Exemplo n.º 1
0
VectorMatrix CalculateStrayfieldForCuboid(
	int dim_x, int dim_y, int dim_z,
	double delta_x, double delta_y, double delta_z,
	int mag_dir,
	Vector3d pos,
	Vector3d size,
	int infinity)
{
	// Check arguments.
	if ((infinity & INFINITE_POS_X || infinity & INFINITE_NEG_X) && size.x != 0.0) throw std::runtime_error("CalculateStrayfieldForCuboid: cuboid size in x-direction must be zero for infinite extents in x direction");
	if ((infinity & INFINITE_POS_Y || infinity & INFINITE_NEG_Y) && size.y != 0.0) throw std::runtime_error("CalculateStrayfieldForCuboid: cuboid size in y-direction must be zero for infinite extents in y direction");
	if ((infinity & INFINITE_POS_Z || infinity & INFINITE_NEG_Z) && size.z != 0.0) throw std::runtime_error("CalculateStrayfieldForCuboid: cuboid size in z-direction must be zero for infinite extents in z direction");
	if (size.x < 0.0 || size.y < 0.0 || size.z < 0.0) throw std::runtime_error("CalculateStrayfieldForCuboid: cuboid size must be positive");
	if (dim_x < 1 || dim_y < 1 || dim_z < 1) throw std::runtime_error("CalculateStrayfieldForCuboid: dim_x,y,z must be positive");
	if (!(delta_x > 0.0 && delta_y > 0.0 && delta_z > 0.0)) throw std::runtime_error("CalculateStrayfieldForCuboid: delta_x,y,z must be positive");
	if (mag_dir < 0 || mag_dir > 2) throw std::runtime_error("CalculateStrayfieldForCuboid: cuboid_mag_dir must be 0, 1, or 2");

	Vector3d p0 = pos;
	Vector3d p1 = pos + size;

	VectorMatrix H(Shape(dim_x, dim_y, dim_z));
	H.clear();

	VectorMatrix::accessor H_acc(H);
	H_acc.set(0,0,0, Vector3d(1,2,3));

	assert(0);
}
Exemplo n.º 2
0
void Transposer_CUDA::copy_unpad(const float *in_x, const float *in_y, const float *in_z, VectorMatrix &H)
{	
	// Ifdef HAVE_CUDA_64 and isCuda64Enabled(), we directly store output matrices on the GPU with 64 bit precision.
#ifdef HAVE_CUDA_64
	if (isCuda64Enabled()) {
		// xyz, s1 -> H
		VectorMatrix::cu64_accessor H_acc(H);
		cuda_copy_unpad_r2r(exp_x, dim_y, dim_z, dim_x, in_x, in_y, in_z, H_acc.ptr_x(), H_acc.ptr_y(), H_acc.ptr_z());
	}
	else
#endif
	{
		// xyz, s1 -> H
		VectorMatrix::cu32_accessor H_acc(H);
		cuda_copy_unpad_r2r(exp_x, dim_y, dim_z, dim_x, in_x, in_y, in_z, H_acc.ptr_x(), H_acc.ptr_y(), H_acc.ptr_z());
	}
}
void SymmetricMatrixVectorConvolution_Simple::execute(const VectorMatrix &rhs, VectorMatrix &res)
{
	Matrix::ro_accessor N_acc(lhs);

	VectorMatrix::const_accessor M_acc(rhs); 
	VectorMatrix::      accessor H_acc(res);

	// H(r) = int N(r-r')*M(r') dr'

	// Hx = Nxx*Mx + Nxy*My + Nxz*Mz
	// Hy = Nyx*Mx + Nyy*My + Nyz*Mz
	// Hz = Nxz*Mx + Nyz*My + Nzz*Mz

	for (int z=0; z<dim_z; ++z)
	for (int y=0; y<dim_y; ++y)
	for (int x=0; x<dim_x; ++x) 
	{
		Vector3d H(0.0, 0.0, 0.0);

		for (int o=0; o<dim_z; ++o)
		for (int n=0; n<dim_y; ++n)
		for (int m=0; m<dim_x; ++m) 
		{
			// (X,Y,Z): position in demag tensor field matrix
			const int X = (x-m+exp_x) % exp_x;
			const int Y = (y-n+exp_y) % exp_y;
			const int Z = (z-o+exp_z) % exp_z;

			const double Nxx = N_acc.at(0,X,Y,Z);
			const double Nxy = N_acc.at(1,X,Y,Z);
			const double Nxz = N_acc.at(2,X,Y,Z);
			const double Nyy = N_acc.at(3,X,Y,Z);
			const double Nyz = N_acc.at(4,X,Y,Z);
			const double Nzz = N_acc.at(5,X,Y,Z);

			const Vector3d &M = M_acc.get(m, n, o);

			H.x += Nxx*M.x + Nxy*M.y + Nxz*M.z;
			H.y += Nxy*M.x + Nyy*M.y + Nyz*M.z;
			H.z += Nxz*M.x + Nyz*M.y + Nzz*M.z;
		}

		H_acc.set(x,y,z,H);
	}
}
Exemplo n.º 4
0
static double fdm_exchange_cpu_nonperiodic(
	int dim_x, int dim_y, int dim_z,
	double delta_x, double delta_y, double delta_z,
	const Matrix &Ms,
	const Matrix &A,
	const VectorMatrix &M,
	VectorMatrix &H)
{
	const int dim_xy = dim_x * dim_y;
	const double wx = 1.0 / (delta_x * delta_x);
	const double wy = 1.0 / (delta_y * delta_y);
	const double wz = 1.0 / (delta_z * delta_z);

	VectorMatrix::const_accessor M_acc(M);
	VectorMatrix::accessor H_acc(H);
	Matrix::ro_accessor Ms_acc(Ms), A_acc(A);

	double energy = 0.0;
	for (int z=0; z<dim_z; ++z) {
		for (int y=0; y<dim_y; ++y) {	
			for (int x=0; x<dim_x; ++x) {
				const int i = z*dim_xy + y*dim_x + x; // linear index of (x,y,z)
				const double Ms = Ms_acc.at(i);
				if (Ms == 0.0) {
					H_acc.set(i, Vector3d(0.0, 0.0, 0.0));
					continue;
				}

				const int idx_l = i-     1;
				const int idx_r = i+     1;
				const int idx_u = i- dim_x;
				const int idx_d = i+ dim_x;
				const int idx_f = i-dim_xy;
				const int idx_b = i+dim_xy;

				const Vector3d M_i = M_acc.get(i) / Ms; // magnetization at (x,y,z)

				Vector3d sum(0.0, 0.0, 0.0);

				// left / right (X)
				if (x >       0) {
					const double Ms_l = Ms_acc.at(idx_l);
					if (Ms_l != 0.0) sum += ((M_acc.get(idx_l) / Ms_l) - M_i) * wx;
				}
				if (x < dim_x-1) {
					const double Ms_r = Ms_acc.at(idx_r);	
					if (Ms_r != 0.0) sum += ((M_acc.get(idx_r) / Ms_r) - M_i) * wx;
				}
				// up / down (Y)
				if (y >       0) {
					const double Ms_u = Ms_acc.at(idx_u);
					if (Ms_u != 0.0) sum += ((M_acc.get(idx_u) / Ms_u) - M_i) * wy;
				}
				if (y < dim_y-1) {
					const double Ms_d = Ms_acc.at(idx_d);
					if (Ms_d != 0.0) sum += ((M_acc.get(idx_d) / Ms_d) - M_i) * wy;
				}
				// forward / backward (Z)
				if (z >       0) {
					const double Ms_f = Ms_acc.at(idx_f);
					if (Ms_f != 0.0) sum += ((M_acc.get(idx_f) / Ms_f) - M_i) * wz;
				}
				if (z < dim_z-1) {
					const double Ms_b = Ms_acc.at(idx_b);
					if (Ms_b != 0.0) sum += ((M_acc.get(idx_b) / Ms_b) - M_i) * wz;
				}

				// Exchange field at (x,y,z)
				const Vector3d H_i = (2/MU0) * A_acc.at(i) * sum / Ms;
				H_acc.set(i, H_i);

				// Exchange energy sum
				energy += dot(M_i, H_i);
			}
		}
	}

	energy *= -MU0/2.0 * delta_x * delta_y * delta_z;
	return energy;
}