Exemplo n.º 1
0
/**
  * @brief  TIM configuration
  * @param  None
  * @retval None
  */
static void TIM_Config(void)
{
  TIM_MasterConfigTypeDef master_timer_config;
  RCC_ClkInitTypeDef clk_init_struct = {0};       /* Temporary variable to retrieve RCC clock configuration */
  uint32_t latency;                               /* Temporary variable to retrieve Flash Latency */
  
  uint32_t timer_clock_frequency = 0;             /* Timer clock frequency */
  uint32_t timer_prescaler = 0;                   /* Time base prescaler to have timebase aligned on minimum frequency possible */
  
  /* Configuration of timer as time base:                                     */ 
  /* Caution: Computation of frequency is done for a timer instance on APB1   */
  /*          (clocked by PCLK1)                                              */
  /* Timer period can be adjusted by modifying the following constants:       */
  /* - TIMER_FREQUENCY: timer frequency (unit: Hz).                           */
  /* - TIMER_FREQUENCY_RANGE_MIN: timer minimum frequency (unit: Hz).         */
  
  /* Retrieve timer clock source frequency */
  HAL_RCC_GetClockConfig(&clk_init_struct, &latency);
  /* If APB1 prescaler is different of 1, timers have a factor x2 on their    */
  /* clock source.                                                            */
  if (clk_init_struct.APB1CLKDivider == RCC_HCLK_DIV1)
  {
    timer_clock_frequency = HAL_RCC_GetPCLK1Freq();
  }
  else
  {
    timer_clock_frequency = HAL_RCC_GetPCLK1Freq() *2;
  }
  
  /* Timer prescaler calculation */
  /* (computation for timer 16 bits, additional + 1 to round the prescaler up) */
  timer_prescaler = (timer_clock_frequency / (TIMER_PRESCALER_MAX_VALUE * TIMER_FREQUENCY_RANGE_MIN)) +1;
  
  /* Set timer instance */
  TimHandle.Instance = TIMx;
  
  /* Configure timer parameters */
  TimHandle.Init.Period            = ((timer_clock_frequency / (timer_prescaler * TIMER_FREQUENCY)) - 1);
  TimHandle.Init.Prescaler         = (timer_prescaler - 1);
  TimHandle.Init.ClockDivision     = TIM_CLOCKDIVISION_DIV1;
  TimHandle.Init.CounterMode       = TIM_COUNTERMODE_UP;
  TimHandle.Init.RepetitionCounter = 0x0;
  
  if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK)
  {
    /* Timer initialization Error */
    Error_Handler();
  }

  /* Timer TRGO selection */
  master_timer_config.MasterOutputTrigger = TIM_TRGO_UPDATE;
  master_timer_config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

  if (HAL_TIMEx_MasterConfigSynchronization(&TimHandle, &master_timer_config) != HAL_OK)
  {
    /* Timer TRGO selection Error */
    Error_Handler();
  }
  
}
/**
  * @brief  Configures system clock after wake-up from STOP: enable HSE, PLL
  *         and select PLL as system clock source.
  * @param  None
  * @retval None
  */
static void SYSCLKConfig_STOP(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  uint32_t pFLatency = 0;
  
  /* Get the Oscillators configuration according to the internal RCC registers */
  HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
  
  /* After wake-up from STOP reconfigure the system clock: Enable HSE and PLL */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /* Get the Clocks configuration according to the internal RCC registers */
  HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);
  
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK)
  {
    Error_Handler();
  }
}
Exemplo n.º 3
0
void SystemClock_Config_fromSTOP(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  uint32_t pFLatency = 0;

  /* Get the Oscillators configuration according to the internal RCC registers */
  HAL_RCC_GetOscConfig(&RCC_OscInitStruct);

  /* Activate PLL with HSI as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_NONE;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL12;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /* Get the Clocks configuration according to the internal RCC registers */
  HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
     clocks dividers */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK)
  {
    Error_Handler();
  }
}
Exemplo n.º 4
0
/**
  * @brief  This function configures the TIM6 as a time base source. 
  *         The time source is configured  to have 1ms time base with a dedicated 
  *         Tick interrupt priority. 
  * @note   This function is called  automatically at the beginning of program after
  *         reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). 
  * @param  TickPriority: Tick interrupt priority.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority)
{
  RCC_ClkInitTypeDef    sClokConfig;
  uint32_t              uwTimclock, uwAPB1Prescaler = 0;
  uint32_t              uwPrescalerValue = 0;
  uint32_t              pFLatency;
  
    /*Configure the TIM6 IRQ priority */
  HAL_NVIC_SetPriority(TIM6_DAC_IRQn, TickPriority ,0); 
  
  /* Get clock configuration */
  HAL_RCC_GetClockConfig(&sClokConfig, &pFLatency);
  
  /* Get APB1 prescaler */
  uwAPB1Prescaler = sClokConfig.APB1CLKDivider;
  
  /* Compute TIM6 clock */
  if (uwAPB1Prescaler == 0) 
  {
    uwTimclock = HAL_RCC_GetPCLK1Freq();
  }
  else
  {
    uwTimclock = 2*HAL_RCC_GetPCLK1Freq();
  }

  /* Compute the prescaler value to have TIM6 counter clock equal to 1MHz */
  uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
  
  /* Initialize TIM6 */
  TimHandle.Instance = TIM6;
    
  /* Initialize TIMx peripheral as follow:
       + Period = [(TIM6CLK/1000) - 1]. to have a (1/1000) s time base.
       + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
       + ClockDivision = 0
       + Counter direction = Up
  */
  TimHandle.Init.Period = (1000000 / 1000) - 1;
  TimHandle.Init.Prescaler = uwPrescalerValue;
  TimHandle.Init.ClockDivision = 0;
  TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
  if(HAL_TIM_Base_Init(&TimHandle) != HAL_OK)
  {
    /* Initialization Error */
    ErrorHandler();
  }
  
  /* Start the TIM time Base generation in interrupt mode */
  if(HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK)
  {
    /* Starting Error */
    ErrorHandler();
  }
  
   /* Return function status */
  return HAL_OK;
}
/**
  * @brief  This function configures the TIM6 as a time base source.
  *         The time source is configured  to have 1ms time base with a dedicated
  *         Tick interrupt priority.
  * @note   This function is called  automatically at the beginning of program after
  *         reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig().
  * @param  TickPriority Tick interrupt priority.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority)
{
  RCC_ClkInitTypeDef    clkconfig;
  uint32_t              uwTimclock, uwAPB1Prescaler = 0U;
  uint32_t              uwPrescalerValue = 0U;
  uint32_t              pFLatency;

  /*Configure the TIM6 IRQ priority */
  HAL_NVIC_SetPriority(TIM6_DAC_IRQn, TickPriority ,0U);

  /* Enable the TIM6 global Interrupt */
  HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

  /* Enable TIM6 clock */
  __HAL_RCC_TIM6_CLK_ENABLE();

  /* Get clock configuration */
  HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);

  /* Get APB1 prescaler */
  uwAPB1Prescaler = clkconfig.APB1CLKDivider;

  /* Compute TIM6 clock */
  if (uwAPB1Prescaler == RCC_HCLK_DIV1)
  {
    uwTimclock = HAL_RCC_GetPCLK1Freq();
  }
  else
  {
    uwTimclock = 2*HAL_RCC_GetPCLK1Freq();
  }

  /* Compute the prescaler value to have TIM6 counter clock equal to 1MHz */
  uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000U) - 1U);

  /* Initialize TIM6 */
  TimHandle.Instance = TIM6;

  /* Initialize TIMx peripheral as follow:
   + Period = [(TIM6CLK/1000) - 1]. to have a (1/1000) s time base.
   + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
   + ClockDivision = 0
   + Counter direction = Up
   */
  TimHandle.Init.Period = (1000000U / 1000U) - 1U;
  TimHandle.Init.Prescaler = uwPrescalerValue;
  TimHandle.Init.ClockDivision = 0;
  TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
  TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if(HAL_TIM_Base_Init(&TimHandle) == HAL_OK)
  {
    /* Start the TIM time Base generation in interrupt mode */
    return HAL_TIM_Base_Start_IT(&TimHandle);
  }

  /* Return function status */
  return HAL_ERROR;
}
Exemplo n.º 6
0
// Reconfigure the HAL tick using a standard timer instead of systick.
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) {
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    uint32_t PclkFreq;

    // Get clock configuration
    // Note: PclkFreq contains here the Latency (not used after)
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
  
    // Get TIM5 clock value
    PclkFreq = HAL_RCC_GetPCLK1Freq();
  
    // Enable timer clock
    TIM_MST_RCC;

    // Reset timer
    TIM_MST_RESET_ON;
    TIM_MST_RESET_OFF;
  
    // Configure time base
    TimMasterHandle.Instance = TIM_MST;
    TimMasterHandle.Init.Period            = 0xFFFFFFFF;
  
    // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
    if (RCC_ClkInitStruct.APB1CLKDivider == RCC_HCLK_DIV1)
      TimMasterHandle.Init.Prescaler   = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick
    else
      TimMasterHandle.Init.Prescaler   = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick  
  
    TimMasterHandle.Init.ClockDivision     = 0;
    TimMasterHandle.Init.CounterMode       = TIM_COUNTERMODE_UP;
    TimMasterHandle.Init.RepetitionCounter = 0;
    HAL_TIM_OC_Init(&TimMasterHandle);

    NVIC_SetVector(TIM_MST_IRQ, (uint32_t)timer_irq_handler);
    NVIC_EnableIRQ(TIM_MST_IRQ);

    // Channel 1 for mbed timeout
    HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_1);

    // Channel 2 for HAL tick
    HAL_TIM_OC_Start(&TimMasterHandle, TIM_CHANNEL_2);
    PreviousVal = __HAL_TIM_GetCounter(&TimMasterHandle);
    __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_2, PreviousVal + HAL_TICK_DELAY);
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC2);

#if 0 // For DEBUG only
    __GPIOB_CLK_ENABLE();
    GPIO_InitTypeDef GPIO_InitStruct;
    GPIO_InitStruct.Pin = GPIO_PIN_6;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#endif

    return HAL_OK;
}
Exemplo n.º 7
0
/**
  * @brief  This function configures the TIM1 as a time base source. 
  *         The time source is configured  to have 1ms time base with a dedicated 
  *         Tick interrupt priority. 
  * @note   This function is called  automatically at the beginning of program after
  *         reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). 
  * @param  TickPriority: Tick interrupt priorty.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
  RCC_ClkInitTypeDef    clkconfig;
  uint32_t              uwTimclock = 0;
  uint32_t              uwPrescalerValue = 0;
  uint32_t              pFLatency;
  
  /*Configure the TIM1 IRQ priority */
  HAL_NVIC_SetPriority(TIM1_UP_TIM16_IRQn, TickPriority ,0); 
  
  /* Enable the TIM1 global Interrupt */
  HAL_NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn); 
  
  /* Enable TIM1 clock */
  __HAL_RCC_TIM1_CLK_ENABLE();
  
  /* Get clock configuration */
  HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
  
  /* Compute TIM1 clock */
  uwTimclock = HAL_RCC_GetPCLK2Freq();
   
  /* Compute the prescaler value to have TIM1 counter clock equal to 1MHz */
  uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
  
  /* Initialize TIM1 */
  htim1.Instance = TIM1;
  
  /* Initialize TIMx peripheral as follow:
  + Period = [(TIM1CLK/1000) - 1]. to have a (1/1000) s time base.
  + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
  + ClockDivision = 0
  + Counter direction = Up
  */
  htim1.Init.Period = (1000000 / 1000) - 1;
  htim1.Init.Prescaler = uwPrescalerValue;
  htim1.Init.ClockDivision = 0;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  if(HAL_TIM_Base_Init(&htim1) == HAL_OK)
  {
    /* Start the TIM time Base generation in interrupt mode */
    return HAL_TIM_Base_Start_IT(&htim1);
  }
  
  /* Return function status */
  return HAL_ERROR;
}
Exemplo n.º 8
0
/**
  * @brief  Configures system clock after wake-up from STOP: enable HSI, PLL
  *         and select PLL as system clock source.
  * @param  None
  * @retval None
  */
static void SYSCLKConfig_STOP(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  uint32_t pFLatency = 0;
  
  /* Get the Oscillators configuration according to the internal RCC registers */
  HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
  
  /* After wake-up from STOP reconfigure the system clock: Enable HSI and PLL */
  RCC_OscInitStruct.OscillatorType       = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState             = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue  = (uint32_t)0x10;   /* Default HSI calibration trimming value */;
  RCC_OscInitStruct.PLL.PLLState         = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource        = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM             = 16;
  RCC_OscInitStruct.PLL.PLLN             = 160;
  RCC_OscInitStruct.PLL.PLLP             = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ             = 7;
  RCC_OscInitStruct.PLL.PLLR             = 2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /* Get the Clocks configuration according to the internal RCC registers */
  HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);
  
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType       = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource    = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider   = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider  = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider  = RCC_HCLK_DIV2;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK)
  {
    Error_Handler();
  }
}
Exemplo n.º 9
0
/**
  * @brief  Configures system clock after wake-up from STOP: enable HSE, PLL
  *         and select PLL as system clock source.
  * @param  None
  * @retval None
  */
static void SYSCLKConfig_STOP(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  uint32_t pFLatency = 0;
  
  /* Get the Oscillators configuration according to the internal RCC registers */
  HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
  
  /* After wake-up from STOP reconfigure the system clock: Enable HSE and PLL */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /* Get the Clocks configuration according to the internal RCC registers */
  HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);
  
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK)
  {
    Error_Handler();
  }
}
Exemplo n.º 10
0
uint32_t cpufreq_get_cpuclk()
{
    uint32_t cpuclk = HAL_RCC_GetSysClockFreq();

    #if defined(STM32H7)
    uint32_t flatency;
    RCC_ClkInitTypeDef RCC_ClkInitStruct;

    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &flatency);
    switch (RCC_ClkInitStruct.SYSCLKDivider) {
        case RCC_SYSCLK_DIV1:
            break;
        case RCC_SYSCLK_DIV2:
            cpuclk /= 2;
            break;
        case RCC_SYSCLK_DIV4:
            cpuclk /= 4;
            break;
        default:
            break;
    }
    #endif
    return cpuclk;
}
Exemplo n.º 11
0
/**
  * @brief  Configures TIM5 to measure the LSI oscillator frequency.
  * @param  None
  * @retval LSI Frequency
  */
static uint32_t GetLSIFrequency(void)
{
  uint32_t pclk1 = 0, latency = 0;
  TIM_IC_InitTypeDef timinputconfig = {0};
  RCC_OscInitTypeDef oscinit = {0};
  RCC_ClkInitTypeDef  clkinit =  {0};
  
  /* Enable LSI Oscillator */
  oscinit.OscillatorType = RCC_OSCILLATORTYPE_LSI;
  oscinit.LSIState = RCC_LSI_ON;
  oscinit.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&oscinit)!= HAL_OK)
  {
    Error_Handler(); 
  }

  /* Configure the TIM peripheral */
  /* Set TIMx instance */
  TimInputCaptureHandle.Instance = TIMx;

  /* TIMx configuration: Input Capture mode ---------------------
  The LSI clock is connected to TIM5 CH4.
  The Rising edge is used as active edge.
  The TIM5 CCR4 is used to compute the frequency value.
  ------------------------------------------------------------ */
  TimInputCaptureHandle.Init.Prescaler         = 0;
  TimInputCaptureHandle.Init.CounterMode       = TIM_COUNTERMODE_UP;
  TimInputCaptureHandle.Init.Period            = 0xFFFF;
  TimInputCaptureHandle.Init.ClockDivision     = 0;
  TimInputCaptureHandle.Init.RepetitionCounter = 0;

  if (HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  /* Connect internally the  TIM5 CH4 Input Capture to the LSI clock output */
  HAL_TIMEx_RemapConfig(&TimInputCaptureHandle, TIMx_REMAP);

  /* Configure the Input Capture of channel 4 */
  timinputconfig.ICPolarity  = TIM_ICPOLARITY_RISING;
  timinputconfig.ICSelection = TIM_ICSELECTION_DIRECTTI;
  timinputconfig.ICPrescaler = TIM_ICPSC_DIV8;
  timinputconfig.ICFilter    = 0;

  if (HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /* Reset the flags */
  TimInputCaptureHandle.Instance->SR = 0;

  /* Start the TIM Input Capture measurement in interrupt mode */
  if (HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK)
  {
    /* Starting Error */
    Error_Handler();
  }

  /* Wait until the TIM5 get 2 LSI edges (refer to TIM5_IRQHandler() in
  stm32f4xx_it.c file) */
  while (uwMeasurementDone == 0)
  {
  }
  uwCaptureNumber = 0;

  /* Deinitialize the TIM5 peripheral registers to their default reset values */
  HAL_TIM_IC_DeInit(&TimInputCaptureHandle);

  /* Compute the LSI frequency, depending on TIM5 input clock frequency (PCLK1)*/
  /* Get PCLK1 frequency */
  pclk1 = HAL_RCC_GetPCLK1Freq();
  HAL_RCC_GetClockConfig(&clkinit, &latency);

  /* Get PCLK1 prescaler */
  if ((clkinit.APB1CLKDivider) == RCC_HCLK_DIV1)
  {
    /* PCLK1 prescaler equal to 1 => TIMCLK = PCLK1 */
    return ((pclk1 / uwPeriodValue) * 8);
  }
  else
  {
    /* PCLK1 prescaler different from 1 => TIMCLK = 2 * PCLK1 */
    return (((2 * pclk1) / uwPeriodValue) * 8) ;
  }
}
Exemplo n.º 12
0
/**
  * @brief  This function configures the TIM5 as a time base source. 
  *         The time source is configured  to have 1ms time base with a dedicated 
  *         Tick interrupt priority. 
  * @note   This function is called  automatically at the beginning of program after
  *         reset by HAL_Init() or at any time when clock is configured, by HAL_RCC_ClockConfig(). 
  * @param  TickPriority: Tick interrupt priority.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_InitTick (uint32_t TickPriority)
{
  RCC_ClkInitTypeDef sClokConfig;
  uint32_t uwTimclock, uwAPB1Prescaler = 0;
  uint32_t uwPrescalerValue = 0;
  uint32_t pFLatency;
  
  /*##-1- Enable peripherals and GPIO Clocks #################################*/
  /* Enable TIM5 clock */
  __HAL_RCC_TIM5_CLK_ENABLE();

  /*##-2- Configure the NVIC for TIMx ########################################*/
  /* Set the TIM5 priority */
  HAL_NVIC_SetPriority(TIM5_IRQn, TICK_INT_PRIORITY, 0);
  
  /* Enable the TIM5 global Interrupt */
  HAL_NVIC_EnableIRQ(TIM5_IRQn);

  /* Configure the TIM5 IRQ priority */
  HAL_NVIC_SetPriority(TIM5_IRQn, TickPriority ,0); 
  
  /* Get clock configuration */
  HAL_RCC_GetClockConfig(&sClokConfig, &pFLatency);
  
  /* Get APB1 prescaler */
  uwAPB1Prescaler = sClokConfig.APB1CLKDivider;
  
  /* Compute TIM5 clock */
  if (uwAPB1Prescaler == 0) 
  {
    uwTimclock = HAL_RCC_GetPCLK1Freq();
  }
  else
  {
    uwTimclock = 2*HAL_RCC_GetPCLK1Freq();
  }

  /* Compute the prescaler value to have TIM5 counter clock equal to 1MHz */
  uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000) - 1);
  
  /* Initialize TIM5 */
  TimHandle.Instance = TIM5;
    
  /* Initialize TIMx peripheral as follow:
       + Period = [(TIM5CLK/1000) - 1]. to have a (1/1000) s time base.
       + Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
       + ClockDivision = 0
       + Counter direction = Up
  */
  TimHandle.Init.Period = (1000000 / 1000) - 1;
  TimHandle.Init.Prescaler = uwPrescalerValue;
  TimHandle.Init.ClockDivision = 0;
  TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
  if(HAL_TIM_Base_Init(&TimHandle) == HAL_OK)
  {
    /* Start the TIM time Base generation in interrupt mode */
    return HAL_TIM_Base_Start_IT(&TimHandle);
  }

  /* Return function status */
  return HAL_OK;
}
Exemplo n.º 13
0
/**
  * @brief  Main program
  * @param  None
  * @retval int
  */
int main(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  uint32_t FLatency;
  SystemSettingsTypeDef setting;    
  osTimerId lcd_timer;  
  
  /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
  */
  HAL_Init();
 
  /* Configure the system clock to 168 MHz */
  SystemClock_Config();
  
  /* Initialize Joystick, Touch screen and LEDs */
  k_BspInit();
  k_LogInit(); 
  
  /* Initialize memory pools */
  k_MemInit();  
  
  /* Initialize audio Interface */
  k_BspAudioInit();  
  
  /* Initialize RTC */
  k_CalendarBkupInit();  

  /* Add Modules */
  k_ModuleInit();  
  
  /* Create GUI task */
  osThreadDef(GUI_Thread, GUIThread, osPriorityHigh, 0, 2048);
  osThreadCreate (osThread(GUI_Thread), NULL); 
  
  k_ModuleAdd(&video_player);
  k_ModuleOpenLink(&video_player, "emf");
  k_ModuleOpenLink(&video_player, "EMF");
  k_ModuleAdd(&image_browser);  
  k_ModuleOpenLink(&image_browser, "jpg"); 
  k_ModuleOpenLink(&image_browser, "JPG");
  k_ModuleOpenLink(&image_browser, "bmp"); 
  k_ModuleOpenLink(&image_browser, "BMP");
  k_ModuleAdd(&audio_player);  
  k_ModuleOpenLink(&audio_player, "wav"); 
  k_ModuleOpenLink(&audio_player, "WAV"); 
  k_ModuleAdd(&camera_capture);    
  k_ModuleAdd(&system_info);
  k_ModuleAdd(&file_browser);  
  k_ModuleAdd(&cpu_bench);  
  k_ModuleAdd(&game_board);  
  k_ModuleAdd(&usb_device);   
  
  /* Initialize GUI */
  GUI_Init();
  WM_MULTIBUF_Enable(1);  
  
  /* Set General Graphical proprieties */
  k_SetGuiProfile();  

  /* Get General settings */
  setting.d32 = k_BkupRestoreParameter(CALIBRATION_GENERAL_SETTINGS_BKP);
    
  if(setting.b.use_180Mhz)
  {
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &FLatency);
    /* Select HSE as system clock source */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);

    HAL_RCC_GetOscConfig(&RCC_OscInitStruct);  
    RCC_OscInitStruct.PLL.PLLM = 25;
    RCC_OscInitStruct.PLL.PLLN = 360;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 7;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);
    
    HAL_PWREx_EnableOverDrive();
    
    /* Select PLL as system clock source */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
  }  
  
  /* Create Touch screen Timer */
  osTimerDef(TS_Timer, TimerCallback);
  lcd_timer =  osTimerCreate(osTimer(TS_Timer), osTimerPeriodic, (void *)0);

  /* Start the TS Timer */
  osTimerStart(lcd_timer, 55);

  GUI_X_InitOS();  
  
  /* Start scheduler */
  osKernelStart();
    
  /* We should never get here as control is now taken by the scheduler */
  for( ;; );
}
Exemplo n.º 14
0
void pwmout_period_us(pwmout_t* obj, int us)
{
    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    uint32_t PclkFreq;
    uint32_t APBxCLKDivider;
    float dc = pwmout_read(obj);

    __HAL_TIM_DISABLE(&TimHandle);

    // Get clock configuration
    // Note: PclkFreq contains here the Latency (not used after)
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);

    // Get the PCLK and APBCLK divider related to the timer
    switch (obj->pwm) {

    // APB1 clock
    case PWM_2:
    case PWM_3:
    case PWM_4:
    case PWM_5:
    case PWM_12:
    case PWM_13:
    case PWM_14:
        PclkFreq = HAL_RCC_GetPCLK1Freq();
        APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
        break;

    // APB2 clock
    case PWM_1:
    case PWM_8:
    case PWM_9:
    case PWM_10:
    case PWM_11:
        PclkFreq = HAL_RCC_GetPCLK2Freq();
        APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
        break;
    default:
        return;
    }

    /* To make it simple, we use to possible prescaler values which lead to:
      * pwm unit = 1us, period/pulse can be from 1us to 65535us
      * or
      * pwm unit = 500us, period/pulse can be from 500us to ~32.76sec
      * Be careful that all the channels of a PWM shares the same prescaler
      */
    if (us >  0xFFFF) {
        obj->prescaler = 500;
    } else {
        obj->prescaler = 1;
    }

    // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
    if (APBxCLKDivider == RCC_HCLK_DIV1)
        TimHandle.Init.Prescaler   = (uint16_t)(((PclkFreq) / 1000000) * obj->prescaler) - 1; // 1 us tick
    else
        TimHandle.Init.Prescaler   = (uint16_t)(((PclkFreq * 2) / 1000000) * obj->prescaler) - 1; // 1 us tick

    if (TimHandle.Init.Prescaler > 0xFFFF)
        error("PWM: out of range prescaler");

    TimHandle.Init.Period        = (us - 1) / obj->prescaler;
    if (TimHandle.Init.Period > 0xFFFF)
        error("PWM: out of range period");

    TimHandle.Init.ClockDivision = 0;
    TimHandle.Init.CounterMode   = TIM_COUNTERMODE_UP;

    if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
        error("Cannot initialize PWM\n");
    }

    // Save for future use
    obj->period = us;

    // Set duty cycle again
    pwmout_write(obj, dc);

    __HAL_TIM_ENABLE(&TimHandle);
}
Exemplo n.º 15
0
/**
  * @brief  Start task
  * @param  argument: pointer that is passed to the thread function as start argument.
  * @retval None
  */
static void StartThread(void const * argument)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  uint32_t FLatency;
  SystemSettingsTypeDef settings;
  osTimerId lcd_timer;
       
  /* Initialize Joystick, Touch screen and LEDs */
  k_BspInit();
  k_LogInit();
  
  /* Initialize GUI */
  GUI_Init();
  WM_MULTIBUF_Enable(1);
  GUI_SelectLayer(1);
  
  /* Initialize RTC */
  k_CalendarBkupInit();
  
  /* Get General settings */
  settings.d32 = k_BkupRestoreParameter(CALIBRATION_GENERAL_SETTINGS_BKP);
    
  if(settings.b.use_180Mhz)
  {
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &FLatency);
    /* Select HSE as system clock source */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);

    HAL_RCC_GetOscConfig(&RCC_OscInitStruct);  
    RCC_OscInitStruct.PLL.PLLM = 8;
    RCC_OscInitStruct.PLL.PLLN = 360;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 7;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);
    
    HAL_PWREx_EnableOverDrive();
    
    /* Select PLL as system clock source */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
  }
  
  k_StartUp();
  
  /* Initialize Storage Units */
  k_StorageInit();
  
  /*Initialize memory pools */
  k_MemInit();
  
  /* Add Modules*/
  k_ModuleInit();
  
  k_ModuleAdd(&video_player);
  k_ModuleOpenLink(&video_player, "emf");
  k_ModuleOpenLink(&video_player, "EMF");
  k_ModuleAdd(&image_browser);  
  k_ModuleOpenLink(&image_browser, "jpg"); 
  k_ModuleOpenLink(&image_browser, "JPG");
  k_ModuleOpenLink(&image_browser, "bmp"); 
  k_ModuleOpenLink(&image_browser, "BMP");
  k_ModuleAdd(&system_info);
  k_ModuleAdd(&file_browser);
  k_ModuleAdd(&cpu_bench);
  k_ModuleAdd(&game_board);
  
  /* Create GUI task */
  osThreadDef(GUI_Thread, GUIThread, osPriorityHigh, 0, 15 * configMINIMAL_STACK_SIZE);
  osThreadCreate (osThread(GUI_Thread), NULL); 

  /* Create Touch screen Timer */
  osTimerDef(TS_Timer, TimerCallback);
  lcd_timer =  osTimerCreate(osTimer(TS_Timer), osTimerPeriodic, (void *)0);

  /* Start the TS Timer */
  osTimerStart(lcd_timer, 100);
  
  for( ;; )
  {
        /* Toggle LED3 and LED4 */
        BSP_LED_Toggle(LED3);
        BSP_LED_Toggle(LED4);    
        osDelay(250);
  }
}
Exemplo n.º 16
0
void pwmout_period_us(pwmout_t* obj, int us)
{
    TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    uint32_t PclkFreq;
    uint32_t APBxCLKDivider;
    float dc = pwmout_read(obj);

    __HAL_TIM_DISABLE(&TimHandle);

    // Get clock configuration
    // Note: PclkFreq contains here the Latency (not used after)
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);

    // Get the PCLK and APBCLK divider related to the timer
    switch (obj->pwm) {

            // APB1 clock
#if defined(TIM2_BASE)
        case PWM_2:
#endif
#if defined(TIM3_BASE)
        case PWM_3:
#endif
#if defined(TIM4_BASE)
        case PWM_4:
#endif
#if defined(TIM5_BASE)
        case PWM_5:
#endif
#if defined(TIM12_BASE)
        case PWM_12:
#endif
#if defined(TIM13_BASE)
        case PWM_13:
#endif
#if defined(TIM14_BASE)
        case PWM_14:
#endif
            PclkFreq = HAL_RCC_GetPCLK1Freq();
            APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
            break;

            // APB2 clock
#if defined(TIM1_BASE)
        case PWM_1:
#endif
#if defined(TIM8_BASE)
        case PWM_8:
#endif
#if defined(TIM9_BASE)
        case PWM_9:
#endif
#if defined(TIM10_BASE)
        case PWM_10:
#endif
#if defined(TIM11_BASE)
        case PWM_11:
#endif
            PclkFreq = HAL_RCC_GetPCLK2Freq();
            APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
            break;
        default:
            return;
    }

    TimHandle.Init.Period        = us - 1;
    // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
    if (APBxCLKDivider == RCC_HCLK_DIV1)
        TimHandle.Init.Prescaler   = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick
    else
        TimHandle.Init.Prescaler   = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick
    TimHandle.Init.ClockDivision = 0;
    TimHandle.Init.CounterMode   = TIM_COUNTERMODE_UP;

    if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
        error("Cannot initialize PWM\n");
    }

    // Set duty cycle again
    pwmout_write(obj, dc);

    // Save for future use
    obj->period = us;

    __HAL_TIM_ENABLE(&TimHandle);
}