "chanCoord";
    const char* stitchData  = "stitchData";
    const char* ratio       = "ratio";
    const char* noiseVec    = "noiseVec";
    const char* noiseSmooth = "noiseSmooth";
    const char* floorVal    = "floorVal";
    const char* fractVal    = "fractVal";
    const char* uv          = "uv";
    const char* ab          = "ab";
    const char* latticeIdx  = "latticeIdx";
    const char* bcoords     = "bcoords";
    const char* lattice     = "lattice";
    const char* inc8bit     = "0.00390625";  // 1.0 / 256.0
    // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
    // [-1,1] vector and perform a dot product between that vector and the provided vector.
    const char* dotLattice  = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";

    // Add noise function
    static const GrGLSLShaderVar gPerlinNoiseArgs[] =  {
        GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
        GrGLSLShaderVar(noiseVec, kVec2f_GrSLType)
    };

    static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] =  {
        GrGLSLShaderVar(chanCoord, kFloat_GrSLType),
        GrGLSLShaderVar(noiseVec, kVec2f_GrSLType),
        GrGLSLShaderVar(stitchData, kVec2f_GrSLType)
    };

    SkString noiseCode;

    noiseCode.appendf("\tvec4 %s;\n", floorVal);
    noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
    noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
    noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);

    // smooth curve : t * t * (3 - 2 * t)
    noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
        noiseSmooth, fractVal, fractVal, fractVal);

    // Adjust frequencies if we're stitching tiles
    if (pne.stitchTiles()) {
        noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
                          floorVal, stitchData, floorVal, stitchData);
        noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
                          floorVal, stitchData, floorVal, stitchData);
    }

    // Get texture coordinates and normalize
    noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
                      floorVal, floorVal);

    // Get permutation for x
    {
        SkString xCoords("");
        xCoords.appendf("vec2(%s.x, 0.5)", floorVal);

        noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.append(".r;");
    }

    // Get permutation for x + 1
    {
        SkString xCoords("");
        xCoords.appendf("vec2(%s.z, 0.5)", floorVal);

        noiseCode.appendf("\n\t%s.y = ", latticeIdx);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.append(".r;");
    }

#if defined(SK_BUILD_FOR_ANDROID)
    // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
    // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
    // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
    // (or 0.484368 here). The following rounding operation prevents these precision issues from
    // affecting the result of the noise by making sure that we only have multiples of 1/255.
    // (Note that 1/255 is about 0.003921569, which is the value used here).
    noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);",
                      latticeIdx, latticeIdx);
#endif

    // Get (x,y) coordinates with the permutated x
    noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal);

    noiseCode.appendf("\n\n\tvec2 %s;", uv);
    // Compute u, at offset (0,0)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord);
        noiseCode.appendf("\n\tvec4 %s = ", lattice);
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
    // Compute v, at offset (-1,0)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    // Compute 'a' as a linear interpolation of 'u' and 'v'
    noiseCode.appendf("\n\tvec2 %s;", ab);
    noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);

    noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
    // Compute v, at offset (-1,-1)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
    // Compute u, at offset (0,-1)
    {
        SkString latticeCoords("");
        latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord);
        noiseCode.append("\n\tlattice = ");
        fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
                                         kVec2f_GrSLType);
        noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
        noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
    }

    // Compute 'b' as a linear interpolation of 'u' and 'v'
    noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
    // Compute the noise as a linear interpolation of 'a' and 'b'
    noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);

    SkString noiseFuncName;
    if (pne.stitchTiles()) {
        fragBuilder->emitFunction(kFloat_GrSLType,
                                  "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
                                  gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
    } else {
        fragBuilder->emitFunction(kFloat_GrSLType,
                                  "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
                                  gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
    }

    // There are rounding errors if the floor operation is not performed here
    fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;",
                             noiseVec, vCoords.c_str(), baseFrequencyUni);

    // Clear the color accumulator
    fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor);

    if (pne.stitchTiles()) {
        // Set up TurbulenceInitial stitch values.
        fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni);
    }

    fragBuilder->codeAppendf("float %s = 1.0;", ratio);

    // Loop over all octaves
    fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves());

    fragBuilder->codeAppendf("%s += ", args.fOutputColor);
    if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
        fragBuilder->codeAppend("abs(");
    }
    if (pne.stitchTiles()) {
        fragBuilder->codeAppendf(
            "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
                 "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
            noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
            noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
    } else {
        fragBuilder->codeAppendf(
            "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
                 "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
            noiseFuncName.c_str(), chanCoordR, noiseVec,
            noiseFuncName.c_str(), chanCoordG, noiseVec,
            noiseFuncName.c_str(), chanCoordB, noiseVec,
            noiseFuncName.c_str(), chanCoordA, noiseVec);
    }
    if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) {
        fragBuilder->codeAppendf(")"); // end of "abs("
    }
    fragBuilder->codeAppendf(" * %s;", ratio);

    fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
    fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);

    if (pne.stitchTiles()) {
        fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
    }
    fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves

    if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) {
        // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
        // by fractalNoise and (turbulenceFunctionResult) by turbulence.
        fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);",
                                 args.fOutputColor,args.fOutputColor);
    }

    // Clamp values
    fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor);

    // Pre-multiply the result
    fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
                             args.fOutputColor, args.fOutputColor,
                             args.fOutputColor, args.fOutputColor);
}
Exemplo n.º 2
0
static void add_pixelxor_code(GrGLSLFragmentBuilder* fragBuilder,
                              const char* srcColor,
                              const char* dstColor,
                              const char* outputColor,
                              const char* opColor) {
    static const GrGLSLShaderVar gXorArgs[] = {
        GrGLSLShaderVar("f1", kFloat_GrSLType),
        GrGLSLShaderVar("f2", kFloat_GrSLType),
        GrGLSLShaderVar("f3", kFloat_GrSLType),
        GrGLSLShaderVar("fPowerOf2Divisor", kFloat_GrSLType),
    };
    SkString xorFuncName;

    // The xor function checks if the three passed in floats (f1, f2, f3) would
    // have a bit in the log2(fPowerOf2Divisor)-th position if they were
    // represented by an int. It then performs an xor of the 3 bits (using
    // the property that serial xors can be treated as a sum of 0s & 1s mod 2).
    fragBuilder->emitFunction(kFloat_GrSLType,
                              "xor",
                              SK_ARRAY_COUNT(gXorArgs),
                              gXorArgs,
                              "float bit1 = floor(f1 / fPowerOf2Divisor);"
                              "float bit2 = floor(f2 / fPowerOf2Divisor);"
                              "float bit3 = floor(f3 / fPowerOf2Divisor);"
                              "return mod(bit1 + bit2 + bit3, 2.0);",
                              &xorFuncName);

    fragBuilder->codeAppend("float red = 0.0, green = 0.0, blue = 0.0;");

    if (srcColor) {
        fragBuilder->codeAppendf("vec3 src = 255.99 * %s.rgb;", srcColor);
    } else {
        fragBuilder->codeAppendf("vec3 src = vec3(255.99);");
    }
    fragBuilder->codeAppendf("vec3 dst = 255.99 * %s.rgb;", dstColor);
    fragBuilder->codeAppendf("vec3 op  = 255.99 * %s;", opColor);

    fragBuilder->codeAppend("float modValue = 128.0;");

    fragBuilder->codeAppend("for (int i = 0; i < 8; i++) {");

    fragBuilder->codeAppendf("float bit = %s(src.r, dst.r, op.r, modValue);", xorFuncName.c_str());
    fragBuilder->codeAppend("red += modValue * bit;");
    fragBuilder->codeAppend("src.r = mod(src.r, modValue);");
    fragBuilder->codeAppend("dst.r = mod(dst.r, modValue);");
    fragBuilder->codeAppend("op.r = mod(op.r, modValue);");

    fragBuilder->codeAppendf("bit = %s(src.g, dst.g, op.g, modValue);", xorFuncName.c_str());
    fragBuilder->codeAppend("green += modValue * bit;");
    fragBuilder->codeAppend("src.g = mod(src.g, modValue);");
    fragBuilder->codeAppend("dst.g = mod(dst.g, modValue);");
    fragBuilder->codeAppend("op.g = mod(op.g, modValue);");

    fragBuilder->codeAppendf("bit = %s(src.b, dst.b, op.b, modValue);", xorFuncName.c_str());
    fragBuilder->codeAppend("blue += modValue * bit;");
    fragBuilder->codeAppend("src.b = mod(src.b, modValue);");
    fragBuilder->codeAppend("dst.b = mod(dst.b, modValue);");
    fragBuilder->codeAppend("op.b = mod(op.b, modValue);");

    fragBuilder->codeAppend("modValue /= 2.0;");

    fragBuilder->codeAppend("}");

    fragBuilder->codeAppendf("%s = vec4(red/255.0, green/255.0, blue/255.0, 1.0);", outputColor);
}
Exemplo n.º 3
0
        void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
            const PLSQuadEdgeEffect& qe = args.fGP.cast<PLSQuadEdgeEffect>();
            GrGLSLVertexBuilder* vsBuilder = args.fVertBuilder;
            GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

            // emit attributes
            varyingHandler->emitAttributes(qe);

            GrGLSLVertToFrag uv(kVec2f_GrSLType);
            varyingHandler->addVarying("uv", &uv, kHigh_GrSLPrecision);
            vsBuilder->codeAppendf("%s = %s;", uv.vsOut(), qe.inUV()->fName);

            GrGLSLVertToFrag ep1(kVec2f_GrSLType);
            varyingHandler->addVarying("endpoint1", &ep1, kHigh_GrSLPrecision);
            vsBuilder->codeAppendf("%s = vec2(%s.x, %s.y);", ep1.vsOut(), 
                                  qe.inEndpoint1()->fName, qe.inEndpoint1()->fName);

            GrGLSLVertToFrag ep2(kVec2f_GrSLType);
            varyingHandler->addVarying("endpoint2", &ep2, kHigh_GrSLPrecision);
            vsBuilder->codeAppendf("%s = vec2(%s.x, %s.y);", ep2.vsOut(), 
                                  qe.inEndpoint2()->fName, qe.inEndpoint2()->fName);

            GrGLSLVertToFrag delta(kVec2f_GrSLType);
            varyingHandler->addVarying("delta", &delta, kHigh_GrSLPrecision);
            vsBuilder->codeAppendf("%s = vec2(%s.x - %s.x, %s.y - %s.y) * 0.5;", 
                                   delta.vsOut(), ep1.vsOut(), ep2.vsOut(), ep2.vsOut(), 
                                   ep1.vsOut());

            GrGLSLVertToFrag windings(kInt_GrSLType);
            varyingHandler->addFlatVarying("windings", &windings, kLow_GrSLPrecision);
            vsBuilder->codeAppendf("%s = %s;", 
                                   windings.vsOut(), qe.inWindings()->fName);

            // Setup position
            this->setupPosition(vsBuilder, gpArgs, qe.inPosition()->fName);

            // emit transforms
            this->emitTransforms(vsBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, 
                                 qe.inPosition()->fName, qe.localMatrix(), args.fTransformsIn, 
                                 args.fTransformsOut);

            GrGLSLFragmentBuilder* fsBuilder = args.fFragBuilder;
            SkAssertResult(fsBuilder->enableFeature(
                           GrGLSLFragmentShaderBuilder::kPixelLocalStorage_GLSLFeature));
            SkAssertResult(fsBuilder->enableFeature(
                    GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
            static const int QUAD_ARGS = 2;
            GrGLSLShaderVar inQuadArgs[QUAD_ARGS] = {
                GrGLSLShaderVar("dot", kFloat_GrSLType, 0, kHigh_GrSLPrecision),
                GrGLSLShaderVar("uv", kVec2f_GrSLType, 0, kHigh_GrSLPrecision)
            };
            SkString inQuadName;

            const char* inQuadCode = "if (uv.x * uv.x <= uv.y) {"
                                     "return dot >= 0.0;"
                                     "} else {"
                                     "return false;"
                                     "}";
            fsBuilder->emitFunction(kBool_GrSLType, "in_quad", QUAD_ARGS, inQuadArgs, inQuadCode, 
                                    &inQuadName);
            fsBuilder->declAppendf(GR_GL_PLS_PATH_DATA_DECL);
            // keep the derivative instructions outside the conditional
            fsBuilder->codeAppendf("highp vec2 uvdX = dFdx(%s);", uv.fsIn());
            fsBuilder->codeAppendf("highp vec2 uvdY = dFdy(%s);", uv.fsIn());
            fsBuilder->codeAppend("highp vec2 uvIncX = uvdX * 0.45 + uvdY * -0.1;");
            fsBuilder->codeAppend("highp vec2 uvIncY = uvdX * 0.1 + uvdY * 0.55;");
            fsBuilder->codeAppendf("highp vec2 uv = %s.xy - uvdX * 0.35 - uvdY * 0.25;", 
                                   uv.fsIn());
            fsBuilder->codeAppendf("highp vec2 firstSample = %s.xy - vec2(0.25);",
                                   fsBuilder->fragmentPosition());
            fsBuilder->codeAppendf("highp float d = dot(%s, (firstSample - %s).yx) * 2.0;", 
                                   delta.fsIn(), ep1.fsIn());
            fsBuilder->codeAppendf("pls.windings[0] += %s(d, uv) ? %s : 0;", inQuadName.c_str(), 
                                   windings.fsIn());
            fsBuilder->codeAppend("uv += uvIncX;");
            fsBuilder->codeAppendf("d += %s.x;", delta.fsIn());
            fsBuilder->codeAppendf("pls.windings[1] += %s(d, uv) ? %s : 0;", inQuadName.c_str(), 
                                   windings.fsIn());
            fsBuilder->codeAppend("uv += uvIncY;");
            fsBuilder->codeAppendf("d += %s.y;", delta.fsIn());
            fsBuilder->codeAppendf("pls.windings[2] += %s(d, uv) ? %s : 0;", inQuadName.c_str(), 
                                   windings.fsIn());
            fsBuilder->codeAppend("uv -= uvIncX;");
            fsBuilder->codeAppendf("d -= %s.x;", delta.fsIn());
            fsBuilder->codeAppendf("pls.windings[3] += %s(d, uv) ? %s : 0;", inQuadName.c_str(), 
                                   windings.fsIn());
        }
Exemplo n.º 4
0
void GrGLBicubicEffect::emitCode(EmitArgs& args) {
    const GrTextureDomain& domain = args.fFp.cast<GrBicubicEffect>().domain();

    GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
    fCoefficientsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                       kMat44f_GrSLType, kDefault_GrSLPrecision,
                       "Coefficients");
    fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
                         kVec2f_GrSLType, kDefault_GrSLPrecision,
                         "ImageIncrement");

    const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
    const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni);

    SkString cubicBlendName;

    static const GrGLSLShaderVar gCubicBlendArgs[] = {
        GrGLSLShaderVar("coefficients",  kMat44f_GrSLType),
        GrGLSLShaderVar("t",             kFloat_GrSLType),
        GrGLSLShaderVar("c0",            kVec4f_GrSLType),
        GrGLSLShaderVar("c1",            kVec4f_GrSLType),
        GrGLSLShaderVar("c2",            kVec4f_GrSLType),
        GrGLSLShaderVar("c3",            kVec4f_GrSLType),
    };
    GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
    SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
    fragBuilder->emitFunction(kVec4f_GrSLType,
                              "cubicBlend",
                              SK_ARRAY_COUNT(gCubicBlendArgs),
                              gCubicBlendArgs,
                              "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
                              "\tvec4 c = coefficients * ts;\n"
                              "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
                              &cubicBlendName);
    fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
    // We unnormalize the coord in order to determine our fractional offset (f) within the texel
    // We then snap coord to a texel center and renormalize. The snap prevents cases where the
    // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
    // double hit a texel.
    fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
    fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
    fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
    fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
    for (int y = 0; y < 4; ++y) {
        for (int x = 0; x < 4; ++x) {
            SkString coord;
            coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
            SkString sampleVar;
            sampleVar.printf("rowColors[%d]", x);
            fDomain.sampleTexture(fragBuilder,
                                  args.fUniformHandler,
                                  args.fGLSLCaps,
                                  domain,
                                  sampleVar.c_str(),
                                  coord,
                                  args.fTexSamplers[0]);
        }
        fragBuilder->codeAppendf(
            "\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
            y, cubicBlendName.c_str(), coeff);
    }
    SkString bicubicColor;
    bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
    fragBuilder->codeAppendf("\t%s = %s;\n",
                             args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
                                     GrGLSLExpr4(args.fInputColor)).c_str());
}