Exemplo n.º 1
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
int BalanceMyLink(CtrlType *ctrl, GraphType *graph, idxtype *home, int me,
  int you, float *flows, float maxdiff, float *diff_cost, float *diff_lbavg,
  float avgvwgt)
{
  int h, i, ii, j, k;
  int nvtxs, ncon;
  int nqueues, minval, maxval, higain, vtx, edge, totalv;
  int from, to, qnum, index, nchanges, cut, tmp;
  int pass, nswaps, nmoves, multiplier;
  idxtype *xadj, *vsize, *adjncy, *adjwgt, *where, *ed, *id;
  idxtype *hval, *nvpq, *inq, *map, *rmap, *ptr, *myqueue, *changes;
  float *nvwgt, lbvec[MAXNCON], pwgts[MAXNCON*2], tpwgts[MAXNCON*2], my_wgt[MAXNCON];
  float newgain, oldgain = 0.0;
  float lbavg, bestflow, mycost;
  float ipc_factor, redist_factor, ftmp;
  FPQueueType *queues;
int mype;
MPI_Comm_rank(MPI_COMM_WORLD, &mype);

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  vsize = graph->vsize;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  ipc_factor = ctrl->ipc_factor;
  redist_factor = ctrl->redist_factor;

  hval = idxmalloc(nvtxs*7, "hval");
  id = hval + nvtxs;
  ed = hval + nvtxs*2;
  map = hval + nvtxs*3;
  rmap = hval + nvtxs*4;
  myqueue = hval + nvtxs*5;
  changes = hval + nvtxs*6;

  sset(ncon*2, 0.0, pwgts);
  for (h=0; h<ncon; h++) {
    tpwgts[h] = -1.0 * flows[h];
    tpwgts[ncon+h] = flows[h];
  }

  for (i=0; i<nvtxs; i++) {
    if (where[i] == me) {
      for (h=0; h<ncon; h++) {
        tpwgts[h] += nvwgt[i*ncon+h];
        pwgts[h] += nvwgt[i*ncon+h];
      }
    }
    else {
      ASSERTS(where[i] == you);
      for (h=0; h<ncon; h++) {
        tpwgts[ncon+h] += nvwgt[i*ncon+h];
        pwgts[ncon+h] += nvwgt[i*ncon+h];
      }
    }
  }

  /* we don't want any tpwgts to be less than zero */
  for (h=0; h<ncon; h++) {
    if (tpwgts[h] < 0.0) {
      tpwgts[ncon+h] += tpwgts[h];
      tpwgts[h] = 0.0;
    }

    if (tpwgts[ncon+h] < 0.0) {
      tpwgts[h] += tpwgts[ncon+h];
      tpwgts[ncon+h] = 0.0;
    }
  }

  /*******************************/
  /* insert vertices into queues */
  /*******************************/
  minval = maxval = 0;
  multiplier = 1;
  for (i=0; i<ncon; i++) {
    multiplier *= (i+1);
    maxval += i*multiplier;
    minval += (ncon-1-i)*multiplier;
  }

  nqueues = maxval-minval+1;
  nvpq = idxsmalloc(nqueues, 0, "nvpq");
  ptr = idxmalloc(nqueues+1, "ptr");
  inq = idxmalloc(nqueues*2, "inq");
  queues = (FPQueueType *)(GKmalloc(sizeof(FPQueueType)*nqueues*2, "queues"));

  for (i=0; i<nvtxs; i++)
    hval[i] = Moc_HashVwgts(ncon, nvwgt+i*ncon) - minval;

  for (i=0; i<nvtxs; i++)
    nvpq[hval[i]]++;

  ptr[0] = 0;
  for (i=0; i<nqueues; i++)
    ptr[i+1] = ptr[i] + nvpq[i];

  for (i=0; i<nvtxs; i++) {
    map[i] = ptr[hval[i]];
    rmap[ptr[hval[i]]++] = i;
  }

  for (i=nqueues-1; i>0; i--)
    ptr[i] = ptr[i-1];
  ptr[0] = 0;

  /* initialize queues */
  for (i=0; i<nqueues; i++)
    if (nvpq[i] > 0) {
      FPQueueInit(queues+i, nvpq[i]);
      FPQueueInit(queues+i+nqueues, nvpq[i]);
    }

  /* compute internal/external degrees */
  idxset(nvtxs, 0, id);
  idxset(nvtxs, 0, ed);
  for (j=0; j<nvtxs; j++)
    for (k=xadj[j]; k<xadj[j+1]; k++)
      if (where[adjncy[k]] == where[j])
        id[j] += adjwgt[k];
      else 
        ed[j] += adjwgt[k];

  nswaps = 0;
  for (pass=0; pass<N_MOC_BAL_PASSES; pass++) {
    idxset(nvtxs, -1, myqueue); 
    idxset(nqueues*2, 0, inq);

    /* insert vertices into correct queues */
    for (j=0; j<nvtxs; j++) {
      index = (where[j] == me) ? 0 : nqueues;

      newgain = ipc_factor*(float)(ed[j]-id[j]);
      if (home[j] == me || home[j] == you) {
        if (where[j] == home[j])
          newgain -= redist_factor*(float)vsize[j];
        else
          newgain += redist_factor*(float)vsize[j];
      }

      FPQueueInsert(queues+hval[j]+index, map[j]-ptr[hval[j]], newgain);
      myqueue[j] = (where[j] == me) ? 0 : 1;
      inq[hval[j]+index]++;
    }

/*    bestflow = sfavg(ncon, flows); */
    for (j=0, h=0; h<ncon; h++)
      if (fabs(flows[h]) > fabs(flows[j])) j = h;
        bestflow = fabs(flows[j]);

    nchanges = nmoves = 0;
    for (ii=0; ii<nvtxs/2; ii++) {
      from = -1;
      Moc_DynamicSelectQueue(nqueues, ncon, me, you, inq, flows, &from,
      &qnum, minval, avgvwgt, maxdiff);

      /* can't find a vertex in one subdomain, try the other */
      if (from != -1 && qnum == -1) {
        from = (from == me) ? you : me;

        if (from == me) {
          for (j=0; j<ncon; j++)
            if (flows[j] > avgvwgt)
              break;
        }
        else {
          for (j=0; j<ncon; j++)
            if (flows[j] < -1.0*avgvwgt)
              break;
        }

        if (j != ncon)
          Moc_DynamicSelectQueue(nqueues, ncon, me, you, inq, flows, &from,
          &qnum, minval, avgvwgt, maxdiff);
      }

      if (qnum == -1)
        break;

      to = (from == me) ? you : me;
      index = (from == me) ? 0 : nqueues;
      higain = FPQueueGetMax(queues+qnum+index);
      inq[qnum+index]--;
      ASSERTS(higain != -1);

      /*****************/
      /* make the swap */
      /*****************/
      vtx = rmap[higain+ptr[qnum]];
      myqueue[vtx] = -1;
      where[vtx] = to;
      nswaps++;
      nmoves++;

      /* update the flows */
      for (j=0; j<ncon; j++)
        flows[j] += (to == me) ? nvwgt[vtx*ncon+j] : -1.0*nvwgt[vtx*ncon+j];
 
/*      ftmp = sfavg(ncon, flows); */
      for (j=0, h=0; h<ncon; h++)
        if (fabs(flows[h]) > fabs(flows[j])) j = h;
          ftmp = fabs(flows[j]);

      if (ftmp < bestflow) {
        bestflow = ftmp;
        nchanges = 0;
      }
      else {
        changes[nchanges++] = vtx;
      }

      SWAP(id[vtx], ed[vtx], tmp);

      for (j=xadj[vtx]; j<xadj[vtx+1]; j++) {
        edge = adjncy[j];

        /* must compute oldgain before changing id/ed */
        if (myqueue[edge] != -1) {
          oldgain = ipc_factor*(float)(ed[edge]-id[edge]);
          if (home[edge] == me || home[edge] == you) {
            if (where[edge] == home[edge])
              oldgain -= redist_factor*(float)vsize[edge];
            else
              oldgain += redist_factor*(float)vsize[edge];
          }
        }

        tmp = (to == where[edge] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[edge], ed[edge], tmp);

        if (myqueue[edge] != -1) {
          newgain = ipc_factor*(float)(ed[edge]-id[edge]);
          if (home[edge] == me || home[edge] == you) {
            if (where[edge] == home[edge])
              newgain -= redist_factor*(float)vsize[edge];
            else
              newgain += redist_factor*(float)vsize[edge];
          }

          FPQueueUpdate(queues+hval[edge]+(nqueues*myqueue[edge]),
          map[edge]-ptr[hval[edge]], oldgain, newgain);
        }
      }
    }

    /****************************/
    /* now go back to best flow */
    /****************************/
    nswaps -= nchanges;
    nmoves -= nchanges;
    for (i=0; i<nchanges; i++) {
      vtx = changes[i];
      from = where[vtx];
      where[vtx] = to = (from == me) ? you : me;

      SWAP(id[vtx], ed[vtx], tmp);
      for (j=xadj[vtx]; j<xadj[vtx+1]; j++) {
        edge = adjncy[j];
        tmp = (to == where[edge] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[edge], ed[edge], tmp);
      }
    }

    for (i=0; i<nqueues; i++) {
      if (nvpq[i] > 0) {
        FPQueueReset(queues+i);
        FPQueueReset(queues+i+nqueues);
      }
    }

    if (nmoves == 0)
      break;
  }

  /***************************/
  /* compute 2-way imbalance */
  /***************************/
  sset(ncon, 0.0, my_wgt);
  for (i=0; i<nvtxs; i++)
    if (where[i] == me)
      for (h=0; h<ncon; h++)
        my_wgt[h] += nvwgt[i*ncon+h];

  for (i=0; i<ncon; i++) {
    ftmp =  (pwgts[i]+pwgts[ncon+i])/2.0;
    if (ftmp != 0.0)
      lbvec[i] = fabs(my_wgt[i]-tpwgts[i]) / ftmp;
    else
      lbvec[i] = 0.0;
  }
  lbavg = savg(ncon, lbvec);
  *diff_lbavg = lbavg;

  /****************/
  /* compute cost */
  /****************/
  cut = totalv = 0;
  for (i=0; i<nvtxs; i++) {
    if (where[i] != home[i])
      totalv += vsize[i];

      for (j=xadj[i]; j<xadj[i+1]; j++) 
        if (where[adjncy[j]] != where[i])
          cut += adjwgt[j];
  }
  cut /= 2;
  mycost = cut*ipc_factor + totalv*redist_factor;
  *diff_cost = mycost;

  /* free memory */
  for (i=0; i<nqueues; i++)
    if (nvpq[i] > 0) {
      FPQueueFree(queues+i);
      FPQueueFree(queues+i+nqueues);
    }

  GKfree((void **)&hval, (void **)&nvpq, (void **)&ptr, (void **)&inq, (void **)&queues, LTERM);
  return nswaps;
}
Exemplo n.º 2
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Random_KWayEdgeRefineMConn(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses, int ffactor)
{
  int i, ii, iii, j, jj, k, l, pass, nvtxs, nmoves, nbnd, tvwgt, myndegrees; 
  int from, me, to, oldcut, vwgt, gain;
  int maxndoms, nadd;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *itpwgts;
  idxtype *phtable, *pmat, *pmatptr, *ndoms;
  EDegreeType *myedegrees;
  RInfoType *myrinfo;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bndptr = graph->bndptr;
  bndind = graph->bndind;

  where = graph->where;
  pwgts = graph->pwgts;

  pmat = ctrl->wspace.pmat;
  phtable = idxwspacemalloc(ctrl, nparts);
  ndoms = idxwspacemalloc(ctrl, nparts);

  ComputeSubDomainGraph(graph, nparts, pmat, ndoms);

  /* Setup the weight intervals of the various subdomains */
  minwgt =  idxwspacemalloc(ctrl, nparts);
  maxwgt = idxwspacemalloc(ctrl, nparts);
  itpwgts = idxwspacemalloc(ctrl, nparts);
  tvwgt = idxsum(nparts, pwgts);
  ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt));

  for (i=0; i<nparts; i++) {
    itpwgts[i] = tpwgts[i]*tvwgt;
    maxwgt[i] = tpwgts[i]*tvwgt*ubfactor;
    minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor);
  }

  perm = idxwspacemalloc(ctrl, nvtxs);

  IFSET(ctrl->dbglvl, DBG_REFINE,
     printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d\n",
             pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 
             1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd,
             graph->mincut));

  for (pass=0; pass<npasses; pass++) {
    ASSERT(ComputeCut(graph, where) == graph->mincut);

    maxndoms = ndoms[idxamax(nparts, ndoms)];

    oldcut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (nmoves=iii=0; iii<graph->nbnd; iii++) {
      ii = perm[iii];
      if (ii >= nbnd)
        continue;
      i = bndind[ii];

      myrinfo = graph->rinfo+i;

      if (myrinfo->ed >= myrinfo->id) { /* Total ED is too high */
        from = where[i];
        vwgt = graph->vwgt[i];

        if (myrinfo->id > 0 && pwgts[from]-vwgt < minwgt[from]) 
          continue;   /* This cannot be moved! */

        myedegrees = myrinfo->edegrees;
        myndegrees = myrinfo->ndegrees;

        /* Determine the valid domains */
        for (j=0; j<myndegrees; j++) {
          to = myedegrees[j].pid;
          phtable[to] = 1;
          pmatptr = pmat + to*nparts;
          for (nadd=0, k=0; k<myndegrees; k++) {
            if (k == j)
              continue;

            l = myedegrees[k].pid;
            if (pmatptr[l] == 0) {
              if (ndoms[l] > maxndoms-1) {
                phtable[to] = 0;
                nadd = maxndoms;
                break;
              }
              nadd++;
            }
          }
          if (ndoms[to]+nadd > maxndoms)
            phtable[to] = 0;
          if (nadd == 0)
            phtable[to] = 2;
        }

        /* Find the first valid move */
        j = myrinfo->id;
        for (k=0; k<myndegrees; k++) {
          to = myedegrees[k].pid;
          if (!phtable[to])
            continue;
          gain = myedegrees[k].ed-j; /* j = myrinfo->id. Allow good nodes to move */ 
          if (pwgts[to]+vwgt <= maxwgt[to]+ffactor*gain && gain >= 0)  
            break;
        }
        if (k == myndegrees)
          continue;  /* break out if you did not find a candidate */

        for (j=k+1; j<myndegrees; j++) {
          to = myedegrees[j].pid;
          if (!phtable[to])
            continue;
          if ((myedegrees[j].ed > myedegrees[k].ed && pwgts[to]+vwgt <= maxwgt[to]) ||
              (myedegrees[j].ed == myedegrees[k].ed && 
               itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]))
            k = j;
        }

        to = myedegrees[k].pid;

        j = 0;
        if (myedegrees[k].ed-myrinfo->id > 0)
          j = 1;
        else if (myedegrees[k].ed-myrinfo->id == 0) {
          if (/*(iii&7) == 0  ||*/ phtable[myedegrees[k].pid] == 2 || pwgts[from] >= maxwgt[from] || itpwgts[from]*(pwgts[to]+vwgt) < itpwgts[to]*pwgts[from])
            j = 1;
        }
        if (j == 0)
          continue;
          
        /*=====================================================================
        * If we got here, we can now move the vertex from 'from' to 'to' 
        *======================================================================*/
        graph->mincut -= myedegrees[k].ed-myrinfo->id;

        IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut));

        /* Update pmat to reflect the move of 'i' */
        pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed);
        pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed);
        if (pmat[from*nparts+to] == 0) {
          ndoms[from]--;
          if (ndoms[from]+1 == maxndoms)
            maxndoms = ndoms[idxamax(nparts, ndoms)];
        }
        if (pmat[to*nparts+from] == 0) {
          ndoms[to]--;
          if (ndoms[to]+1 == maxndoms)
            maxndoms = ndoms[idxamax(nparts, ndoms)];
        }

        /* Update where, weight, and ID/ED information of the vertex you moved */
        where[i] = to;
        INC_DEC(pwgts[to], pwgts[from], vwgt);
        myrinfo->ed += myrinfo->id-myedegrees[k].ed;
        SWAP(myrinfo->id, myedegrees[k].ed, j);
        if (myedegrees[k].ed == 0) 
          myedegrees[k] = myedegrees[--myrinfo->ndegrees];
        else
          myedegrees[k].pid = from;

        if (myrinfo->ed-myrinfo->id < 0)
          BNDDelete(nbnd, bndind, bndptr, i);

        /* Update the degrees of adjacent vertices */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          ii = adjncy[j];
          me = where[ii];

          myrinfo = graph->rinfo+ii;
          if (myrinfo->edegrees == NULL) {
            myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
            ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
          }
          myedegrees = myrinfo->edegrees;

          ASSERT(CheckRInfo(myrinfo));

          if (me == from) {
            INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

            if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1)
              BNDInsert(nbnd, bndind, bndptr, ii);
          }
          else if (me == to) {
            INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

            if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1)
              BNDDelete(nbnd, bndind, bndptr, ii);
          }

          /* Remove contribution from the .ed of 'from' */
          if (me != from) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (myedegrees[k].pid == from) {
                if (myedegrees[k].ed == adjwgt[j])
                  myedegrees[k] = myedegrees[--myrinfo->ndegrees];
                else
                  myedegrees[k].ed -= adjwgt[j];
                break;
              }
            }
          }

          /* Add contribution to the .ed of 'to' */
          if (me != to) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (myedegrees[k].pid == to) {
                myedegrees[k].ed += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              myedegrees[myrinfo->ndegrees].pid = to;
              myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
            }
          }

          /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */
          if (me != from && me != to) {
            pmat[me*nparts+from] -= adjwgt[j];
            pmat[from*nparts+me] -= adjwgt[j];
            if (pmat[me*nparts+from] == 0) {
              ndoms[me]--;
              if (ndoms[me]+1 == maxndoms)
                maxndoms = ndoms[idxamax(nparts, ndoms)];
            }
            if (pmat[from*nparts+me] == 0) {
              ndoms[from]--;
              if (ndoms[from]+1 == maxndoms)
                maxndoms = ndoms[idxamax(nparts, ndoms)];
            }

            if (pmat[me*nparts+to] == 0) {
              ndoms[me]++;
              if (ndoms[me] > maxndoms) {
                printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms);
                maxndoms = ndoms[me];
              }
            }
            if (pmat[to*nparts+me] == 0) {
              ndoms[to]++;
              if (ndoms[to] > maxndoms) {
                printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms);
                maxndoms = ndoms[to];
              }
            }
            pmat[me*nparts+to] += adjwgt[j];
            pmat[to*nparts+me] += adjwgt[j];
          }

          ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]);
          ASSERT(CheckRInfo(myrinfo));

        }
        nmoves++;
      }
    }

    graph->nbnd = nbnd;

    IFSET(ctrl->dbglvl, DBG_REFINE,
       printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %5d, Vol: %5d, %d\n",
               pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)],
               1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, 
               graph->mincut, ComputeVolume(graph, where), idxsum(nparts, ndoms)));

    if (graph->mincut == oldcut)
      break;
  }

  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 3
0
/*************************************************************************
* This function computes the subdomain graph
**************************************************************************/
void EliminateSubDomainEdges(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts)
{
  int i, ii, j, k, me, other, nvtxs, total, max, avg, totalout, nind, ncand, ncand2, target, target2, nadd;
  int min, move, cpwgt, tvwgt;
  idxtype *xadj, *adjncy, *vwgt, *adjwgt, *pwgts, *where, *maxpwgt, *pmat, *ndoms, *mypmat, *otherpmat, *ind;
  KeyValueType *cand, *cand2;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  vwgt = graph->vwgt;
  adjwgt = graph->adjwgt;

  where = graph->where;
  pwgts = graph->pwgts;  /* We assume that this is properly initialized */

  maxpwgt = idxwspacemalloc(ctrl, nparts);
  ndoms = idxwspacemalloc(ctrl, nparts);
  otherpmat = idxwspacemalloc(ctrl, nparts);
  ind = idxwspacemalloc(ctrl, nvtxs);
  pmat = ctrl->wspace.pmat;

  cand = (KeyValueType *)GKmalloc(nparts*sizeof(KeyValueType), "EliminateSubDomainEdges: cand");
  cand2 = (KeyValueType *)GKmalloc(nparts*sizeof(KeyValueType), "EliminateSubDomainEdges: cand");

  /* Compute the pmat matrix and ndoms */
  ComputeSubDomainGraph(graph, nparts, pmat, ndoms);


  /* Compute the maximum allowed weight for each domain */
  tvwgt = idxsum(nparts, pwgts);
  for (i=0; i<nparts; i++)
    maxpwgt[i] = 1.25*tpwgts[i]*tvwgt;


  /* Get into the loop eliminating subdomain connections */
  for (;;) {
    total = idxsum(nparts, ndoms);
    avg = total/nparts;
    max = ndoms[idxamax(nparts, ndoms)];

    /* printf("Adjacent Subdomain Stats: Total: %3d, Max: %3d, Avg: %3d [%5d]\n", total, max, avg, idxsum(nparts*nparts, pmat)); */

    if (max < 1.4*avg)
      break;

    me = idxamax(nparts, ndoms);
    mypmat = pmat + me*nparts;
    totalout = idxsum(nparts, mypmat);

    /*printf("Me: %d, TotalOut: %d,\n", me, totalout);*/

    /* Sort the connections according to their cut */
    for (ncand2=0, i=0; i<nparts; i++) {
      if (mypmat[i] > 0) {
        cand2[ncand2].key = mypmat[i];
        cand2[ncand2++].val = i;
      }
    }
    ikeysort(ncand2, cand2);

    move = 0;
    for (min=0; min<ncand2; min++) {
      if (cand2[min].key > totalout/(2*ndoms[me])) 
        break;

      other = cand2[min].val;

      /*printf("\tMinOut: %d to %d\n", mypmat[other], other);*/

      idxset(nparts, 0, otherpmat);

      /* Go and find the vertices in 'other' that are connected in 'me' */
      for (nind=0, i=0; i<nvtxs; i++) {
        if (where[i] == other) {
          for (j=xadj[i]; j<xadj[i+1]; j++) {
            if (where[adjncy[j]] == me) {
              ind[nind++] = i;
              break;
            }
          }
        }
      }

      /* Go and construct the otherpmat to see where these nind vertices are connected to */
      for (cpwgt=0, ii=0; ii<nind; ii++) {
        i = ind[ii];
        cpwgt += vwgt[i];

        for (j=xadj[i]; j<xadj[i+1]; j++) 
          otherpmat[where[adjncy[j]]] += adjwgt[j];
      }
      otherpmat[other] = 0;

      for (ncand=0, i=0; i<nparts; i++) {
        if (otherpmat[i] > 0) {
          cand[ncand].key = -otherpmat[i];
          cand[ncand++].val = i;
        }
      }
      ikeysort(ncand, cand);

      /* 
       * Go through and the select the first domain that is common with 'me', and
       * does not increase the ndoms[target] higher than my ndoms, subject to the
       * maxpwgt constraint. Traversal is done from the mostly connected to the least.
       */
      target = target2 = -1;
      for (i=0; i<ncand; i++) {
        k = cand[i].val;

        if (mypmat[k] > 0) {
          if (pwgts[k] + cpwgt > maxpwgt[k])  /* Check if balance will go off */
            continue;

          for (j=0; j<nparts; j++) {
            if (otherpmat[j] > 0 && ndoms[j] >= ndoms[me]-1 && pmat[nparts*j+k] == 0)
              break;
          }
          if (j == nparts) { /* No bad second level effects */
            for (nadd=0, j=0; j<nparts; j++) {
              if (otherpmat[j] > 0 && pmat[nparts*k+j] == 0)
                nadd++;
            }

            /*printf("\t\tto=%d, nadd=%d, %d\n", k, nadd, ndoms[k]);*/
            if (target2 == -1 && ndoms[k]+nadd < ndoms[me]) {
              target2 = k;
            }
            if (nadd == 0) {
              target = k;
              break;
            }
          }
        }
      }
      if (target == -1 && target2 != -1)
        target = target2;

      if (target == -1) {
        /* printf("\t\tCould not make the move\n");*/
        continue;
      }

      /*printf("\t\tMoving to %d\n", target);*/

      /* Update the partition weights */
      INC_DEC(pwgts[target], pwgts[other], cpwgt);

      MoveGroupMConn(ctrl, graph, ndoms, pmat, nparts, target, nind, ind);

      move = 1;
      break;
    }

    if (move == 0)
      break;
  }

  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nvtxs);

  GKfree(&cand, &cand2, LTERM);
}
Exemplo n.º 4
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void MCRandom_KWayEdgeRefineHorizontal(CtrlType *ctrl, GraphType *graph, int nparts, 
       float *orgubvec, int npasses)
{
  int i, ii, iii, j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nmoves, nbnd, myndegrees, same; 
  int from, me, to, oldcut, gain;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where, *perm, *bndptr, *bndind;
  EDegreeType *myedegrees;
  RInfoType *myrinfo;
  float *npwgts, *nvwgt, *minwgt, *maxwgt, maxlb, minlb, ubvec[MAXNCON], tvec[MAXNCON];

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bndptr = graph->bndptr;
  bndind = graph->bndind;

  where = graph->where;
  npwgts = graph->npwgts;
  
  /* Setup the weight intervals of the various subdomains */
  minwgt =  fwspacemalloc(ctrl, nparts*ncon);
  maxwgt = fwspacemalloc(ctrl, nparts*ncon);

  /* See if the orgubvec consists of identical constraints */
  maxlb = minlb = orgubvec[0];
  for (i=1; i<ncon; i++) {
    minlb = (orgubvec[i] < minlb ? orgubvec[i] : minlb);
    maxlb = (orgubvec[i] > maxlb ? orgubvec[i] : maxlb);
  }
  same = (fabs(maxlb-minlb) < .01 ? 1 : 0);


  /* Let's not get very optimistic. Let Balancing do the work */
  ComputeHKWayLoadImbalance(ncon, nparts, npwgts, ubvec);
  for (i=0; i<ncon; i++)
    ubvec[i] = amax(ubvec[i], orgubvec[i]);

  if (!same) {
    for (i=0; i<nparts; i++) {
      for (j=0; j<ncon; j++) {
        maxwgt[i*ncon+j] = ubvec[j]/nparts;
        minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts);
      }
    }
  }
  else {
    maxlb = ubvec[0];
    for (i=1; i<ncon; i++) 
      maxlb = (ubvec[i] > maxlb ? ubvec[i] : maxlb);

    for (i=0; i<nparts; i++) {
      for (j=0; j<ncon; j++) {
        maxwgt[i*ncon+j] = maxlb/nparts;
        minwgt[i*ncon+j] = 1.0/(maxlb*nparts);
      }
    }
  }


  perm = idxwspacemalloc(ctrl, nvtxs);

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ",
            npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], 
            graph->nvtxs, graph->nbnd, graph->mincut);
    ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
    for (i=0; i<ncon; i++)
      printf("%.3f ", tvec[i]);
    printf("\n");
  }

  for (pass=0; pass<npasses; pass++) {
    ASSERT(ComputeCut(graph, where) == graph->mincut);

    oldcut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (nmoves=iii=0; iii<graph->nbnd; iii++) {
      ii = perm[iii];
      if (ii >= nbnd)
        continue;
      i = bndind[ii];

      myrinfo = graph->rinfo+i;

      if (myrinfo->ed >= myrinfo->id) { /* Total ED is too high */
        from = where[i];
        nvwgt = graph->nvwgt+i*ncon;

        if (myrinfo->id > 0 && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon)) 
          continue;   /* This cannot be moved! */

        myedegrees = myrinfo->edegrees;
        myndegrees = myrinfo->ndegrees;

        for (k=0; k<myndegrees; k++) {
          to = myedegrees[k].pid;
          gain = myedegrees[k].ed - myrinfo->id; 
          if (gain >= 0 && 
              (AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon) ||
               IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec)))
            break;
        }
        if (k == myndegrees)
          continue;  /* break out if you did not find a candidate */

        for (j=k+1; j<myndegrees; j++) {
          to = myedegrees[j].pid;
          if ((myedegrees[j].ed > myedegrees[k].ed &&
               (AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon) || 
               IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec))) ||
              (myedegrees[j].ed == myedegrees[k].ed && 
               IsHBalanceBetterTT(ncon, nparts, npwgts+myedegrees[k].pid*ncon, npwgts+to*ncon, nvwgt, ubvec)))
            k = j;
        }

        to = myedegrees[k].pid;

        if (myedegrees[k].ed-myrinfo->id == 0 
            && !IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec)
            && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, npwgts+from*ncon, maxwgt+from*ncon)) 
          continue;

        /*=====================================================================
        * If we got here, we can now move the vertex from 'from' to 'to' 
        *======================================================================*/
        graph->mincut -= myedegrees[k].ed-myrinfo->id;

        IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut));

        /* Update where, weight, and ID/ED information of the vertex you moved */
        saxpy(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1);
        saxpy(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1);
        where[i] = to;
        myrinfo->ed += myrinfo->id-myedegrees[k].ed;
        SWAP(myrinfo->id, myedegrees[k].ed, j);
        if (myedegrees[k].ed == 0) 
          myedegrees[k] = myedegrees[--myrinfo->ndegrees];
        else
          myedegrees[k].pid = from;

        if (myrinfo->ed-myrinfo->id < 0)
          BNDDelete(nbnd, bndind, bndptr, i);

        /* Update the degrees of adjacent vertices */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          ii = adjncy[j];
          me = where[ii];

          myrinfo = graph->rinfo+ii;
          if (myrinfo->edegrees == NULL) {
            myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
            ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
          }
          myedegrees = myrinfo->edegrees;

          ASSERT(CheckRInfo(myrinfo));

          if (me == from) {
            INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

            if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1)
              BNDInsert(nbnd, bndind, bndptr, ii);
          }
          else if (me == to) {
            INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

            if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1)
              BNDDelete(nbnd, bndind, bndptr, ii);
          }

          /* Remove contribution from the .ed of 'from' */
          if (me != from) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (myedegrees[k].pid == from) {
                if (myedegrees[k].ed == adjwgt[j])
                  myedegrees[k] = myedegrees[--myrinfo->ndegrees];
                else
                  myedegrees[k].ed -= adjwgt[j];
                break;
              }
            }
          }

          /* Add contribution to the .ed of 'to' */
          if (me != to) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (myedegrees[k].pid == to) {
                myedegrees[k].ed += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              myedegrees[myrinfo->ndegrees].pid = to;
              myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
            }
          }

          ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]);
          ASSERT(CheckRInfo(myrinfo));

        }
        nmoves++;
      }
    }

    graph->nbnd = nbnd;

    if (ctrl->dbglvl&DBG_REFINE) {
      printf("\t [%5.4f %5.4f], Nb: %6d, Nmoves: %5d, Cut: %6d, LB: ",
              npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], 
              nbnd, nmoves, graph->mincut);
      ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
      for (i=0; i<ncon; i++)
        printf("%.3f ", tvec[i]);
      printf("\n");
    }

    if (graph->mincut == oldcut)
      break;
  }

  fwspacefree(ctrl, ncon*nparts);
  fwspacefree(ctrl, ncon*nparts);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 5
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses)
{
  int h, i, ii, iii, j, k, c;
  int pass, nvtxs, nedges, ncon;
  int nmoves, nmoved, nswaps, nzgswaps;
/*  int gnswaps, gnzgswaps; */
  int me, firstvtx, lastvtx, yourlastvtx;
  int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight;
  int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts;
  int nlupd, nsupd, nnbrs, nchanged;
  idxtype *xadj, *ladjncy, *adjwgt, *vtxdist;
  idxtype *where, *tmp_where, *moved;
  floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill;
  idxtype *update, *supdate, *rupdate, *pe_updates;
  idxtype *changed, *perm, *pperm, *htable;
  idxtype *peind, *recvptr, *sendptr;
  KeyValueType *swchanges, *rwchanges;
  RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo;
  EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees;
  floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg;
  int *nupds_pe;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr));

  /*************************/
  /* set up common aliases */
  /*************************/
  nvtxs = graph->nvtxs;
  nedges = graph->nedges;
  ncon = graph->ncon;

  vtxdist = graph->vtxdist;
  xadj = graph->xadj;
  ladjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  firstvtx = vtxdist[mype];
  lastvtx = vtxdist[mype+1];

  where   = graph->where;
  rinfo   = graph->rinfo;
  lnpwgts = graph->lnpwgts;
  gnpwgts = graph->gnpwgts;
  ubvec   = ctrl->ubvec;
  tpwgts  = ctrl->tpwgts;

  nnbrs = graph->nnbrs;
  peind = graph->peind;
  recvptr = graph->recvptr;
  sendptr = graph->sendptr;

  changed = idxmalloc(nvtxs, "KWR: changed");
  rwchanges = wspace->pairs;
  swchanges = rwchanges + recvptr[nnbrs];

  /************************************/
  /* set up important data structures */
  /************************************/
  perm = idxmalloc(nvtxs, "KWR: perm");
  pperm = idxmalloc(nparts, "KWR: pperm");

  update = idxmalloc(nvtxs, "KWR: update");
  supdate = wspace->indices;
  rupdate = supdate + recvptr[nnbrs];
  nupds_pe = imalloc(npes, "KWR: nupds_pe");
  htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable");
  badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt");

  for (i=0; i<nparts; i++) {
    for (h=0; h<ncon; h++) {
      badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h];
    }
  }

  movewgts = fmalloc(nparts*ncon, "KWR: movewgts");
  ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts");
  pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts");
  overfill = fmalloc(nparts*ncon, "KWR: overfill");
  moved = idxmalloc(nvtxs, "KWR: moved");
  tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where");
  tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo");
  tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees");

  idxcopy(nvtxs+graph->nrecv, where, tmp_where);
  for (i=0; i<nvtxs; i++) {
    tmp_rinfo[i].id = rinfo[i].id;
    tmp_rinfo[i].ed = rinfo[i].ed;
    tmp_rinfo[i].ndegrees = rinfo[i].ndegrees;
    tmp_rinfo[i].degrees = tmp_edegrees+xadj[i];

    for (j=0; j<rinfo[i].ndegrees; j++) {
      tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge;
      tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt;
    }
  }

  nswaps = nzgswaps = 0;
  /*********************************************************/
  /* perform a small number of passes through the vertices */
  /*********************************************************/
  for (pass=0; pass<npasses; pass++) {
    if (mype == 0)
      RandomPermute(nparts, pperm, 1);
    MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm);
    FastRandomPermute(nvtxs, perm, 1);
    oldcut = graph->mincut;

    /* check to see if the partitioning is imbalanced */
    Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec);
    ubavg = savg(ncon, ubvec);
    lbavg = savg(ncon, lbvec);
    imbalanced = (lbavg > ubavg) ? 1 : 0;

    for (c=0; c<2; c++) {
      scopy(ncon*nparts, gnpwgts, ognpwgts);
      sset(ncon*nparts, 0.0, movewgts);
      nmoved = 0;

      /**********************************************/
      /* PASS ONE -- record stats for desired moves */
      /**********************************************/
      for (iii=0; iii<nvtxs; iii++) {
        i = perm[iii];
        from = tmp_where[i];
        nvwgt = graph->nvwgt+i*ncon;

        for (h=0; h<ncon; h++)
          if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT)
            break;

        if (h < ncon) {
          continue;
        }

        /* check for a potential improvement */
        if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) {
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++) {
            to = my_edegrees[k].edge;
            if (ProperSide(c, pperm[from], pperm[to])) {
              for (h=0; h<ncon; h++)
                if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                  break;

              if (h == ncon)
                break;
            }
          }
          oldto = to;

          /* check if a subdomain was found that fits */
          if (k < tmp_rinfo[i].ndegrees) {
            for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) {
              to = my_edegrees[j].edge;
              if (ProperSide(c, pperm[from], pperm[to])) {
                for (h=0; h<ncon; h++)
                  if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                    break;

                if (h == ncon) {
                  if (my_edegrees[j].ewgt > my_edegrees[k].ewgt ||
                   (my_edegrees[j].ewgt == my_edegrees[k].ewgt &&
                   IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){
                    k = j;
                    oldto = my_edegrees[k].edge;
                  }
                }
              }
            }
            to = oldto;

            if (my_edegrees[k].ewgt > tmp_rinfo[i].id ||
            (my_edegrees[k].ewgt == tmp_rinfo[i].id &&
            (imbalanced ||  graph->level > 3  || iii % 8 == 0) &&
            IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){

              /****************************************/
              /* Update tmp arrays of the moved vertex */
              /****************************************/
              tmp_where[i] = to;
              moved[nmoved++] = i;
              for (h=0; h<ncon; h++) {
                lnpwgts[to*ncon+h] += nvwgt[h];
                lnpwgts[from*ncon+h] -= nvwgt[h];
                gnpwgts[to*ncon+h] += nvwgt[h];
                gnpwgts[from*ncon+h] -= nvwgt[h];
                movewgts[to*ncon+h] += nvwgt[h];
                movewgts[from*ncon+h] -= nvwgt[h];
              }

              tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
              SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
              if (my_edegrees[k].ewgt == 0) {
                tmp_rinfo[i].ndegrees--;
                my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
                my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
              }
              else {
                my_edegrees[k].edge = from;
              }

              /* Update the degrees of adjacent vertices */
              for (j=xadj[i]; j<xadj[i+1]; j++) {
                /* no need to bother about vertices on different pe's */
                if (ladjncy[j] >= nvtxs)
                  continue;

                me = ladjncy[j];
                mydomain = tmp_where[me];

                myrinfo = tmp_rinfo+me;
                your_edegrees = myrinfo->degrees;

                if (mydomain == from) {
                  INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
                }
                else {
                  if (mydomain == to) {
                    INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                  }
                }

                /* Remove contribution from the .ed of 'from' */
                if (mydomain != from) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == from) {
                      if (your_edegrees[k].ewgt == adjwgt[j]) {
                        myrinfo->ndegrees--;
                        your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                        your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                      }
                      else {
                        your_edegrees[k].ewgt -= adjwgt[j];
                      }
                      break;
                    }
                  }
                }

                /* Add contribution to the .ed of 'to' */
                if (mydomain != to) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == to) {
                      your_edegrees[k].ewgt += adjwgt[j];
                      break;
                    }
                  }
                  if (k == myrinfo->ndegrees) {
                    your_edegrees[myrinfo->ndegrees].edge = to;
                    your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                  }
                }
              }
            }
          }
        }
      }

      /******************************************/
      /* Let processors know the subdomain wgts */
      /* if all proposed moves commit.          */
      /******************************************/
      MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);

      /**************************/
      /* compute overfill array */
      /**************************/
      overweight = 0;
      for (j=0; j<nparts; j++) {
        for (h=0; h<ncon; h++) {
          if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) {
            overfill[j*ncon+h] =
            (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) /
            (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]);
          }
          else {
            overfill[j*ncon+h] = 0.0;
          }

          overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0);
          overfill[j*ncon+h] *= movewgts[j*ncon+h];

          if (overfill[j*ncon+h] > 0.0)
            overweight = 1;

          ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] ||
          pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h],
          (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h],
          badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h]));
        }
      }

      /****************************************************/
      /* select moves to undo according to overfill array */
      /****************************************************/
      if (overweight == 1) {
        for (iii=0; iii<nmoved; iii++) {
          i = moved[iii];
          oldto = tmp_where[i];
          nvwgt = graph->nvwgt+i*ncon;
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++)
            if (my_edegrees[k].edge == where[i])
              break;

          for (h=0; h<ncon; h++)
            if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0)
              break;

          /**********************************/
          /* nullify this move if necessary */
          /**********************************/
          if (k != tmp_rinfo[i].ndegrees && h != ncon) {
            moved[iii] = -1;
            from = oldto;
            to = where[i];

            for (h=0; h<ncon; h++) {
              overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0);
            }

            tmp_where[i] = to;
            tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
            SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
            if (my_edegrees[k].ewgt == 0) {
              tmp_rinfo[i].ndegrees--;
              my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
              my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
            }
            else {
              my_edegrees[k].edge = from;
            }

            for (h=0; h<ncon; h++) {
              lnpwgts[to*ncon+h] += nvwgt[h];
              lnpwgts[from*ncon+h] -= nvwgt[h];
            }

            /* Update the degrees of adjacent vertices */
            for (j=xadj[i]; j<xadj[i+1]; j++) {
              /* no need to bother about vertices on different pe's */
              if (ladjncy[j] >= nvtxs)
                continue;

              me = ladjncy[j];
              mydomain = tmp_where[me];

              myrinfo = tmp_rinfo+me;
              your_edegrees = myrinfo->degrees;

              if (mydomain == from) {
                INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
              }
              else {
                if (mydomain == to) {
                  INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                }
              }

              /* Remove contribution from the .ed of 'from' */
              if (mydomain != from) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == from) {
                    if (your_edegrees[k].ewgt == adjwgt[j]) {
                      myrinfo->ndegrees--;
                      your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                      your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                    }
                    else {
                      your_edegrees[k].ewgt -= adjwgt[j];
                    }
                    break;
                  }
                }
              }

              /* Add contribution to the .ed of 'to' */
              if (mydomain != to) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == to) {
                    your_edegrees[k].ewgt += adjwgt[j];
                    break;
                  }
                }
                if (k == myrinfo->ndegrees) {
                  your_edegrees[myrinfo->ndegrees].edge = to;
                  your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                }
              }
            }
          }
        }
      }

      /*************************************************/
      /* PASS TWO -- commit the remainder of the moves */
      /*************************************************/
      nlupd = nsupd = nmoves = nchanged = 0;
      for (iii=0; iii<nmoved; iii++) {
        i = moved[iii];
        if (i == -1)
          continue;

        where[i] = tmp_where[i];

        /* Make sure to update the vertex information */
        if (htable[i] == 0) {
          /* make sure you do the update */
          htable[i] = 1;
          update[nlupd++] = i;
        }

        /* Put the vertices adjacent to i into the update array */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = ladjncy[j];
          if (htable[k] == 0) {
            htable[k] = 1;
            if (k<nvtxs)
              update[nlupd++] = k;
            else
              supdate[nsupd++] = k;
          }
        }
        nmoves++;
        nswaps++;

        /* check number of zero-gain moves */
        for (k=0; k<rinfo[i].ndegrees; k++)
          if (rinfo[i].degrees[k].edge == to)
            break;
        if (rinfo[i].id == rinfo[i].degrees[k].ewgt)
          nzgswaps++;

        if (graph->pexadj[i+1]-graph->pexadj[i] > 0)
          changed[nchanged++] = i;
      }

      /* Tell interested pe's the new where[] info for the interface vertices */
      CommChangedInterfaceData(ctrl, graph, nchanged, changed, where,
      swchanges, rwchanges, wspace->pv4); 


      IFSET(ctrl->dbglvl, DBG_RMOVEINFO,
      rprintf(ctrl, "\t[%d %d], [%.4f],  [%d %d %d]\n",
      pass, c, badmaxpwgt[0],
      GlobalSESum(ctrl, nmoves),
      GlobalSESum(ctrl, nsupd),
      GlobalSESum(ctrl, nlupd)));

      /*-------------------------------------------------------------
      / Time to communicate with processors to send the vertices
      / whose degrees need to be update.
      /-------------------------------------------------------------*/
      /* Issue the receives first */
      for (i=0; i<nnbrs; i++) {
        MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE,
                  peind[i], 1, ctrl->comm, ctrl->rreq+i);
      }

      /* Issue the sends next. This needs some preporcessing */
      for (i=0; i<nsupd; i++) {
        htable[supdate[i]] = 0;
        supdate[i] = graph->imap[supdate[i]];
      }
      iidxsort(nsupd, supdate);

      for (j=i=0; i<nnbrs; i++) {
        yourlastvtx = vtxdist[peind[i]+1];
        for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); 
        MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i);
        j = k;
      }

      /* OK, now get into the loop waiting for the send/recv operations to finish */
      MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses);
      for (i=0; i<nnbrs; i++) 
        MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i);
      MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses);


      /*-------------------------------------------------------------
      / Place the recieved to-be updated vertices into update[] 
      /-------------------------------------------------------------*/
      for (i=0; i<nnbrs; i++) {
        pe_updates = rupdate+sendptr[i];
        for (j=0; j<nupds_pe[i]; j++) {
          k = pe_updates[j];
          if (htable[k-firstvtx] == 0) {
            htable[k-firstvtx] = 1;
            update[nlupd++] = k-firstvtx;
          }
        }
      }


      /*-------------------------------------------------------------
      / Update the rinfo of the vertices in the update[] array
      /-------------------------------------------------------------*/
      for (ii=0; ii<nlupd; ii++) {
        i = update[ii];
        ASSERT(ctrl, htable[i] == 1);

        htable[i] = 0;

        mydomain = where[i];
        myrinfo = rinfo+i;
        tmp_myrinfo = tmp_rinfo+i;
        my_edegrees = myrinfo->degrees;
        your_edegrees = tmp_myrinfo->degrees;

        graph->lmincut -= myrinfo->ed;
        myrinfo->ndegrees = 0;
        myrinfo->id = 0;
        myrinfo->ed = 0;

        for (j=xadj[i]; j<xadj[i+1]; j++) {
          yourdomain = where[ladjncy[j]];
          if (mydomain != yourdomain) {
            myrinfo->ed += adjwgt[j];

            for (k=0; k<myrinfo->ndegrees; k++) {
              if (my_edegrees[k].edge == yourdomain) {
                my_edegrees[k].ewgt += adjwgt[j];
                your_edegrees[k].ewgt += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              my_edegrees[k].edge = yourdomain;
              my_edegrees[k].ewgt = adjwgt[j];
              your_edegrees[k].edge = yourdomain;
              your_edegrees[k].ewgt = adjwgt[j];
              myrinfo->ndegrees++;
            }
            ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]);
            ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]);

          }
          else {
            myrinfo->id += adjwgt[j];
          }
        }
        graph->lmincut += myrinfo->ed;

        tmp_myrinfo->id = myrinfo->id;
        tmp_myrinfo->ed = myrinfo->ed;
        tmp_myrinfo->ndegrees = myrinfo->ndegrees;
      }

      /* finally, sum-up the partition weights */
      MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);
    }
    graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2;

    if (graph->mincut == oldcut)
      break;
  }

/*
  gnswaps = GlobalSESum(ctrl, nswaps);
  gnzgswaps = GlobalSESum(ctrl, nzgswaps);
  if (mype == 0)
    printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps);
*/

  GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM);
  GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM);
  GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM);
  GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr));
}
Exemplo n.º 6
0
/*************************************************************************
* This function balances two partitions by moving the highest gain 
* (including negative gain) vertices to the other domain.
* It is used only when tha unbalance is due to non contigous
* subdomains. That is, the are no boundary vertices.
* It moves vertices from the domain that is overweight to the one that 
* is underweight.
**************************************************************************/
void MocInit2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts)
{
  int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *perm, *qnum;
  float *nvwgt, *npwgts;
  PQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut;

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  nvwgt = graph->nvwgt;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  npwgts = graph->npwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  perm = idxwspacemalloc(ctrl, nvtxs);
  qnum = idxwspacemalloc(ctrl, nvtxs);

  /* This is called for initial partitioning so we know from where to pick nodes */
  from = 1;
  to = (from+1)%2;

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Parts: [");
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], 
           graph->nvtxs, graph->nbnd, graph->mincut, 
           Compute2WayHLoadImbalance(ncon, npwgts, tpwgts));
  }

  for (i=0; i<ncon; i++) {
    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
  }

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));
  ASSERT(CheckGraph(graph));

  /* Compute the queues in which each vertex will be assigned to */
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  /* Insert the nodes of the proper partition in the appropriate priority queue */
  RandomPermute(nvtxs, perm, 1);
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];
    if (where[i] == from) {
      if (ed[i] > 0)
        PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]);
      else
        PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]);
    }
  }


  mincut = graph->mincut;
  nbnd = graph->nbnd;
  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if (AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts[from]))
      break;

    if ((cnum = SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1)
      break;

    if ((higain = PQueueGetMax(&parts[cnum][0])) == -1)
      higain = PQueueGetMax(&parts[cnum][1]);

    mincut -= (ed[higain]-id[higain]);
    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);

    where[higain] = to;

    if (ctrl->dbglvl&DBG_MOVEINFO) {
      printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut);
      for (l=0; l<ncon; l++) 
        printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
      printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts));
      if (ed[higain] == 0 && id[higain] > 0)
        printf("\t Pulled from the interior!\n");
    }


    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) 
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (where[k] == from) {
        if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */
          PQueueDelete(&parts[qnum[k]][1], k, oldgain);
          PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]);
        }
        else { /* It must be in the boundary already */
          if (bndptr[k] == -1)
            printf("What you thought was wrong!\n");
          PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]);
        }
      }

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1) 
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)  
        BNDInsert(nbnd, bndind, bndptr, k);
    }

    ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut));

  }

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd);
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf(", LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts));
  }

  graph->mincut = mincut;
  graph->nbnd = nbnd;

  for (i=0; i<ncon; i++) {
    PQueueFree(ctrl, &parts[i][0]);
    PQueueFree(ctrl, &parts[i][1]);
  }

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 7
0
void FM_Mc2WayCutRefine(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts, idx_t niter)
{
    idx_t i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass,
          me, limit, tmp, cnum;
    idx_t *xadj, *adjncy, *vwgt, *adjwgt, *pwgts, *where, *id, *ed,
          *bndptr, *bndind;
    idx_t *moved, *swaps, *perm, *qnum;
    idx_t higain, mincut, initcut, newcut, mincutorder;
    real_t *invtvwgt, *ubfactors, *minbalv, *newbalv;
    real_t origbal, minbal, newbal, rgain, ffactor;
    rpq_t **queues;

    WCOREPUSH;

    nvtxs    = graph->nvtxs;
    ncon     = graph->ncon;
    xadj     = graph->xadj;
    vwgt     = graph->vwgt;
    adjncy   = graph->adjncy;
    adjwgt   = graph->adjwgt;
    invtvwgt = graph->invtvwgt;
    where    = graph->where;
    id       = graph->id;
    ed       = graph->ed;
    pwgts    = graph->pwgts;
    bndptr   = graph->bndptr;
    bndind   = graph->bndind;

    moved     = iwspacemalloc(ctrl, nvtxs);
    swaps     = iwspacemalloc(ctrl, nvtxs);
    perm      = iwspacemalloc(ctrl, nvtxs);
    qnum      = iwspacemalloc(ctrl, nvtxs);
    ubfactors = rwspacemalloc(ctrl, ncon);
    newbalv   = rwspacemalloc(ctrl, ncon);
    minbalv   = rwspacemalloc(ctrl, ncon);

    limit = gk_min(gk_max(0.01*nvtxs, 25), 150);


    /* Determine a fudge factor to allow the refinement routines to get out
       of tight balancing constraints. */
    ffactor = .5/gk_max(20, nvtxs);

    /* Initialize the queues */
    queues = (rpq_t **)wspacemalloc(ctrl, 2*ncon*sizeof(rpq_t *));
    for (i=0; i<2*ncon; i++)
        queues[i] = rpqCreate(nvtxs);
    for (i=0; i<nvtxs; i++)
        qnum[i] = iargmax_nrm(ncon, vwgt+i*ncon, invtvwgt);

    /* Determine the unbalance tolerance for each constraint. The tolerance is
       equal to the maximum of the original load imbalance and the user-supplied
       allowed tolerance. The rationale behind this approach is to allow the
       refinement routine to improve the cut, without having to worry about fixing
       load imbalance problems. The load imbalance is addressed by the balancing
       routines. */
    origbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ctrl->ubfactors, ubfactors);
    for (i=0; i<ncon; i++)
        ubfactors[i] = (ubfactors[i] > 0 ? ctrl->ubfactors[i]+ubfactors[i] : ctrl->ubfactors[i]);


    IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
          Print2WayRefineStats(ctrl, graph, ntpwgts, origbal, -2));

    iset(nvtxs, -1, moved);
    for (pass=0; pass<niter; pass++) { /* Do a number of passes */
        for (i=0; i<2*ncon; i++)
            rpqReset(queues[i]);

        mincutorder = -1;
        newcut = mincut = initcut = graph->mincut;

        minbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, minbalv);

        ASSERT(ComputeCut(graph, where) == graph->mincut);
        ASSERT(CheckBnd(graph));

        /* Insert boundary nodes in the priority queues */
        nbnd = graph->nbnd;
        irandArrayPermute(nbnd, perm, nbnd/5, 1);
        for (ii=0; ii<nbnd; ii++) {
            i = bndind[perm[ii]];
            ASSERT(ed[i] > 0 || id[i] == 0);
            ASSERT(bndptr[i] != -1);
            //rgain = 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1);
            //rgain = (ed[i]-id[i] > 0 ? 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1) : ed[i]-id[i]);
            rgain = ed[i]-id[i];
            rpqInsert(queues[2*qnum[i]+where[i]], i, rgain);
        }

        for (nswaps=0; nswaps<nvtxs; nswaps++) {
            SelectQueue(graph, ctrl->pijbm, ubfactors, queues, &from, &cnum);

            to = (from+1)%2;

            if (from == -1 || (higain = rpqGetTop(queues[2*cnum+from])) == -1)
                break;
            ASSERT(bndptr[higain] != -1);

            newcut -= (ed[higain]-id[higain]);

            iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+to*ncon,   1);
            iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1);
            newbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, newbalv);

            if ((newcut < mincut && newbal <= ffactor) ||
                    (newcut == mincut && (newbal < minbal ||
                                          (newbal == minbal && BetterBalance2Way(ncon, minbalv, newbalv))))) {
                mincut      = newcut;
                minbal      = newbal;
                mincutorder = nswaps;
                rcopy(ncon, newbalv, minbalv);
            }
            else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
                newcut += (ed[higain]-id[higain]);
                iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1);
                iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+to*ncon,   1);
                break;
            }

            where[higain] = to;
            moved[higain] = nswaps;
            swaps[nswaps] = higain;

            if (ctrl->dbglvl&METIS_DBG_MOVEINFO) {
                printf("Moved%6"PRIDX" from %"PRIDX"(%"PRIDX") Gain:%5"PRIDX", "
                       "Cut:%5"PRIDX", NPwgts:", higain, from, cnum, ed[higain]-id[higain], newcut);
                for (l=0; l<ncon; l++)
                    printf("(%.3"PRREAL" %.3"PRREAL")", pwgts[l]*invtvwgt[l], pwgts[ncon+l]*invtvwgt[l]);
                printf(" %+.3"PRREAL" LB: %.3"PRREAL"(%+.3"PRREAL")\n",
                       minbal, ComputeLoadImbalance(graph, 2, ctrl->pijbm), newbal);
            }


            /**************************************************************
            * Update the id[i]/ed[i] values of the affected nodes
            ***************************************************************/
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);

            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                /* Update its boundary information and queue position */
                if (bndptr[k] != -1) { /* If k was a boundary vertex */
                    if (ed[k] == 0) { /* Not a boundary vertex any more */
                        BNDDelete(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1)  /* Remove it if in the queues */
                            rpqDelete(queues[2*qnum[k]+where[k]], k);
                    }
                    else { /* If it has not been moved, update its position in the queue */
                        if (moved[k] == -1) {
                            //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1);
                            //rgain = (ed[k]-id[k] > 0 ?
                            //              1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]);
                            rgain = ed[k]-id[k];
                            rpqUpdate(queues[2*qnum[k]+where[k]], k, rgain);
                        }
                    }
                }
                else {
                    if (ed[k] > 0) {  /* It will now become a boundary vertex */
                        BNDInsert(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1) {
                            //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1);
                            //rgain = (ed[k]-id[k] > 0 ?
                            //              1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]);
                            rgain = ed[k]-id[k];
                            rpqInsert(queues[2*qnum[k]+where[k]], k, rgain);
                        }
                    }
                }
            }

        }


        /****************************************************************
        * Roll back computations
        *****************************************************************/
        for (i=0; i<nswaps; i++)
            moved[swaps[i]] = -1;  /* reset moved array */
        for (nswaps--; nswaps>mincutorder; nswaps--) {
            higain = swaps[nswaps];

            to = where[higain] = (where[higain]+1)%2;
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);
            else if (ed[higain] > 0 && bndptr[higain] == -1)
                BNDInsert(nbnd, bndind,  bndptr, higain);

            iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+to*ncon,         1);
            iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+((to+1)%2)*ncon, 1);
            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                if (bndptr[k] != -1 && ed[k] == 0)
                    BNDDelete(nbnd, bndind, bndptr, k);
                if (bndptr[k] == -1 && ed[k] > 0)
                    BNDInsert(nbnd, bndind, bndptr, k);
            }
        }

        graph->mincut = mincut;
        graph->nbnd   = nbnd;

        IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
              Print2WayRefineStats(ctrl, graph, ntpwgts, minbal, mincutorder));

        if (mincutorder <= 0 || mincut == initcut)
            break;
    }

    for (i=0; i<2*ncon; i++)
        rpqDestroy(queues[i]);

    WCOREPOP;
}
Exemplo n.º 8
0
/*************************************************************************
* This function performs a k-way directed diffusion
**************************************************************************/
real_t WavefrontDiffusion(ctrl_t *ctrl, graph_t *graph, idx_t *home)
{
  idx_t ii, i, j, k, l, nvtxs, nedges, nparts;
  idx_t from, to, edge, done, nswaps, noswaps, totalv, wsize;
  idx_t npasses, first, second, third, mind, maxd;
  idx_t *xadj, *adjncy, *adjwgt, *where, *perm;
  idx_t *rowptr, *colind, *ed, *psize;
  real_t *transfer, *tmpvec;
  real_t balance = -1.0, *load, *solution, *workspace;
  real_t *nvwgt, *npwgts, flowFactor, cost, ubfactor;
  matrix_t matrix;
  ikv_t *cand;
  idx_t ndirty, nclean, dptr, clean;

  nvtxs        = graph->nvtxs;
  nedges       = graph->nedges;
  xadj         = graph->xadj;
  nvwgt        = graph->nvwgt;
  adjncy       = graph->adjncy;
  adjwgt       = graph->adjwgt;
  where        = graph->where;
  nparts       = ctrl->nparts;
  ubfactor     = ctrl->ubvec[0];
  matrix.nrows = nparts;

  flowFactor = 0.35;
  flowFactor = (ctrl->mype == 2) ? 0.50 : flowFactor;
  flowFactor = (ctrl->mype == 3) ? 0.75 : flowFactor;
  flowFactor = (ctrl->mype == 4) ? 1.00 : flowFactor;

  /* allocate memory */
  solution                   = rmalloc(4*nparts+2*nedges, "WavefrontDiffusion: solution");
  tmpvec                     = solution + nparts;
  npwgts                     = solution + 2*nparts;
  load                       = solution + 3*nparts;
  matrix.values              = solution + 4*nparts;
  transfer = matrix.transfer = solution + 4*nparts + nedges;

  perm                   = imalloc(2*nvtxs+2*nparts+nedges+1, "WavefrontDiffusion: perm");
  ed                     = perm + nvtxs;
  psize                  = perm + 2*nvtxs;
  rowptr = matrix.rowptr = perm + 2*nvtxs + nparts;
  colind = matrix.colind = perm + 2*nvtxs + 2*nparts + 1;

  /*GKTODO - Potential problem with this malloc */
  wsize     = gk_max(sizeof(real_t)*nparts*6, sizeof(idx_t)*(nvtxs+nparts*2+1));
  workspace = (real_t *)gk_malloc(wsize, "WavefrontDiffusion: workspace");
  cand      = ikvmalloc(nvtxs, "WavefrontDiffusion: cand");


  /*****************************/
  /* Populate empty subdomains */
  /*****************************/
  iset(nparts, 0, psize);
  for (i=0; i<nvtxs; i++) 
    psize[where[i]]++;

  mind = iargmin(nparts, psize);
  maxd = iargmax(nparts, psize);
  if (psize[mind] == 0) {
    for (i=0; i<nvtxs; i++) {
      k = (RandomInRange(nvtxs)+i)%nvtxs; 
      if (where[k] == maxd) {
        where[k] = mind;
        psize[mind]++;
        psize[maxd]--;
        break;
      }
    }
  }

  iset(nvtxs, 0, ed);
  rset(nparts, 0.0, npwgts);
  for (i=0; i<nvtxs; i++) {
    npwgts[where[i]] += nvwgt[i];
    for (j=xadj[i]; j<xadj[i+1]; j++)
      ed[i] += (where[i] != where[adjncy[j]] ? adjwgt[j] : 0);
  }

  ComputeLoad(graph, nparts, load, ctrl->tpwgts, 0);
  done = 0;


  /* zero out the tmpvec array */
  rset(nparts, 0.0, tmpvec);

  npasses = gk_min(nparts/2, NGD_PASSES);
  for (l=0; l<npasses; l++) {
    /* Set-up and solve the diffusion equation */
    nswaps = 0;

    /************************/
    /* Solve flow equations */
    /************************/
    SetUpConnectGraph(graph, &matrix, (idx_t *)workspace);

    /* check for disconnected subdomains */
    for(i=0; i<matrix.nrows; i++) {
      if (matrix.rowptr[i]+1 == matrix.rowptr[i+1]) {
        cost = (real_t)(ctrl->mype); 
	goto CleanUpAndExit;
      }
    }

    ConjGrad2(&matrix, load, solution, 0.001, workspace);
    ComputeTransferVector(1, &matrix, solution, transfer, 0);

    GetThreeMax(nparts, load, &first, &second, &third);

    if (l%3 == 0) {
      FastRandomPermute(nvtxs, perm, 1);
    }
    else {
      /*****************************/
      /* move dirty vertices first */
      /*****************************/
      ndirty = 0;
      for (i=0; i<nvtxs; i++) {
        if (where[i] != home[i])
          ndirty++;
      }

      dptr = 0;
      for (i=0; i<nvtxs; i++) {
        if (where[i] != home[i])
          perm[dptr++] = i;
        else
          perm[ndirty++] = i;
      }

      PASSERT(ctrl, ndirty == nvtxs);
      ndirty = dptr;
      nclean = nvtxs-dptr;
      FastRandomPermute(ndirty, perm, 0);
      FastRandomPermute(nclean, perm+ndirty, 0);
    }

    if (ctrl->mype == 0) {
      for (j=nvtxs, k=0, ii=0; ii<nvtxs; ii++) {
        i = perm[ii];
        if (ed[i] != 0) {
          cand[k].key = -ed[i];
          cand[k++].val = i;
        }
        else {
          cand[--j].key = 0;
          cand[j].val = i;
        }
      }
      ikvsorti(k, cand);
    }


    for (ii=0; ii<nvtxs/3; ii++) {
      i = (ctrl->mype == 0) ? cand[ii].val : perm[ii];
      from = where[i];

      /* don't move out the last vertex in a subdomain */
      if (psize[from] == 1)
        continue;

      clean = (from == home[i]) ? 1 : 0;

      /* only move from top three or dirty vertices */
      if (from != first && from != second && from != third && clean)
        continue;

      /* Scatter the sparse transfer row into the dense tmpvec row */
      for (j=rowptr[from]+1; j<rowptr[from+1]; j++)
        tmpvec[colind[j]] = transfer[j];

      for (j=xadj[i]; j<xadj[i+1]; j++) {
        to = where[adjncy[j]];
        if (from != to) {
          if (tmpvec[to] > (flowFactor * nvwgt[i])) {
            tmpvec[to] -= nvwgt[i];
            INC_DEC(psize[to], psize[from], 1);
            INC_DEC(npwgts[to], npwgts[from], nvwgt[i]);
            INC_DEC(load[to], load[from], nvwgt[i]);
            where[i] = to;
            nswaps++;

            /* Update external degrees */
            ed[i] = 0;
            for (k=xadj[i]; k<xadj[i+1]; k++) {
              edge = adjncy[k];
              ed[i] += (to != where[edge] ? adjwgt[k] : 0);

              if (where[edge] == from)
                ed[edge] += adjwgt[k];
              if (where[edge] == to)
                ed[edge] -= adjwgt[k];
            }
            break;
          }
        }
      }

      /* Gather the dense tmpvec row into the sparse transfer row */
      for (j=rowptr[from]+1; j<rowptr[from+1]; j++) {
        transfer[j] = tmpvec[colind[j]];
        tmpvec[colind[j]] = 0.0;
      }
      ASSERT(fabs(rsum(nparts, tmpvec, 1)) < .0001)
    }

    if (l % 2 == 1) {
      balance = rmax(nparts, npwgts)*nparts;
      if (balance < ubfactor + 0.035)
        done = 1;

      if (GlobalSESum(ctrl, done) > 0)
        break;

      noswaps = (nswaps > 0) ? 0 : 1;
      if (GlobalSESum(ctrl, noswaps) > ctrl->npes/2)
        break;

    }
  }

  graph->mincut = ComputeSerialEdgeCut(graph);
  totalv        = Mc_ComputeSerialTotalV(graph, home);
  cost          = ctrl->ipc_factor * (real_t)graph->mincut + ctrl->redist_factor * (real_t)totalv;


CleanUpAndExit:
  gk_free((void **)&solution, (void **)&perm, (void **)&workspace, (void **)&cand, LTERM);

  return cost;
}
Exemplo n.º 9
0
/*************************************************************************
* This function balances two partitions by moving the highest gain
* (including negative gain) vertices to the other domain.
* It is used only when tha unbalance is due to non contigous
* subdomains. That is, the are no boundary vertices.
* It moves vertices from the domain that is overweight to the one that
* is underweight.
**************************************************************************/
void Mc_Serial_Init2WayBalance(GraphType *graph, float *tpwgts)
{
  int i, ii, j, k;
  int kwgt, nvtxs, nbnd, ncon, nswaps, from, to, cnum, tmp;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *qnum;
  float *nvwgt, *npwgts;
  FPQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut;
  KeyValueType *cand;

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  nvwgt = graph->nvwgt;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->sendind;
  ed = graph->recvind;
  npwgts = graph->gnpwgts;
  bndptr = graph->sendptr;
  bndind = graph->recvptr;

  qnum = idxmalloc(nvtxs, "qnum");
  cand = (KeyValueType *)GKmalloc(nvtxs*sizeof(KeyValueType), "cand");

  /* This is called for initial partitioning so we know from where to pick nodes */
  from = 1;
  to = (from+1)%2;

  for (i=0; i<ncon; i++) {
    FPQueueInit(&parts[i][0], nvtxs);
    FPQueueInit(&parts[i][1], nvtxs);
  }

  /* Compute the queues in which each vertex will be assigned to */
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  for (i=0; i<nvtxs; i++) {
    cand[i].key = id[i]-ed[i];
    cand[i].val = i;
  }
  ikeysort(nvtxs, cand);

  /* Insert the nodes of the proper partition in the appropriate priority queue */
  for (ii=0; ii<nvtxs; ii++) {
    i = cand[ii].val;
    if (where[i] == from) {
      if (ed[i] > 0)
        FPQueueInsert(&parts[qnum[i]][0], i, (float)(ed[i]-id[i]));
      else
        FPQueueInsert(&parts[qnum[i]][1], i, (float)(ed[i]-id[i]));
    }
  }

  mincut = graph->mincut;
  nbnd = graph->gnvtxs;
  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if (Serial_AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts+from*ncon))
      break;

    if ((cnum = Serial_SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1)
      break;


    if ((higain = FPQueueGetMax(&parts[cnum][0])) == -1)
      higain = FPQueueGetMax(&parts[cnum][1]);

    mincut -= (ed[higain]-id[higain]);
    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);

    where[higain] = to;

    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (where[k] == from) {
        if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */
          FPQueueDelete(&parts[qnum[k]][1], k);
          FPQueueInsert(&parts[qnum[k]][0], k, (float)(ed[k]-id[k]));
        }
        else { /* It must be in the boundary already */
          FPQueueUpdate(&parts[qnum[k]][0], k, (float)(oldgain), (float)(ed[k]-id[k]));
        }
      }

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1)
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }

  graph->mincut = mincut;
  graph->gnvtxs = nbnd;

  for (i=0; i<ncon; i++) {
    FPQueueFree(&parts[i][0]);
    FPQueueFree(&parts[i][1]);
  }

  GKfree((void **)&cand, (void **)&qnum, LTERM);
}
Exemplo n.º 10
0
Arquivo: mfm.c Projeto: cran/BigQuic
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void MocFM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, float *tpwgts, int npasses)
{
  int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *swaps, *perm, *qnum;
  float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal;
  PQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut, initcut, newcut, mincutorder;
  float rtpwgts[2];

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  npwgts = graph->npwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);
  qnum = idxwspacemalloc(ctrl, nvtxs);

  limit = amin(amax(0.01*nvtxs, 25), 150);

  /* Initialize the queues */
  for (i=0; i<ncon; i++) {
    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
  }
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

  rtpwgts[0] = origbal*tpwgts[0];
  rtpwgts[1] = origbal*tpwgts[1];

/*
  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Parts: [");
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal);
  }
*/

  idxset(nvtxs, -1, moved);
  for (pass=0; pass<npasses; pass++) { /* Do a number of passes */
    for (i=0; i<ncon; i++) { 
      PQueueReset(&parts[i][0]);
      PQueueReset(&parts[i][1]);
    }

    mincutorder = -1;
    newcut = mincut = initcut = graph->mincut;
    for (i=0; i<ncon; i++)
      mindiff[i] = fabs(tpwgts[0]-npwgts[i]);
    minbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

    ASSERT(ComputeCut(graph, where) == graph->mincut);
    ASSERT(CheckBnd(graph));

    /* Insert boundary nodes in the priority queues */
    nbnd = graph->nbnd;
    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      ASSERT(ed[i] > 0 || id[i] == 0);
      ASSERT(bndptr[i] != -1);
      PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]);
    }

    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      SelectQueue(ncon, npwgts, rtpwgts, &from, &cnum, parts);
      to = (from+1)%2;

      if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1)
        break;
      ASSERT(bndptr[higain] != -1);

      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);

      newcut -= (ed[higain]-id[higain]);
      newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

      if ((newcut < mincut && newbal-origbal <= .00001) || 
          (newcut == mincut && (newbal < minbal || 
                                (newbal == minbal && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) {
        mincut = newcut;
        minbal = newbal;
        mincutorder = nswaps;
        for (i=0; i<ncon; i++)
          mindiff[i] = fabs(tpwgts[0]-npwgts[i]);
      }
      else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
        newcut += (ed[higain]-id[higain]);
        saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
        saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
        break;
      }

      where[higain] = to;
      moved[higain] = nswaps;
      swaps[nswaps] = higain;

/*
      if (ctrl->dbglvl&DBG_MOVEINFO) {
        printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut);
        for (l=0; l<ncon; l++) 
          printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
        printf(", %.3f LB: %.3f\n", minbal, newbal);
      }
*/


      /**************************************************************
      * Update the id[i]/ed[i] values of the affected nodes
      ***************************************************************/
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) 
        BNDDelete(nbnd, bndind,  bndptr, higain);

      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        oldgain = ed[k]-id[k];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        /* Update its boundary information and queue position */
        if (bndptr[k] != -1) { /* If k was a boundary vertex */
          if (ed[k] == 0) { /* Not a boundary vertex any more */
            BNDDelete(nbnd, bndind, bndptr, k);
            if (moved[k] == -1)  /* Remove it if in the queues */
              PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain);
          }
          else { /* If it has not been moved, update its position in the queue */
            if (moved[k] == -1)
              PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]);
          }
        }
        else {
          if (ed[k] > 0) {  /* It will now become a boundary vertex */
            BNDInsert(nbnd, bndind, bndptr, k);
            if (moved[k] == -1) 
              PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]);
          }
        }
      }

    }


    /****************************************************************
    * Roll back computations
    *****************************************************************/
    for (i=0; i<nswaps; i++)
      moved[swaps[i]] = -1;  /* reset moved array */
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      to = where[higain] = (where[higain]+1)%2;
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
        BNDDelete(nbnd, bndind,  bndptr, higain);
      else if (ed[higain] > 0 && bndptr[higain] == -1)
        BNDInsert(nbnd, bndind,  bndptr, higain);

      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        if (bndptr[k] != -1 && ed[k] == 0)
          BNDDelete(nbnd, bndind, bndptr, k);
        if (bndptr[k] == -1 && ed[k] > 0)
          BNDInsert(nbnd, bndind, bndptr, k);
      }
    }

/*
    if (ctrl->dbglvl&DBG_REFINE) {
      printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd);
      for (l=0; l<ncon; l++)
        printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
      printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts));
    }
*/

    graph->mincut = mincut;
    graph->nbnd = nbnd;

    if (mincutorder == -1 || mincut == initcut)
      break;
  }

  for (i=0; i<ncon; i++) {
    PQueueFree(ctrl, &parts[i][0]);
    PQueueFree(ctrl, &parts[i][1]);
  }

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 11
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void FM_2WayEdgeRefine(CtrlType *ctrl, GraphType *graph, int *tpwgts, int npasses)
{
  int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts;
  idxtype *moved, *swaps, *perm;
  PQueueType parts[2];
  int higain, oldgain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  pwgts = graph->pwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);

  limit = (int) amin(amax(0.01*nvtxs, 15), 100);
  avgvwgt = amin((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs);

  tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)];
  PQueueInit(ctrl, &parts[0], nvtxs, tmp);
  PQueueInit(ctrl, &parts[1], nvtxs, tmp);

  IFSET(ctrl->dbglvl, DBG_REFINE, 
     printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d\n",
             pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  origdiff = abs(tpwgts[0]-pwgts[0]);
  idxset(nvtxs, -1, moved);
  for (pass=0; pass<npasses; pass++) { /* Do a number of passes */
    PQueueReset(&parts[0]);
    PQueueReset(&parts[1]);

    mincutorder = -1;
    newcut = mincut = initcut = graph->mincut;
    mindiff = abs(tpwgts[0]-pwgts[0]);

    ASSERT(ComputeCut(graph, where) == graph->mincut);
    ASSERT(CheckBnd(graph));

    /* Insert boundary nodes in the priority queues */
    nbnd = graph->nbnd;
    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = perm[ii];
      ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0);
      ASSERT(bndptr[bndind[i]] != -1);
      PQueueInsert(&parts[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]);
    }

    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1);
      to = (from+1)%2;

      if ((higain = PQueueGetMax(&parts[from])) == -1)
        break;
      ASSERT(bndptr[higain] != -1);

      newcut -= (ed[higain]-id[higain]);
      INC_DEC(pwgts[to], pwgts[from], vwgt[higain]);

      if ((newcut < mincut && abs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) || 
          (newcut == mincut && abs(tpwgts[0]-pwgts[0]) < mindiff)) {
        mincut = newcut;
        mindiff = abs(tpwgts[0]-pwgts[0]);
        mincutorder = nswaps;
      }
      else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
        newcut += (ed[higain]-id[higain]);
        INC_DEC(pwgts[from], pwgts[to], vwgt[higain]);
        break;
      }

      where[higain] = to;
      moved[higain] = nswaps;
      swaps[nswaps] = higain;

      IFSET(ctrl->dbglvl, DBG_MOVEINFO, 
        printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1]));

      /**************************************************************
      * Update the id[i]/ed[i] values of the affected nodes
      ***************************************************************/
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) 
        BNDDelete(nbnd, bndind,  bndptr, higain);

      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        oldgain = ed[k]-id[k];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        /* Update its boundary information and queue position */
        if (bndptr[k] != -1) { /* If k was a boundary vertex */
          if (ed[k] == 0) { /* Not a boundary vertex any more */
            BNDDelete(nbnd, bndind, bndptr, k);
            if (moved[k] == -1)  /* Remove it if in the queues */
              PQueueDelete(&parts[where[k]], k, oldgain);
          }
          else { /* If it has not been moved, update its position in the queue */
            if (moved[k] == -1)
              PQueueUpdate(&parts[where[k]], k, oldgain, ed[k]-id[k]);
          }
        }
        else {
          if (ed[k] > 0) {  /* It will now become a boundary vertex */
            BNDInsert(nbnd, bndind, bndptr, k);
            if (moved[k] == -1) 
              PQueueInsert(&parts[where[k]], k, ed[k]-id[k]);
          }
        }
      }

    }


    /****************************************************************
    * Roll back computations
    *****************************************************************/
    for (i=0; i<nswaps; i++)
      moved[swaps[i]] = -1;  /* reset moved array */
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      to = where[higain] = (where[higain]+1)%2;
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
        BNDDelete(nbnd, bndind,  bndptr, higain);
      else if (ed[higain] > 0 && bndptr[higain] == -1)
        BNDInsert(nbnd, bndind,  bndptr, higain);

      INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]);
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        if (bndptr[k] != -1 && ed[k] == 0)
          BNDDelete(nbnd, bndind, bndptr, k);
        if (bndptr[k] == -1 && ed[k] > 0)
          BNDInsert(nbnd, bndind, bndptr, k);
      }
    }

    IFSET(ctrl->dbglvl, DBG_REFINE, 
      printf("\tMinimum cut: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd));

    graph->mincut = mincut;
    graph->nbnd = nbnd;

    if (mincutorder == -1 || mincut == initcut)
      break;
  }

  PQueueFree(ctrl, &parts[0]);
  PQueueFree(ctrl, &parts[1]);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 12
0
void FM_2WayNodeRefine_TwoSidedP(CtrlType *ctrl, GraphType *graph, 
          idxtype *hmarker, float ubfactor, int npasses)
{
  int i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind;
  idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
  idxtype *mptr, *mind, *moved, *swaps, *perm;
  PQueueType parts[2]; 
  NRInfoType *rinfo;
  int higain, oldgain, mincut, initcut, mincutorder;	
  int pass, to, other, limit;
  int badmaxpwgt, mindiff, newdiff;
  int u[2], g[2];

  nvtxs  = graph->nvtxs;
  xadj   = graph->xadj;
  adjncy = graph->adjncy;
  vwgt   = graph->vwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where  = graph->where;
  pwgts  = graph->pwgts;
  rinfo  = graph->nrinfo;


  i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt);
  PQueueInit(ctrl, &parts[0], nvtxs, i);
  PQueueInit(ctrl, &parts[1], nvtxs, i);

  moved    = idxwspacemalloc(ctrl, nvtxs);
  swaps    = idxwspacemalloc(ctrl, nvtxs);
  mptr     = idxwspacemalloc(ctrl, nvtxs+1);
  mind     = idxwspacemalloc(ctrl, nvtxs);
  perm     = idxwspacemalloc(ctrl, nvtxs);

  IFSET(ctrl->dbglvl, DBG_REFINE,
    printf("Partitions: [%6d %6d] Nv-Nb[%6d %6d]. ISep: %6d\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  badmaxpwgt = (int)(ubfactor*amax(pwgts[0], pwgts[1]));

  for (pass=0; pass<npasses; pass++) {
    idxset(nvtxs, -1, moved);
    PQueueReset(&parts[0]);
    PQueueReset(&parts[1]);

    mincutorder = -1;
    initcut = mincut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      ASSERT(where[i] == 2);
      if (hmarker[i] == -1) {
        PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]);
        PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]);
        moved[i] = -5;
      }
      else if (hmarker[i] != 2) {
        PQueueInsert(&parts[hmarker[i]], i, vwgt[i]-rinfo[i].edegrees[(hmarker[i]+1)%2]);
        moved[i] = -(10+hmarker[i]);
      }
    }

    ASSERT(CheckNodeBnd(graph, nbnd));
    ASSERT(CheckNodePartitionParams(graph));

    limit = nbnd;

    /******************************************************
    * Get into the FM loop
    *******************************************************/
    mptr[0] = nmind = 0;
    mindiff = abs(pwgts[0]-pwgts[1]);
    to = (pwgts[0] < pwgts[1] ? 0 : 1);
    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      u[0] = PQueueSeeMax(&parts[0]);  
      u[1] = PQueueSeeMax(&parts[1]);
      if (u[0] != -1 && u[1] != -1) {
        g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1];
        g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0];

        to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); 

        if (pwgts[to]+vwgt[u[to]] > badmaxpwgt) 
          to = (to+1)%2;
      }
      else if (u[0] == -1 && u[1] == -1) {
        break;
      }
      else if (u[0] != -1 && pwgts[0]+vwgt[u[0]] <= badmaxpwgt) {
        to = 0;
      }
      else if (u[1] != -1 && pwgts[1]+vwgt[u[1]] <= badmaxpwgt) {
        to = 1;
      }
      else
        break;

      other = (to+1)%2;

      higain = PQueueGetMax(&parts[to]);

      /* Delete its matching entry in the other queue */
      if (moved[higain] == -5) 
        PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]);

      ASSERT(bndptr[higain] != -1);

      pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);

      newdiff = abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
      if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
        mincut      = pwgts[2];
        mincutorder = nswaps;
        mindiff     = newdiff;
      }
      else {
        if (nswaps - mincutorder > limit) {
          pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]);
          break; /* No further improvement, break out */
        }
      }

      BNDDelete(nbnd, bndind, bndptr, higain);
      pwgts[to] += vwgt[higain];
      where[higain] = to;
      moved[higain] = nswaps;
      swaps[nswaps] = higain;  


      /**********************************************************
      * Update the degrees of the affected nodes
      ***********************************************************/
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
          oldgain = vwgt[k]-rinfo[k].edegrees[to];
          rinfo[k].edegrees[to] += vwgt[higain];
          if (moved[k] == -5 || moved[k] == -(10+other)) 
            PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]);
        }
        else if (where[k] == other) { /* This vertex is pulled into the separator */
          ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k]));
          BNDInsert(nbnd, bndind, bndptr, k);

          mind[nmind++] = k;  /* Keep track for rollback */
          where[k] = 2;
          pwgts[other] -= vwgt[k];

          edegrees = rinfo[k].edegrees;
          edegrees[0] = edegrees[1] = 0;
          for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
            kk = adjncy[jj];
            if (where[kk] != 2) 
              edegrees[where[kk]] += vwgt[kk];
            else {
              oldgain = vwgt[kk]-rinfo[kk].edegrees[other];
              rinfo[kk].edegrees[other] -= vwgt[k];
              if (moved[kk] == -5 || moved[kk] == -(10+to))
                PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]);
            }
          }

          /* Insert the new vertex into the priority queue (if it has not been moved). */
          if (moved[k] == -1 && (hmarker[k] == -1 || hmarker[k] == to)) {
            PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]);
            moved[k] = -(10+to);
          }
#ifdef FULLMOVES  /* this does not work as well as the above partial one */
          if (moved[k] == -1) {
            if (hmarker[k] == -1) {
              PQueueInsert(&parts[0], k, vwgt[k]-edegrees[1]);
              PQueueInsert(&parts[1], k, vwgt[k]-edegrees[0]);
              moved[k] = -5;
            }
            else if (hmarker[k] != 2) {
              PQueueInsert(&parts[hmarker[k]], k, vwgt[k]-edegrees[(hmarker[k]+1)%2]);
              moved[k] = -(10+hmarker[k]);
            }
          }
#endif
        }
      }
      mptr[nswaps+1] = nmind;

      IFSET(ctrl->dbglvl, DBG_MOVEINFO,
            printf("Moved %6d to %3d, Gain: %5d [%5d] [%4d %4d] \t[%5d %5d %5d]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2]));

    }


    /****************************************************************
    * Roll back computation 
    *****************************************************************/
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      ASSERT(CheckNodePartitionParams(graph));

      to = where[higain];
      other = (to+1)%2;
      INC_DEC(pwgts[2], pwgts[to], vwgt[higain]);
      where[higain] = 2;
      BNDInsert(nbnd, bndind, bndptr, higain);

      edegrees = rinfo[higain].edegrees;
      edegrees[0] = edegrees[1] = 0;
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) 
          rinfo[k].edegrees[to] -= vwgt[higain];
        else
          edegrees[where[k]] += vwgt[k];
      }

      /* Push nodes out of the separator */
      for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) {
        k = mind[j];
        ASSERT(where[k] == 2);
        where[k] = other;
        INC_DEC(pwgts[other], pwgts[2], vwgt[k]);
        BNDDelete(nbnd, bndind, bndptr, k);
        for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
          kk = adjncy[jj];
          if (where[kk] == 2) 
            rinfo[kk].edegrees[other] += vwgt[k];
        }
      }
    }

    ASSERT(mincut == pwgts[2]);

    IFSET(ctrl->dbglvl, DBG_REFINE,
      printf("\tMinimum sep: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd));

    graph->mincut = mincut;
    graph->nbnd = nbnd;

    if (mincutorder == -1 || mincut >= initcut)
      break;
  }

  PQueueFree(ctrl, &parts[0]);
  PQueueFree(ctrl, &parts[1]);

  idxwspacefree(ctrl, nvtxs+1);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 13
0
void FM_2WayNodeRefine_OneSidedP(CtrlType *ctrl, GraphType *graph, 
          idxtype *hmarker, float ubfactor, int npasses)
{
  int i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind, nbad, qsize;
  idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
  idxtype *mptr, *mind, *swaps, *perm, *inqueue;
  PQueueType parts; 
  NRInfoType *rinfo;
  int higain, oldgain, mincut, initcut, mincutorder;	
  int pass, from, to, limit;
  int badmaxpwgt, mindiff, newdiff;

  ASSERT(graph->mincut == graph->pwgts[2]);

  nvtxs  = graph->nvtxs;
  xadj   = graph->xadj;
  adjncy = graph->adjncy;
  vwgt   = graph->vwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where  = graph->where;
  pwgts  = graph->pwgts;
  rinfo  = graph->nrinfo;

  PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt));
      
  perm    = idxwspacemalloc(ctrl, nvtxs);
  swaps   = idxwspacemalloc(ctrl, nvtxs);
  mptr    = idxwspacemalloc(ctrl, nvtxs+1);
  mind    = idxwspacemalloc(ctrl, nvtxs);
  inqueue = idxwspacemalloc(ctrl, nvtxs);

  idxset(nvtxs, -1, inqueue);

  badmaxpwgt = (int)(ubfactor*amax(pwgts[0], pwgts[1]));

  IFSET(ctrl->dbglvl, DBG_REFINE,
    printf("Partitions-N1: [%6d %6d] Nv-Nb[%6d %6d] MaxPwgt[%6d]. ISep: %6d\n", 
        pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, badmaxpwgt, graph->mincut));

  to = (pwgts[0] < pwgts[1] ? 1 : 0);
  for (pass=0; pass<npasses; pass++) {
    from = to; 
    to   = (from+1)%2;

    PQueueReset(&parts);

    mincutorder = -1;
    initcut = mincut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      ASSERT(where[i] == 2);
      if (hmarker[i] == -1 || hmarker[i] == to) {
        PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[from]);
        inqueue[i] = pass;
      }
    }
    qsize = parts.nnodes;

    ASSERT(CheckNodeBnd(graph, nbnd));
    ASSERT(CheckNodePartitionParams(graph));

    limit = nbnd;

    /******************************************************
    * Get into the FM loop
    *******************************************************/
    mptr[0] = nmind = nbad = 0;
    mindiff = abs(pwgts[0]-pwgts[1]);
    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      if ((higain = PQueueGetMax(&parts)) == -1) 
        break;

      inqueue[higain] = -1;

      ASSERT(bndptr[higain] != -1);

      if (pwgts[to]+vwgt[higain] > badmaxpwgt) { /* Skip this vertex */
        if (nbad++ > limit) 
          break; 
        else {
          nswaps--;
          continue;  
        }
      }

      pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[from]);

      newdiff = abs(pwgts[to]+vwgt[higain] - (pwgts[from]-rinfo[higain].edegrees[from]));
      if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
        mincut      = pwgts[2];
        mincutorder = nswaps;
        mindiff     = newdiff;
        nbad        = 0;
      }
      else {
        if (nbad++ > limit) {
          pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[from]);
          break; /* No further improvement, break out */
        }
      }

      BNDDelete(nbnd, bndind, bndptr, higain);
      pwgts[to] += vwgt[higain];
      where[higain] = to;
      swaps[nswaps] = higain;  


      /**********************************************************
      * Update the degrees of the affected nodes
      ***********************************************************/
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
          rinfo[k].edegrees[to] += vwgt[higain];
        }
        else if (where[k] == from) { /* This vertex is pulled into the separator */
          ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k]));
          BNDInsert(nbnd, bndind, bndptr, k);

          mind[nmind++] = k;  /* Keep track for rollback */
          where[k]      = 2;
          pwgts[from]  -= vwgt[k];

          edegrees = rinfo[k].edegrees;
          edegrees[0] = edegrees[1] = 0;
          for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
            kk = adjncy[jj];
            if (where[kk] != 2) 
              edegrees[where[kk]] += vwgt[kk];
            else {
              oldgain = vwgt[kk]-rinfo[kk].edegrees[from];
              rinfo[kk].edegrees[from] -= vwgt[k];

              /* Update the gain of this node if it was skipped */
              if (inqueue[kk] == pass)
                PQueueUpdateUp(&parts, kk, oldgain, oldgain+vwgt[k]); 
            }
          }

          /* Insert the new vertex into the priority queue. Safe due to one-sided moves */
          if (hmarker[k] == -1 || hmarker[k] == to) {
            PQueueInsert(&parts, k, vwgt[k]-edegrees[from]);
            inqueue[k] = pass;
          }
        }
      }
      mptr[nswaps+1] = nmind;


      IFSET(ctrl->dbglvl, DBG_MOVEINFO,
            printf("Moved %6d to %3d, Gain: %5d [%5d] \t[%5d %5d %5d] [%3d %2d]\n", 
                       higain, to, (vwgt[higain]-rinfo[higain].edegrees[from]), vwgt[higain], pwgts[0], pwgts[1], pwgts[2], nswaps, limit));

    }


    /****************************************************************
    * Roll back computation 
    *****************************************************************/
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      ASSERT(CheckNodePartitionParams(graph));
      ASSERT(where[higain] == to);

      INC_DEC(pwgts[2], pwgts[to], vwgt[higain]);
      where[higain] = 2;
      BNDInsert(nbnd, bndind, bndptr, higain);

      edegrees = rinfo[higain].edegrees;
      edegrees[0] = edegrees[1] = 0;
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) 
          rinfo[k].edegrees[to] -= vwgt[higain];
        else
          edegrees[where[k]] += vwgt[k];
      }

      /* Push nodes out of the separator */
      for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) {
        k = mind[j];
        ASSERT(where[k] == 2);
        where[k] = from;
        INC_DEC(pwgts[from], pwgts[2], vwgt[k]);
        BNDDelete(nbnd, bndind, bndptr, k);
        for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
          kk = adjncy[jj];
          if (where[kk] == 2) 
            rinfo[kk].edegrees[from] += vwgt[k];
        }
      }
    }

    ASSERT(mincut == pwgts[2]);

    IFSET(ctrl->dbglvl, DBG_REFINE,
      printf("\tMinimum sep: %6d at %5d, PWGTS: [%6d %6d], NBND: %6d, QSIZE: %6d\n", 
          mincut, mincutorder, pwgts[0], pwgts[1], nbnd, qsize));

    graph->mincut = mincut;
    graph->nbnd   = nbnd;

    if (pass%2 == 1 && (mincutorder == -1 || mincut >= initcut))
      break;
  }

  PQueueFree(ctrl, &parts);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs+1);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 14
0
/*************************************************************************
* This function balances two partitions by moving boundary nodes
* from the domain that is overweight to the one that is underweight.
**************************************************************************/
void Bnd2WayBalance(CtrlType *ctrl, GraphType *graph, int *tpwgts)
{
  int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, tmp;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts;
  idxtype *moved, *perm;
  PQueueType parts;
  int higain, oldgain, mincut, mindiff;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  pwgts = graph->pwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);

  /* Determine from which domain you will be moving data */
  mindiff = abs(tpwgts[0]-pwgts[0]);
  from = (pwgts[0] < tpwgts[0] ? 1 : 0);
  to = (from+1)%2;

  IFSET(ctrl->dbglvl, DBG_REFINE, 
     printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d [B]\n",
             pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)];
  PQueueInit(ctrl, &parts, nvtxs, tmp);

  idxset(nvtxs, -1, moved);

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));

  /* Insert the boundary nodes of the proper partition whose size is OK in the priority queue */
  nbnd = graph->nbnd;
  RandomPermute(nbnd, perm, 1);
  for (ii=0; ii<nbnd; ii++) {
    i = perm[ii];
    ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0);
    ASSERT(bndptr[bndind[i]] != -1);
    if (where[bndind[i]] == from && vwgt[bndind[i]] <= mindiff)
      PQueueInsert(&parts, bndind[i], ed[bndind[i]]-id[bndind[i]]);
  }

  mincut = graph->mincut;
  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if ((higain = PQueueGetMax(&parts)) == -1)
      break;
    ASSERT(bndptr[higain] != -1);

    if (pwgts[to]+vwgt[higain] > tpwgts[to])
      break;

    mincut -= (ed[higain]-id[higain]);
    INC_DEC(pwgts[to], pwgts[from], vwgt[higain]);

    where[higain] = to;
    moved[higain] = nswaps;

    IFSET(ctrl->dbglvl, DBG_MOVEINFO, 
      printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], mincut, pwgts[0], pwgts[1]));

    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && xadj[higain] < xadj[higain+1]) 
      BNDDelete(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update its boundary information and queue position */
      if (bndptr[k] != -1) { /* If k was a boundary vertex */
        if (ed[k] == 0) { /* Not a boundary vertex any more */
          BNDDelete(nbnd, bndind, bndptr, k);
          if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff)  /* Remove it if in the queues */
            PQueueDelete(&parts, k, oldgain);
        }
        else { /* If it has not been moved, update its position in the queue */
          if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff)
            PQueueUpdate(&parts, k, oldgain, ed[k]-id[k]);
        }
      }
      else {
        if (ed[k] > 0) {  /* It will now become a boundary vertex */
          BNDInsert(nbnd, bndind, bndptr, k);
          if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) 
            PQueueInsert(&parts, k, ed[k]-id[k]);
        }
      }
    }
  }

  IFSET(ctrl->dbglvl, DBG_REFINE, 
    printf("\tMinimum cut: %6d, PWGTS: [%6d %6d], NBND: %6d\n", mincut, pwgts[0], pwgts[1], nbnd));

  graph->mincut = mincut;
  graph->nbnd = nbnd;

  PQueueFree(ctrl, &parts);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 15
0
/*************************************************************************
* This function performs a node-based FM refinement 
**************************************************************************/
void FM_2WayNodeRefineEqWgt(CtrlType *ctrl, GraphType *graph, idxtype npasses)
{
  idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind;
  idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
  idxtype *mptr, *mind, *moved, *swaps, *perm;
  PQueueType parts[2]; 
  NRInfoType *rinfo;
  idxtype higain, oldgain, mincut, initcut, mincutorder;	
  idxtype pass, to, other, limit;
  idxtype mindiff, newdiff;
  idxtype u[2], g[2];

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  vwgt = graph->vwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where = graph->where;
  pwgts = graph->pwgts;
  rinfo = graph->nrinfo;


  i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt);
  PQueueInit(ctrl, &parts[0], nvtxs, i);
  PQueueInit(ctrl, &parts[1], nvtxs, i);

  moved = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  mptr  = idxwspacemalloc(ctrl, nvtxs+1);
  mind  = idxwspacemalloc(ctrl, nvtxs);
  perm  = idxwspacemalloc(ctrl, nvtxs);

  IFSET(ctrl->dbglvl, DBG_REFINE,
    mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  for (pass=0; pass<npasses; pass++) {
    idxset(nvtxs, -1, moved);
    PQueueReset(&parts[0]);
    PQueueReset(&parts[1]);

    mincutorder = -1;
    initcut = mincut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      ASSERT(where[i] == 2);
      PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]);
      PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]);
    }

    ASSERT(CheckNodeBnd(graph, nbnd));
    ASSERT(CheckNodePartitionParams(graph));

    limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300));

    /******************************************************
    * Get into the FM loop
    *******************************************************/
    mptr[0] = nmind = 0;
    mindiff = idxtype_abs(pwgts[0]-pwgts[1]);
    to = (pwgts[0] < pwgts[1] ? 0 : 1);
    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      to = (pwgts[0] < pwgts[1] ? 0 : 1);

      if (pwgts[0] == pwgts[1]) {
        u[0] = PQueueSeeMax(&parts[0]);  
        u[1] = PQueueSeeMax(&parts[1]);
        if (u[0] != -1 && u[1] != -1) {
          g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1];
          g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0];

          to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2)); 
        }
      }
      other = (to+1)%2;

      if ((higain = PQueueGetMax(&parts[to])) == -1)
        break;

      if (moved[higain] == -1) /* Delete if it was in the separator originally */
        PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]);

      ASSERT(bndptr[higain] != -1);

      pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);

      newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
      if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
        mincut = pwgts[2];
        mincutorder = nswaps;
        mindiff = newdiff;
      }
      else {
        if (nswaps - mincutorder > limit) {
          pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]);
          break; /* No further improvement, break out */
        }
      }

      BNDDelete(nbnd, bndind, bndptr, higain);
      pwgts[to] += vwgt[higain];
      where[higain] = to;
      moved[higain] = nswaps;
      swaps[nswaps] = higain;  


      /**********************************************************
      * Update the degrees of the affected nodes
      ***********************************************************/
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
          oldgain = vwgt[k]-rinfo[k].edegrees[to];
          rinfo[k].edegrees[to] += vwgt[higain];
          if (moved[k] == -1 || moved[k] == -(2+other))
            PQueueUpdate(&parts[other], k, oldgain, oldgain-vwgt[higain]);
        }
        else if (where[k] == other) { /* This vertex is pulled into the separator */
          ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k]));
          BNDInsert(nbnd, bndind, bndptr, k);

          mind[nmind++] = k;  /* Keep track for rollback */
          where[k] = 2;
          pwgts[other] -= vwgt[k];

          edegrees = rinfo[k].edegrees;
          edegrees[0] = edegrees[1] = 0;
          for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
            kk = adjncy[jj];
            if (where[kk] != 2) 
              edegrees[where[kk]] += vwgt[kk];
            else {
              oldgain = vwgt[kk]-rinfo[kk].edegrees[other];
              rinfo[kk].edegrees[other] -= vwgt[k];
              if (moved[kk] == -1 || moved[kk] == -(2+to))
                PQueueUpdate(&parts[to], kk, oldgain, oldgain+vwgt[k]);
            }
          }

          /* Insert the new vertex into the priority queue. Only one side! */
          if (moved[k] == -1) {
            PQueueInsert(&parts[to], k, vwgt[k]-edegrees[other]);
            moved[k] = -(2+to);
          }
        }
      }
      mptr[nswaps+1] = nmind;

      IFSET(ctrl->dbglvl, DBG_MOVEINFO,
            mprintf("Moved %6D to %3D, Gain: %5D [%5D] [%4D %4D] \t[%5D %5D %5D]\n", higain, to, g[to], g[other], vwgt[u[to]], vwgt[u[other]], pwgts[0], pwgts[1], pwgts[2]));

    }


    /****************************************************************
    * Roll back computation 
    *****************************************************************/
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      ASSERT(CheckNodePartitionParams(graph));

      to = where[higain];
      other = (to+1)%2;
      INC_DEC(pwgts[2], pwgts[to], vwgt[higain]);
      where[higain] = 2;
      BNDInsert(nbnd, bndind, bndptr, higain);

      edegrees = rinfo[higain].edegrees;
      edegrees[0] = edegrees[1] = 0;
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) 
          rinfo[k].edegrees[to] -= vwgt[higain];
        else
          edegrees[where[k]] += vwgt[k];
      }

      /* Push nodes out of the separator */
      for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) {
        k = mind[j];
        ASSERT(where[k] == 2);
        where[k] = other;
        INC_DEC(pwgts[other], pwgts[2], vwgt[k]);
        BNDDelete(nbnd, bndind, bndptr, k);
        for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
          kk = adjncy[jj];
          if (where[kk] == 2) 
            rinfo[kk].edegrees[other] += vwgt[k];
        }
      }
    }

    ASSERT(mincut == pwgts[2]);

    IFSET(ctrl->dbglvl, DBG_REFINE,
      mprintf("\tMinimum sep: %6D at %5D, PWGTS: [%6D %6D], NBND: %6D\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd));

    graph->mincut = mincut;
    graph->nbnd = nbnd;

    if (mincutorder == -1 || mincut >= initcut)
      break;
  }

  PQueueFree(ctrl, &parts[0]);
  PQueueFree(ctrl, &parts[1]);

  idxwspacefree(ctrl, nvtxs+1);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 16
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Mc_SerialKWayAdaptRefine(GraphType *graph, int nparts, idxtype *home,
     float *orgubvec, int npasses)
{
  int i, ii, iii, j, k;
  int nvtxs, ncon, pass, nmoves, myndegrees;
  int from, me, myhome, to, oldcut, gain, tmp;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where;
  EdgeType *mydegrees;
  RInfoType *rinfo, *myrinfo;
  float *npwgts, *nvwgt, *minwgt, *maxwgt, ubvec[MAXNCON];
  int gain_is_greater, gain_is_same, fit_in_to, fit_in_from, going_home;
  int zero_gain, better_balance_ft, better_balance_tt;
  KeyValueType *cand;
int mype;
MPI_Comm_rank(MPI_COMM_WORLD, &mype);

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  rinfo = graph->rinfo;
  npwgts = graph->gnpwgts;
  
  /* Setup the weight intervals of the various subdomains */
  cand = (KeyValueType *)GKmalloc(nvtxs*sizeof(KeyValueType), "cand");
  minwgt =  fmalloc(nparts*ncon, "minwgt");
  maxwgt = fmalloc(nparts*ncon, "maxwgt");

  ComputeHKWayLoadImbalance(ncon, nparts, npwgts, ubvec);
  for (i=0; i<ncon; i++)
    ubvec[i] = amax(ubvec[i], orgubvec[i]);

  for (i=0; i<nparts; i++) {
    for (j=0; j<ncon; j++) {
      maxwgt[i*ncon+j] = ubvec[j]/(float)nparts;
      minwgt[i*ncon+j] = ubvec[j]*(float)nparts;
    }
  }

  for (pass=0; pass<npasses; pass++) {
    oldcut = graph->mincut;

    for (i=0; i<nvtxs; i++) {
      cand[i].key = rinfo[i].id-rinfo[i].ed;
      cand[i].val = i;
    }
    ikeysort(nvtxs, cand);

    nmoves = 0;
    for (iii=0; iii<nvtxs; iii++) {
      i = cand[iii].val;

      myrinfo = rinfo+i;

      if (myrinfo->ed >= myrinfo->id) {
        from = where[i];
        myhome = home[i];
        nvwgt = graph->nvwgt+i*ncon;

        if (myrinfo->id > 0 &&
        AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon)) 
          continue;

        mydegrees = myrinfo->degrees;
        myndegrees = myrinfo->ndegrees;

        for (k=0; k<myndegrees; k++) {
          to = mydegrees[k].edge;
          gain = mydegrees[k].ewgt - myrinfo->id; 
          if (gain >= 0 && 
             (AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon) ||
             IsHBalanceBetterFT(ncon,npwgts+from*ncon,npwgts+to*ncon,nvwgt,ubvec))) {
            break;
          }
        }

        /* break out if you did not find a candidate */
        if (k == myndegrees)
          continue;

        for (j=k+1; j<myndegrees; j++) {
          to = mydegrees[j].edge;
          going_home = (myhome == to);
          gain_is_same = (mydegrees[j].ewgt == mydegrees[k].ewgt);
          gain_is_greater = (mydegrees[j].ewgt > mydegrees[k].ewgt);
          fit_in_to = AreAllHVwgtsBelow(ncon,1.0,npwgts+to*ncon,1.0,nvwgt,maxwgt+to*ncon);
          better_balance_ft = IsHBalanceBetterFT(ncon,npwgts+from*ncon,
                              npwgts+to*ncon,nvwgt,ubvec);
          better_balance_tt = IsHBalanceBetterTT(ncon,npwgts+mydegrees[k].edge*ncon,
                              npwgts+to*ncon,nvwgt,ubvec);

          if (
               (gain_is_greater &&
                 (fit_in_to ||
                  better_balance_ft)
               )
            ||
               (gain_is_same &&
                 (
                   (fit_in_to &&
                    going_home)
                ||
                    better_balance_tt
                 )
               )
             ) {
            k = j;
          }
        }

        to = mydegrees[k].edge;
        going_home = (myhome == to);
        zero_gain = (mydegrees[k].ewgt == myrinfo->id);

        fit_in_from = AreAllHVwgtsBelow(ncon,1.0,npwgts+from*ncon,0.0,npwgts+from*ncon,
                      maxwgt+from*ncon);
        better_balance_ft = IsHBalanceBetterFT(ncon,npwgts+from*ncon,
                            npwgts+to*ncon,nvwgt,ubvec);

        if (zero_gain &&
            !going_home &&
            !better_balance_ft &&
            fit_in_from)
          continue;

        /*=====================================================================
        * If we got here, we can now move the vertex from 'from' to 'to' 
        *======================================================================*/
        graph->mincut -= mydegrees[k].ewgt-myrinfo->id;

        /* Update where, weight, and ID/ED information of the vertex you moved */
        saxpy2(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1);
        saxpy2(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1);
        where[i] = to;
        myrinfo->ed += myrinfo->id-mydegrees[k].ewgt;
        SWAP(myrinfo->id, mydegrees[k].ewgt, tmp);

        if (mydegrees[k].ewgt == 0) {
          myrinfo->ndegrees--;
          mydegrees[k].edge = mydegrees[myrinfo->ndegrees].edge;
          mydegrees[k].ewgt = mydegrees[myrinfo->ndegrees].ewgt;
        }
        else
          mydegrees[k].edge = from;

        /* Update the degrees of adjacent vertices */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          ii = adjncy[j];
          me = where[ii];

          myrinfo = rinfo+ii;
          mydegrees = myrinfo->degrees;

          if (me == from) {
            INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
          }
          else {
            if (me == to) {
              INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
            }
          }

          /* Remove contribution of the ed from 'from' */
          if (me != from) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (mydegrees[k].edge == from) {
                if (mydegrees[k].ewgt == adjwgt[j]) {
                  myrinfo->ndegrees--;
                  mydegrees[k].edge = mydegrees[myrinfo->ndegrees].edge;
                  mydegrees[k].ewgt = mydegrees[myrinfo->ndegrees].ewgt;
                }
                else
                  mydegrees[k].ewgt -= adjwgt[j];
                break;
              }
            }
          }

          /* Add contribution of the ed to 'to' */
          if (me != to) {
            for (k=0; k<myrinfo->ndegrees; k++) {
              if (mydegrees[k].edge == to) {
                mydegrees[k].ewgt += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              mydegrees[myrinfo->ndegrees].edge = to;
              mydegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
            }
          }

        }
        nmoves++;
      }
    }

    if (graph->mincut == oldcut)
      break;
  }

  GKfree((void **)&minwgt, (void **)&maxwgt, (void **)&cand, LTERM);

  return;
}
Exemplo n.º 17
0
/*************************************************************************
* This function performs a node-based FM refinement. This is the 
* one-way version 
**************************************************************************/
void FM_2WayNodeRefine_OneSided(CtrlType *ctrl, GraphType *graph, float ubfactor, idxtype npasses)
{
  idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind;
  idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
  idxtype *mptr, *mind, *swaps, *perm;
  PQueueType parts; 
  NRInfoType *rinfo;
  idxtype higain, oldgain, mincut, initcut, mincutorder;	
  idxtype pass, to, other, limit;
  idxtype badmaxpwgt, mindiff, newdiff;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  vwgt = graph->vwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where = graph->where;
  pwgts = graph->pwgts;
  rinfo = graph->nrinfo;

  PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt));

  perm  = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  mptr  = idxwspacemalloc(ctrl, nvtxs+1);
  mind  = idxwspacemalloc(ctrl, nvtxs);

  IFSET(ctrl->dbglvl, DBG_REFINE,
    mprintf("Partitions-N1: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  badmaxpwgt = (int)(ubfactor*(pwgts[0]+pwgts[1]+pwgts[2])/2);

  to = (pwgts[0] < pwgts[1] ? 1 : 0);
  for (pass=0; pass<npasses; pass++) {
    other = to; 
    to = (to+1)%2;

    PQueueReset(&parts);

    mincutorder = -1;
    initcut = mincut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      ASSERT(where[i] == 2);
      PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[other]);
    }

    ASSERT(CheckNodeBnd(graph, nbnd));
    ASSERT(CheckNodePartitionParams(graph));

    limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300));

    /******************************************************
    * Get into the FM loop
    *******************************************************/
    mptr[0] = nmind = 0;
    mindiff = idxtype_abs(pwgts[0]-pwgts[1]);
    for (nswaps=0; nswaps<nvtxs; nswaps++) {

      if ((higain = PQueueGetMax(&parts)) == -1)
        break;

      ASSERT(bndptr[higain] != -1);

      if (pwgts[to]+vwgt[higain] > badmaxpwgt)
        break;  /* No point going any further. Balance will be bad */

      pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);

      newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
      if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
        mincut = pwgts[2];
        mincutorder = nswaps;
        mindiff = newdiff;
      }
      else {
        if (nswaps - mincutorder > limit) {
          pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]);
          break; /* No further improvement, break out */
        }
      }

      BNDDelete(nbnd, bndind, bndptr, higain);
      pwgts[to] += vwgt[higain];
      where[higain] = to;
      swaps[nswaps] = higain;  


      /**********************************************************
      * Update the degrees of the affected nodes
      ***********************************************************/
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
          rinfo[k].edegrees[to] += vwgt[higain];
        }
        else if (where[k] == other) { /* This vertex is pulled into the separator */
          ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k]));
          BNDInsert(nbnd, bndind, bndptr, k);

          mind[nmind++] = k;  /* Keep track for rollback */
          where[k] = 2;
          pwgts[other] -= vwgt[k];

          edegrees = rinfo[k].edegrees;
          edegrees[0] = edegrees[1] = 0;
          for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
            kk = adjncy[jj];
            if (where[kk] != 2) 
              edegrees[where[kk]] += vwgt[kk];
            else {
              oldgain = vwgt[kk]-rinfo[kk].edegrees[other];
              rinfo[kk].edegrees[other] -= vwgt[k];

              /* Since the moves are one-sided this vertex has not been moved yet */
              PQueueUpdateUp(&parts, kk, oldgain, oldgain+vwgt[k]); 
            }
          }

          /* Insert the new vertex into the priority queue. Safe due to one-sided moves */
          PQueueInsert(&parts, k, vwgt[k]-edegrees[other]);
        }
      }
      mptr[nswaps+1] = nmind;


      IFSET(ctrl->dbglvl, DBG_MOVEINFO,
            mprintf("Moved %6D to %3D, Gain: %5D [%5D] \t[%5D %5D %5D] [%3D %2D]\n", 
                       higain, to, (vwgt[higain]-rinfo[higain].edegrees[other]), vwgt[higain], pwgts[0], pwgts[1], pwgts[2], nswaps, limit));

    }


    /****************************************************************
    * Roll back computation 
    *****************************************************************/
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      ASSERT(CheckNodePartitionParams(graph));
      ASSERT(where[higain] == to);

      INC_DEC(pwgts[2], pwgts[to], vwgt[higain]);
      where[higain] = 2;
      BNDInsert(nbnd, bndind, bndptr, higain);

      edegrees = rinfo[higain].edegrees;
      edegrees[0] = edegrees[1] = 0;
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) 
          rinfo[k].edegrees[to] -= vwgt[higain];
        else
          edegrees[where[k]] += vwgt[k];
      }

      /* Push nodes out of the separator */
      for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) {
        k = mind[j];
        ASSERT(where[k] == 2);
        where[k] = other;
        INC_DEC(pwgts[other], pwgts[2], vwgt[k]);
        BNDDelete(nbnd, bndind, bndptr, k);
        for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
          kk = adjncy[jj];
          if (where[kk] == 2) 
            rinfo[kk].edegrees[other] += vwgt[k];
        }
      }
    }

    ASSERT(mincut == pwgts[2]);

    IFSET(ctrl->dbglvl, DBG_REFINE,
      mprintf("\tMinimum sep: %6D at %5D, PWGTS: [%6D %6D], NBND: %6D\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd));

    graph->mincut = mincut;
    graph->nbnd = nbnd;

    if (pass%2 == 1 && (mincutorder == -1 || mincut >= initcut))
      break;
  }

  PQueueFree(ctrl, &parts);

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs+1);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}
Exemplo n.º 18
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void Mc_Serial_FM_2WayRefine(GraphType *graph, float *tpwgts, int npasses)
{
  int i, ii, j, k;
  int kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, limit, tmp, cnum;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *swaps, *qnum;
  float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal;
  FPQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut, initcut, newcut, mincutorder;
  float rtpwgts[MAXNCON*2];
  KeyValueType *cand;
int mype;
MPI_Comm_rank(MPI_COMM_WORLD, &mype);

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->sendind;
  ed = graph->recvind;
  npwgts = graph->gnpwgts;
  bndptr = graph->sendptr;
  bndind = graph->recvptr;

  moved = idxmalloc(nvtxs, "moved");
  swaps = idxmalloc(nvtxs, "swaps");
  qnum = idxmalloc(nvtxs, "qnum");
  cand = (KeyValueType *)GKmalloc(nvtxs*sizeof(KeyValueType), "cand");

  limit = amin(amax(0.01*nvtxs, 25), 150);

  /* Initialize the queues */
  for (i=0; i<ncon; i++) {
    FPQueueInit(&parts[i][0], nvtxs);
    FPQueueInit(&parts[i][1], nvtxs);
  }
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  origbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

  for (i=0; i<ncon; i++) {
    rtpwgts[i] = origbal*tpwgts[i];
    rtpwgts[ncon+i] = origbal*tpwgts[ncon+i];
  }

  idxset(nvtxs, -1, moved);
  for (pass=0; pass<npasses; pass++) { /* Do a number of passes */
    for (i=0; i<ncon; i++) {
      FPQueueReset(&parts[i][0]);
      FPQueueReset(&parts[i][1]);
    }

    mincutorder = -1;
    newcut = mincut = initcut = graph->mincut;
    for (i=0; i<ncon; i++)
      mindiff[i] = fabs(tpwgts[i]-npwgts[i]);
    minbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

    /* Insert boundary nodes in the priority queues */
    nbnd = graph->gnvtxs;

    for (i=0; i<nbnd; i++) {
      cand[i].key = id[i]-ed[i];
      cand[i].val = i;
    }
    ikeysort(nbnd, cand);

    for (ii=0; ii<nbnd; ii++) {
      i = bndind[cand[ii].val];
      FPQueueInsert(&parts[qnum[i]][where[i]], i, (float)(ed[i]-id[i]));
    }

    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      Serial_SelectQueue(ncon, npwgts, rtpwgts, &from, &cnum, parts);
      to = (from+1)%2;

      if (from == -1 || (higain = FPQueueGetMax(&parts[cnum][from])) == -1)
        break;

      saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);

      newcut -= (ed[higain]-id[higain]);
      newbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

      if ((newcut < mincut && newbal-origbal <= .00001) ||
          (newcut == mincut && (newbal < minbal ||
                                (newbal == minbal && Serial_BetterBalance(ncon, npwgts, tpwgts, mindiff))))) {
        mincut = newcut;
        minbal = newbal;
        mincutorder = nswaps;
        for (i=0; i<ncon; i++)
          mindiff[i] = fabs(tpwgts[i]-npwgts[i]);
      }
      else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
        newcut += (ed[higain]-id[higain]);
        saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
        saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
        break;
      }

      where[higain] = to;
      moved[higain] = nswaps;
      swaps[nswaps] = higain;

      /**************************************************************
      * Update the id[i]/ed[i] values of the affected nodes
      ***************************************************************/
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])
        BNDDelete(nbnd, bndind,  bndptr, higain);

      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        oldgain = ed[k]-id[k];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        /* Update its boundary information and queue position */
        if (bndptr[k] != -1) { /* If k was a boundary vertex */
          if (ed[k] == 0) { /* Not a boundary vertex any more */
            BNDDelete(nbnd, bndind, bndptr, k);
            if (moved[k] == -1)  /* Remove it if in the queues */
              FPQueueDelete(&parts[qnum[k]][where[k]], k);
          }
          else { /* If it has not been moved, update its position in the queue */
            if (moved[k] == -1)
              FPQueueUpdate(&parts[qnum[k]][where[k]], k, (float)oldgain, (float)(ed[k]-id[k]));
          }
        }
        else {
          if (ed[k] > 0) {  /* It will now become a boundary vertex */
            BNDInsert(nbnd, bndind, bndptr, k);
            if (moved[k] == -1)
              FPQueueInsert(&parts[qnum[k]][where[k]], k, (float)(ed[k]-id[k]));
          }
        }
      }
    }

    /****************************************************************
    * Roll back computations
    *****************************************************************/
    for (i=0; i<nswaps; i++)
      moved[swaps[i]] = -1;  /* reset moved array */
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      to = where[higain] = (where[higain]+1)%2;
      SWAP(id[higain], ed[higain], tmp);
      if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
        BNDDelete(nbnd, bndind,  bndptr, higain);
      else if (ed[higain] > 0 && bndptr[higain] == -1)
        BNDInsert(nbnd, bndind,  bndptr, higain);

      saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];

        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
        INC_DEC(id[k], ed[k], kwgt);

        if (bndptr[k] != -1 && ed[k] == 0)
          BNDDelete(nbnd, bndind, bndptr, k);
        if (bndptr[k] == -1 && ed[k] > 0)
          BNDInsert(nbnd, bndind, bndptr, k);
      }
    }

    graph->mincut = mincut;
    graph->gnvtxs = nbnd;

    if (mincutorder == -1 || mincut == initcut)
      break;
  }

  for (i=0; i<ncon; i++) {
    FPQueueFree(&parts[i][0]);
    FPQueueFree(&parts[i][1]);
  }

  GKfree((void **)&cand, (void **)&qnum, (void **)&moved, (void **)&swaps, LTERM);
  return;
}
Exemplo n.º 19
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void MocGeneral2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
{
  int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *swaps, *perm, *qnum;
  float *nvwgt, *npwgts, origbal[MAXNCON], minbal[MAXNCON], newbal[MAXNCON];
  PQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut, newcut, mincutorder;
  float *maxwgt, *minwgt, tvec[MAXNCON];


  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  npwgts = graph->npwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);
  qnum = idxwspacemalloc(ctrl, nvtxs);

  limit = amin(amax(0.01*nvtxs, 15), 100);

  /* Setup the weight intervals of the two subdomains */
  minwgt = fwspacemalloc(ctrl, 2*ncon);
  maxwgt = fwspacemalloc(ctrl, 2*ncon);

  for (i=0; i<2; i++) {
    for (j=0; j<ncon; j++) {
      maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j];
      minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]);
    }
  }


  /* Initialize the queues */
  for (i=0; i<ncon; i++) {
    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
  }
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal);
  for (i=0; i<ncon; i++) 
    minbal[i] = origbal[i];

  newcut = mincut = graph->mincut;
  mincutorder = -1;

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Parts: [");
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1], 
            graph->nvtxs, graph->nbnd, graph->mincut);
    for (i=0; i<ncon; i++)
      printf("%.3f ", origbal[i]);
    printf("[B]\n");
  }

  idxset(nvtxs, -1, moved);

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));

  /* Insert all nodes in the priority queues */
  nbnd = graph->nbnd;
  RandomPermute(nvtxs, perm, 1);
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];
    PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]);
  }


  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if (AreAllBelow(ncon, minbal, ubvec))
      break;

    SelectQueue3(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt);
    to = (from+1)%2;

    if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1)
      break;

    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
    newcut -= (ed[higain]-id[higain]);
    Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, newbal);

    if (IsBetter2wayBalance(ncon, newbal, minbal, ubvec) || 
        (IsBetter2wayBalance(ncon, newbal, origbal, ubvec) && newcut < mincut)) {
      mincut = newcut;
      for (i=0; i<ncon; i++) 
        minbal[i] = newbal[i];
      mincutorder = nswaps;
    }
    else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
      newcut += (ed[higain]-id[higain]);
      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      break;
    }

    where[higain] = to;
    moved[higain] = nswaps;
    swaps[nswaps] = higain;

    if (ctrl->dbglvl&DBG_MOVEINFO) {
      printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut);
      for (i=0; i<ncon; i++) 
        printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]);

      Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec);
      printf(", LB: ");
      for (i=0; i<ncon; i++) 
        printf("%.3f ", tvec[i]);
      if (mincutorder == nswaps)
        printf(" *\n");
      else
        printf("\n");
    }


    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) 
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (moved[k] == -1)
        PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]);

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1) 
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)  
        BNDInsert(nbnd, bndind, bndptr, k);
    }
   
  }



  /****************************************************************
  * Roll back computations
  *****************************************************************/
  for (i=0; i<nswaps; i++)
    moved[swaps[i]] = -1;  /* reset moved array */
  for (nswaps--; nswaps>mincutorder; nswaps--) {
    higain = swaps[nswaps];

    to = where[higain] = (where[higain]+1)%2;
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
      BNDDelete(nbnd, bndind,  bndptr, higain);
    else if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);
    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      if (bndptr[k] != -1 && ed[k] == 0)
        BNDDelete(nbnd, bndind, bndptr, k);
      if (bndptr[k] == -1 && ed[k] > 0)
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd);
    for (i=0; i<ncon; i++)
      printf("(%.3f, %.3f) ", npwgts[i], npwgts[ncon+i]);
    printf("], LB: ");
    Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec);
    for (i=0; i<ncon; i++) 
      printf("%.3f ", tvec[i]);
    printf("\n");
  }

  graph->mincut = mincut;
  graph->nbnd = nbnd;


  for (i=0; i<ncon; i++) {
    PQueueFree(ctrl, &parts[i][0]);
    PQueueFree(ctrl, &parts[i][1]);
  }

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  fwspacefree(ctrl, 2*ncon);
  fwspacefree(ctrl, 2*ncon);

}
Exemplo n.º 20
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void Mc_Serial_Balance2Way(GraphType *graph, float *tpwgts, float lbfactor)
{
  int i, ii, j, k, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *swaps, *qnum;
  float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal;
  FPQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut, newcut, mincutorder;
  int qsizes[MAXNCON][2];
  KeyValueType *cand;

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->sendind;
  ed = graph->recvind;
  npwgts = graph->gnpwgts;
  bndptr = graph->sendptr;
  bndind = graph->recvptr;

  moved = idxmalloc(nvtxs, "moved");
  swaps = idxmalloc(nvtxs, "swaps");
  qnum = idxmalloc(nvtxs, "qnum");
  cand = (KeyValueType *)GKmalloc(nvtxs*sizeof(KeyValueType), "cand");


  limit = amin(amax(0.01*nvtxs, 15), 100);

  /* Initialize the queues */
  for (i=0; i<ncon; i++) {
    FPQueueInit(&parts[i][0], nvtxs);
    FPQueueInit(&parts[i][1], nvtxs);
    qsizes[i][0] = qsizes[i][1] = 0;
  }

  for (i=0; i<nvtxs; i++) {
    qnum[i] = samax(ncon, nvwgt+i*ncon);
    qsizes[qnum[i]][where[i]]++;
  }

  for (from=0; from<2; from++) {
    for (j=0; j<ncon; j++) {
      if (qsizes[j][from] == 0) {
        for (i=0; i<nvtxs; i++) {
          if (where[i] != from)
            continue;

          k = samax2(ncon, nvwgt+i*ncon);
          if (k == j &&
               qsizes[qnum[i]][from] > qsizes[j][from] &&
               nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) {
            qsizes[qnum[i]][from]--;
            qsizes[j][from]++;
            qnum[i] = j;
          }
        }
      }
    }
  }


  for (i=0; i<ncon; i++)
    mindiff[i] = fabs(tpwgts[i]-npwgts[i]);
  minbal = origbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);
  newcut = mincut = graph->mincut;
  mincutorder = -1;

  idxset(nvtxs, -1, moved);

  /* Insert all nodes in the priority queues */
  nbnd = graph->gnvtxs;
  for (i=0; i<nvtxs; i++) {
    cand[i].key = id[i]-ed[i];
    cand[i].val = i;
  }
  ikeysort(nvtxs, cand);

  for (ii=0; ii<nvtxs; ii++) {
    i = cand[ii].val;
    FPQueueInsert(&parts[qnum[i]][where[i]], i, (float)(ed[i]-id[i]));
  }

  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if (minbal < lbfactor)
      break;

    Serial_SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts);
    to = (from+1)%2;

    if (from == -1 || (higain = FPQueueGetMax(&parts[cnum][from])) == -1)
      break;

    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
    newcut -= (ed[higain]-id[higain]);
    newbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

    if (newbal < minbal || (newbal == minbal &&
        (newcut < mincut || (newcut == mincut &&
          Serial_BetterBalance(ncon, npwgts, tpwgts, mindiff))))) {
      mincut = newcut;
      minbal = newbal;
      mincutorder = nswaps;
      for (i=0; i<ncon; i++)
        mindiff[i] = fabs(tpwgts[i]-npwgts[i]);
    }
    else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
      newcut += (ed[higain]-id[higain]);
      saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
      saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      break;
    }

    where[higain] = to;
    moved[higain] = nswaps;
    swaps[nswaps] = higain;

    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (moved[k] == -1)
        FPQueueUpdate(&parts[qnum[k]][where[k]], k, (float)(oldgain), (float)(ed[k]-id[k]));

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1)
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }


  /****************************************************************
  * Roll back computations
  *****************************************************************/
  for (nswaps--; nswaps>mincutorder; nswaps--) {
    higain = swaps[nswaps];

    to = where[higain] = (where[higain]+1)%2;
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
      BNDDelete(nbnd, bndind,  bndptr, higain);
    else if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);
    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      if (bndptr[k] != -1 && ed[k] == 0)
        BNDDelete(nbnd, bndind, bndptr, k);
      if (bndptr[k] == -1 && ed[k] > 0)
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }

  graph->mincut = mincut;
  graph->gnvtxs = nbnd;


  for (i=0; i<ncon; i++) {
    FPQueueFree(&parts[i][0]);
    FPQueueFree(&parts[i][1]);
  }

  GKfree((void **)&cand, (void **)&qnum, (void **)&moved, (void **)&swaps, LTERM);
  return;
}
Exemplo n.º 21
0
void FM_2WayCutRefine(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts, idx_t niter)
{
    idx_t i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, limit, tmp;
    idx_t *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts;
    idx_t *moved, *swaps, *perm;
    rpq_t *queues[2];
    idx_t higain, mincut, mindiff, origdiff, initcut, newcut, mincutorder, avgvwgt;
    idx_t tpwgts[2];

    WCOREPUSH;

    nvtxs  = graph->nvtxs;
    xadj   = graph->xadj;
    vwgt   = graph->vwgt;
    adjncy = graph->adjncy;
    adjwgt = graph->adjwgt;
    where  = graph->where;
    id     = graph->id;
    ed     = graph->ed;
    pwgts  = graph->pwgts;
    bndptr = graph->bndptr;
    bndind = graph->bndind;

    moved = iwspacemalloc(ctrl, nvtxs);
    swaps = iwspacemalloc(ctrl, nvtxs);
    perm  = iwspacemalloc(ctrl, nvtxs);

    tpwgts[0] = graph->tvwgt[0]*ntpwgts[0];
    tpwgts[1] = graph->tvwgt[0]-tpwgts[0];

    limit   = gk_min(gk_max(0.01*nvtxs, 15), 100);
    avgvwgt = gk_min((pwgts[0]+pwgts[1])/20, 2*(pwgts[0]+pwgts[1])/nvtxs);

    queues[0] = rpqCreate(nvtxs);
    queues[1] = rpqCreate(nvtxs);

    IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
          Print2WayRefineStats(ctrl, graph, ntpwgts, 0, -2));

    origdiff = iabs(tpwgts[0]-pwgts[0]);
    iset(nvtxs, -1, moved);
    for (pass=0; pass<niter; pass++) { /* Do a number of passes */
        rpqReset(queues[0]);
        rpqReset(queues[1]);

        mincutorder = -1;
        newcut = mincut = initcut = graph->mincut;
        mindiff = iabs(tpwgts[0]-pwgts[0]);

        ASSERT(ComputeCut(graph, where) == graph->mincut);
        ASSERT(CheckBnd(graph));

        /* Insert boundary nodes in the priority queues */
        nbnd = graph->nbnd;
        irandArrayPermute(nbnd, perm, nbnd, 1);
        for (ii=0; ii<nbnd; ii++) {
            i = perm[ii];
            ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0);
            ASSERT(bndptr[bndind[i]] != -1);
            rpqInsert(queues[where[bndind[i]]], bndind[i], ed[bndind[i]]-id[bndind[i]]);
        }

        for (nswaps=0; nswaps<nvtxs; nswaps++) {
            from = (tpwgts[0]-pwgts[0] < tpwgts[1]-pwgts[1] ? 0 : 1);
            to = (from+1)%2;

            if ((higain = rpqGetTop(queues[from])) == -1)
                break;
            ASSERT(bndptr[higain] != -1);

            newcut -= (ed[higain]-id[higain]);
            INC_DEC(pwgts[to], pwgts[from], vwgt[higain]);

            if ((newcut < mincut && iabs(tpwgts[0]-pwgts[0]) <= origdiff+avgvwgt) ||
                    (newcut == mincut && iabs(tpwgts[0]-pwgts[0]) < mindiff)) {
                mincut  = newcut;
                mindiff = iabs(tpwgts[0]-pwgts[0]);
                mincutorder = nswaps;
            }
            else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
                newcut += (ed[higain]-id[higain]);
                INC_DEC(pwgts[from], pwgts[to], vwgt[higain]);
                break;
            }

            where[higain] = to;
            moved[higain] = nswaps;
            swaps[nswaps] = higain;

            IFSET(ctrl->dbglvl, METIS_DBG_MOVEINFO,
                  printf("Moved %6"PRIDX" from %"PRIDX". [%3"PRIDX" %3"PRIDX"] %5"PRIDX" [%4"PRIDX" %4"PRIDX"]\n", higain, from, ed[higain]-id[higain], vwgt[higain], newcut, pwgts[0], pwgts[1]));

            /**************************************************************
            * Update the id[i]/ed[i] values of the affected nodes
            ***************************************************************/
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);

            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                /* Update its boundary information and queue position */
                if (bndptr[k] != -1) { /* If k was a boundary vertex */
                    if (ed[k] == 0) { /* Not a boundary vertex any more */
                        BNDDelete(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1)  /* Remove it if in the queues */
                            rpqDelete(queues[where[k]], k);
                    }
                    else { /* If it has not been moved, update its position in the queue */
                        if (moved[k] == -1)
                            rpqUpdate(queues[where[k]], k, ed[k]-id[k]);
                    }
                }
                else {
                    if (ed[k] > 0) {  /* It will now become a boundary vertex */
                        BNDInsert(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1)
                            rpqInsert(queues[where[k]], k, ed[k]-id[k]);
                    }
                }
            }

        }


        /****************************************************************
        * Roll back computations
        *****************************************************************/
        for (i=0; i<nswaps; i++)
            moved[swaps[i]] = -1;  /* reset moved array */
        for (nswaps--; nswaps>mincutorder; nswaps--) {
            higain = swaps[nswaps];

            to = where[higain] = (where[higain]+1)%2;
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);
            else if (ed[higain] > 0 && bndptr[higain] == -1)
                BNDInsert(nbnd, bndind,  bndptr, higain);

            INC_DEC(pwgts[to], pwgts[(to+1)%2], vwgt[higain]);
            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                if (bndptr[k] != -1 && ed[k] == 0)
                    BNDDelete(nbnd, bndind, bndptr, k);
                if (bndptr[k] == -1 && ed[k] > 0)
                    BNDInsert(nbnd, bndind, bndptr, k);
            }
        }

        graph->mincut = mincut;
        graph->nbnd   = nbnd;

        IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
              Print2WayRefineStats(ctrl, graph, ntpwgts, 0, mincutorder));

        if (mincutorder <= 0 || mincut == initcut)
            break;
    }

    rpqDestroy(queues[0]);
    rpqDestroy(queues[1]);

    WCOREPOP;
}
Exemplo n.º 22
0
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void MocGeneral2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts, float lbfactor)
{
  int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *swaps, *perm, *qnum;
  float *nvwgt, *npwgts, mindiff[MAXNCON], origbal, minbal, newbal;
  PQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut, newcut, mincutorder;
  int qsizes[MAXNCON][2];

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  npwgts = graph->npwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  swaps = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);
  qnum = idxwspacemalloc(ctrl, nvtxs);

  limit = amin(amax(0.01*nvtxs, 15), 100);

  /* Initialize the queues */
  for (i=0; i<ncon; i++) {
    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
    qsizes[i][0] = qsizes[i][1] = 0;
  }

  for (i=0; i<nvtxs; i++) {
    qnum[i] = samax(ncon, nvwgt+i*ncon);
    qsizes[qnum[i]][where[i]]++;
  }

/*
  printf("Weight Distribution:    \t");
  for (i=0; i<ncon; i++) 
    printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); 
  printf("\n");
*/

  for (from=0; from<2; from++) {
    for (j=0; j<ncon; j++) {
      if (qsizes[j][from] == 0) {
        for (i=0; i<nvtxs; i++) {
          if (where[i] != from)
            continue;

          k = samax2(ncon, nvwgt+i*ncon);
          if (k == j && qsizes[qnum[i]][from] > qsizes[j][from] && nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) {
            qsizes[qnum[i]][from]--;
            qsizes[j][from]++;
            qnum[i] = j;
          }
        }
      }
    }
  }

/*
  printf("Weight Distribution (after):\t ");
  for (i=0; i<ncon; i++) 
    printf(" [%d %d]", qsizes[i][0], qsizes[i][1]); 
  printf("\n");
*/



  for (i=0; i<ncon; i++) 
    mindiff[i] = fabs(tpwgts[0]-npwgts[i]);
  minbal = origbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);
  newcut = mincut = graph->mincut;
  mincutorder = -1;

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Parts: [");
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, origbal);
  }

  idxset(nvtxs, -1, moved);

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));

  /* Insert all nodes in the priority queues */
  nbnd = graph->nbnd;
  RandomPermute(nvtxs, perm, 1);
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];
    PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]);
  }

  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    if (minbal < lbfactor)
      break;

    SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts);
    to = (from+1)%2;

    if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1)
      break;

    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
    newcut -= (ed[higain]-id[higain]);
    newbal = Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);

    if (newbal < minbal || (newbal == minbal && 
        (newcut < mincut || (newcut == mincut && BetterBalance(ncon, npwgts, tpwgts, mindiff))))) {
      mincut = newcut;
      minbal = newbal;
      mincutorder = nswaps;
      for (i=0; i<ncon; i++)
        mindiff[i] = fabs(tpwgts[0]-npwgts[i]);
    }
    else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
      newcut += (ed[higain]-id[higain]);
      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
      break;
    }

    where[higain] = to;
    moved[higain] = nswaps;
    swaps[nswaps] = higain;

    if (ctrl->dbglvl&DBG_MOVEINFO) {
      printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut);
      for (l=0; l<ncon; l++) 
        printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
      printf(", %.3f LB: %.3f\n", minbal, newbal);
    }


    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) 
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (moved[k] == -1)
        PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]);

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1) 
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)  
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }



  /****************************************************************
  * Roll back computations
  *****************************************************************/
  for (nswaps--; nswaps>mincutorder; nswaps--) {
    higain = swaps[nswaps];

    to = where[higain] = (where[higain]+1)%2;
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
      BNDDelete(nbnd, bndind,  bndptr, higain);
    else if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);
    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      if (bndptr[k] != -1 && ed[k] == 0)
        BNDDelete(nbnd, bndind, bndptr, k);
      if (bndptr[k] == -1 && ed[k] > 0)
        BNDInsert(nbnd, bndind, bndptr, k);
    }
  }

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd);
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("], LB: %.3f\n", Compute2WayHLoadImbalance(ncon, npwgts, tpwgts));
  }

  graph->mincut = mincut;
  graph->nbnd = nbnd;


  for (i=0; i<ncon; i++) {
    PQueueFree(ctrl, &parts[i][0]);
    PQueueFree(ctrl, &parts[i][1]);
  }

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 23
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void MCGreedy_KWayEdgeBalanceHorizontal(CtrlType *ctrl, GraphType *graph, int nparts, 
       float *ubvec, int npasses)
{
  int i, ii, /*iii,*/ j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nbnd, myndegrees, oldgain, gain, nmoves; 
  int from, me, to, oldcut;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where, *perm, *bndptr, *bndind, *moved;
  EDegreeType *myedegrees;
  RInfoType *myrinfo;
  PQueueType queue;
  float *npwgts, *nvwgt, *minwgt, *maxwgt, tvec[MAXNCON];

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;

  where = graph->where;
  npwgts = graph->npwgts;
  
  /* Setup the weight intervals of the various subdomains */
  minwgt =  fwspacemalloc(ctrl, ncon*nparts);
  maxwgt = fwspacemalloc(ctrl, ncon*nparts);

  for (i=0; i<nparts; i++) {
    for (j=0; j<ncon; j++) {
      maxwgt[i*ncon+j] = ubvec[j]/nparts;
      minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts);
    }
  }

  perm = idxwspacemalloc(ctrl, nvtxs);
  moved = idxwspacemalloc(ctrl, nvtxs);

  PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]);

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ",
            npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], 
            graph->nvtxs, graph->nbnd, graph->mincut);
    ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
    for (i=0; i<ncon; i++)
      printf("%.3f ", tvec[i]);
    printf("[B]\n");
  }


  for (pass=0; pass<npasses; pass++) {
    ASSERT(ComputeCut(graph, where) == graph->mincut);

    /* Check to see if things are out of balance, given the tolerance */
    if (MocIsHBalanced(ncon, nparts, npwgts, ubvec))
      break;

    PQueueReset(&queue);
    idxset(nvtxs, -1, moved);

    oldcut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id);
      moved[i] = 2;
    }

    nmoves = 0;
    for (;;) {
      if ((i = PQueueGetMax(&queue)) == -1) 
        break;
      moved[i] = 1;

      myrinfo = graph->rinfo+i;
      from = where[i];
      nvwgt = graph->nvwgt+i*ncon;

      if (AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon))
        continue;   /* This cannot be moved! */

      myedegrees = myrinfo->edegrees;
      myndegrees = myrinfo->ndegrees;

      for (k=0; k<myndegrees; k++) {
        to = myedegrees[k].pid;
        if (IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec))
          break;
      }
      if (k == myndegrees) 
        continue;  /* break out if you did not find a candidate */

      for (j=k+1; j<myndegrees; j++) {
        to = myedegrees[j].pid;
        if (IsHBalanceBetterTT(ncon, nparts, npwgts+myedegrees[k].pid*ncon, npwgts+to*ncon, nvwgt, ubvec)) 
          k = j;
      }

      to = myedegrees[k].pid;

      j = 0;
      if (!AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon))
        j++;
      if (myedegrees[k].ed-myrinfo->id >= 0)
        j++;
      if (!AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) &&
          AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon))
        j++;
      if (j == 0)
        continue;

/* DELETE
      if (myedegrees[k].ed-myrinfo->id < 0 && 
          AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, maxwgt+from*ncon) &&
          AreAllHVwgtsAbove(ncon, 1.0, npwgts+to*ncon, 0.0, nvwgt, minwgt+to*ncon) &&
          AreAllHVwgtsBelow(ncon, 1.0, npwgts+to*ncon, 1.0, nvwgt, maxwgt+to*ncon))
        continue;
*/
      /*=====================================================================
      * If we got here, we can now move the vertex from 'from' to 'to' 
      *======================================================================*/
      graph->mincut -= myedegrees[k].ed-myrinfo->id;

      IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut));

      /* Update where, weight, and ID/ED information of the vertex you moved */
      saxpy(ncon, 1.0, nvwgt, 1, npwgts+to*ncon, 1);
      saxpy(ncon, -1.0, nvwgt, 1, npwgts+from*ncon, 1);
      where[i] = to;
      myrinfo->ed += myrinfo->id-myedegrees[k].ed;
      SWAP(myrinfo->id, myedegrees[k].ed, j);
      if (myedegrees[k].ed == 0) 
        myedegrees[k] = myedegrees[--myrinfo->ndegrees];
      else
        myedegrees[k].pid = from;

      if (myrinfo->ed == 0)
        BNDDelete(nbnd, bndind, bndptr, i);

      /* Update the degrees of adjacent vertices */
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        ii = adjncy[j];
        me = where[ii];

        myrinfo = graph->rinfo+ii;
        if (myrinfo->edegrees == NULL) {
          myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
          ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
        }
        myedegrees = myrinfo->edegrees;

        ASSERT(CheckRInfo(myrinfo));

        oldgain = (myrinfo->ed-myrinfo->id);

        if (me == from) {
          INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

          if (myrinfo->ed > 0 && bndptr[ii] == -1)
            BNDInsert(nbnd, bndind, bndptr, ii);
        }
        else if (me == to) {
          INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

          if (myrinfo->ed == 0 && bndptr[ii] != -1)
            BNDDelete(nbnd, bndind, bndptr, ii);
        }

        /* Remove contribution from the .ed of 'from' */
        if (me != from) {
          for (k=0; k<myrinfo->ndegrees; k++) {
            if (myedegrees[k].pid == from) {
              if (myedegrees[k].ed == adjwgt[j])
                myedegrees[k] = myedegrees[--myrinfo->ndegrees];
              else
                myedegrees[k].ed -= adjwgt[j];
              break;
            }
          }
        }

        /* Add contribution to the .ed of 'to' */
        if (me != to) {
          for (k=0; k<myrinfo->ndegrees; k++) {
            if (myedegrees[k].pid == to) {
              myedegrees[k].ed += adjwgt[j];
              break;
            }
          }
          if (k == myrinfo->ndegrees) {
            myedegrees[myrinfo->ndegrees].pid = to;
            myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
          }
        }


        /* Update the queue */
        if (me == to || me == from) { 
          gain = myrinfo->ed-myrinfo->id;
          if (moved[ii] == 2) {
            if (myrinfo->ed > 0)
              PQueueUpdate(&queue, ii, oldgain, gain);
            else {
              PQueueDelete(&queue, ii, oldgain);
              moved[ii] = -1;
            }
          }
          else if (moved[ii] == -1 && myrinfo->ed > 0) {
            PQueueInsert(&queue, ii, gain);
            moved[ii] = 2;
          }
        } 

        ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]);
        ASSERT(CheckRInfo(myrinfo));
      }
      nmoves++;
    }

    graph->nbnd = nbnd;

    if (ctrl->dbglvl&DBG_REFINE) {
      printf("\t [%5.4f %5.4f], Nb: %6d, Nmoves: %5d, Cut: %6d, LB: ",
              npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)], 
              nbnd, nmoves, graph->mincut);
      ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
      for (i=0; i<ncon; i++)
        printf("%.3f ", tvec[i]);
      printf("\n");
    }

    if (nmoves == 0)
      break;
  }

  PQueueFree(ctrl, &queue);

  fwspacefree(ctrl, ncon*nparts);
  fwspacefree(ctrl, ncon*nparts);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 24
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Greedy_KWayEdgeRefine(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses)
{
    int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain;
    int from, me, to, oldcut, vwgt;
    idxtype *xadj, *adjncy, *adjwgt;
    idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts;
    EDegreeType *myedegrees;
    RInfoType *myrinfo;
    PQueueType queue;

    nvtxs = graph->nvtxs;
    xadj = graph->xadj;
    adjncy = graph->adjncy;
    adjwgt = graph->adjwgt;

    bndind = graph->bndind;
    bndptr = graph->bndptr;

    where = graph->where;
    pwgts = graph->pwgts;

    /* Setup the weight intervals of the various subdomains */
    minwgt =  idxwspacemalloc(ctrl, nparts);
    maxwgt = idxwspacemalloc(ctrl, nparts);
    itpwgts = idxwspacemalloc(ctrl, nparts);
    tvwgt = idxsum(nparts, pwgts);
    ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt));

    for (i=0; i<nparts; i++) {
        itpwgts[i] = tpwgts[i]*tvwgt;
        maxwgt[i] = tpwgts[i]*tvwgt*ubfactor;
        minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor);
    }

    perm = idxwspacemalloc(ctrl, nvtxs);
    moved = idxwspacemalloc(ctrl, nvtxs);

    PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]);

    IFSET(ctrl->dbglvl, DBG_REFINE,
          printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d\n",
                 pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0],
                 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd,
                 graph->mincut));

    for (pass=0; pass<npasses; pass++) {
        ASSERT(ComputeCut(graph, where) == graph->mincut);

        PQueueReset(&queue);
        idxset(nvtxs, -1, moved);

        oldcut = graph->mincut;
        nbnd = graph->nbnd;

        RandomPermute(nbnd, perm, 1);
        for (ii=0; ii<nbnd; ii++) {
            i = bndind[perm[ii]];
            PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id);
            moved[i] = 2;
        }

        for (iii=0;; iii++) {
            if ((i = PQueueGetMax(&queue)) == -1)
                break;
            moved[i] = 1;

            myrinfo = graph->rinfo+i;
            from = where[i];
            vwgt = graph->vwgt[i];

            if (pwgts[from]-vwgt < minwgt[from])
                continue;   /* This cannot be moved! */

            myedegrees = myrinfo->edegrees;
            myndegrees = myrinfo->ndegrees;

            j = myrinfo->id;
            for (k=0; k<myndegrees; k++) {
                to = myedegrees[k].pid;
                gain = myedegrees[k].ed-j; /* j = myrinfo->id. Allow good nodes to move */
                if (pwgts[to]+vwgt <= maxwgt[to]+gain && gain >= 0)
                    break;
            }
            if (k == myndegrees)
                continue;  /* break out if you did not find a candidate */

            for (j=k+1; j<myndegrees; j++) {
                to = myedegrees[j].pid;
                if ((myedegrees[j].ed > myedegrees[k].ed && pwgts[to]+vwgt <= maxwgt[to]) ||
                        (myedegrees[j].ed == myedegrees[k].ed &&
                         itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]))
                    k = j;
            }

            to = myedegrees[k].pid;

            j = 0;
            if (myedegrees[k].ed-myrinfo->id > 0)
                j = 1;
            else if (myedegrees[k].ed-myrinfo->id == 0) {
                if ((iii&7) == 0 || pwgts[from] >= maxwgt[from] || itpwgts[from]*(pwgts[to]+vwgt) < itpwgts[to]*pwgts[from])
                    j = 1;
            }
            if (j == 0)
                continue;

            /*=====================================================================
            * If we got here, we can now move the vertex from 'from' to 'to'
            *======================================================================*/
            graph->mincut -= myedegrees[k].ed-myrinfo->id;

            IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut));

            /* Update where, weight, and ID/ED information of the vertex you moved */
            where[i] = to;
            INC_DEC(pwgts[to], pwgts[from], vwgt);
            myrinfo->ed += myrinfo->id-myedegrees[k].ed;
            SWAP(myrinfo->id, myedegrees[k].ed, j);
            if (myedegrees[k].ed == 0)
                myedegrees[k] = myedegrees[--myrinfo->ndegrees];
            else
                myedegrees[k].pid = from;

            if (myrinfo->ed < myrinfo->id)
                BNDDelete(nbnd, bndind, bndptr, i);

            /* Update the degrees of adjacent vertices */
            for (j=xadj[i]; j<xadj[i+1]; j++) {
                ii = adjncy[j];
                me = where[ii];

                myrinfo = graph->rinfo+ii;
                if (myrinfo->edegrees == NULL) {
                    myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
                    ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
                }
                myedegrees = myrinfo->edegrees;

                ASSERT(CheckRInfo(myrinfo));

                oldgain = (myrinfo->ed-myrinfo->id);

                if (me == from) {
                    INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

                    if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1)
                        BNDInsert(nbnd, bndind, bndptr, ii);
                }
                else if (me == to) {
                    INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

                    if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1)
                        BNDDelete(nbnd, bndind, bndptr, ii);
                }

                /* Remove contribution from the .ed of 'from' */
                if (me != from) {
                    for (k=0; k<myrinfo->ndegrees; k++) {
                        if (myedegrees[k].pid == from) {
                            if (myedegrees[k].ed == adjwgt[j])
                                myedegrees[k] = myedegrees[--myrinfo->ndegrees];
                            else
                                myedegrees[k].ed -= adjwgt[j];
                            break;
                        }
                    }
                }

                /* Add contribution to the .ed of 'to' */
                if (me != to) {
                    for (k=0; k<myrinfo->ndegrees; k++) {
                        if (myedegrees[k].pid == to) {
                            myedegrees[k].ed += adjwgt[j];
                            break;
                        }
                    }
                    if (k == myrinfo->ndegrees) {
                        myedegrees[myrinfo->ndegrees].pid = to;
                        myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
                    }
                }

                /* Update the queue */
                if (me == to || me == from) {
                    gain = myrinfo->ed-myrinfo->id;
                    if (moved[ii] == 2) {
                        if (gain >= 0)
                            PQueueUpdate(&queue, ii, oldgain, gain);
                        else {
                            PQueueDelete(&queue, ii, oldgain);
                            moved[ii] = -1;
                        }
                    }
                    else if (moved[ii] == -1 && gain >= 0) {
                        PQueueInsert(&queue, ii, gain);
                        moved[ii] = 2;
                    }
                }

                ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]);
                ASSERT(CheckRInfo(myrinfo));

            }
        }

        graph->nbnd = nbnd;

        IFSET(ctrl->dbglvl, DBG_REFINE,
              printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Cut: %6d\n",
                     pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)],
                     1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, graph->mincut));

        if (graph->mincut == oldcut)
            break;
    }

    PQueueFree(ctrl, &queue);

    idxwspacefree(ctrl, nparts);
    idxwspacefree(ctrl, nparts);
    idxwspacefree(ctrl, nparts);
    idxwspacefree(ctrl, nvtxs);
    idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 25
0
/*************************************************************************
* This function finds all the connected components induced by the 
* partitioning vector in wgraph->where and tries to push them around to 
* remove some of them
**************************************************************************/
void EliminateComponents(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor)
{
  int i, ii, j, jj, k, me, nvtxs, tvwgt, first, last, nleft, ncmps, cwgt, other, target, deltawgt;
  idxtype *xadj, *adjncy, *vwgt, *adjwgt, *where, *pwgts, *maxpwgt;
  idxtype *cpvec, *touched, *perm, *todo, *cind, *cptr, *npcmps;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  vwgt = graph->vwgt;
  adjwgt = graph->adjwgt;

  where = graph->where;
  pwgts = graph->pwgts;

  touched = idxset(nvtxs, 0, idxwspacemalloc(ctrl, nvtxs));
  cptr = idxwspacemalloc(ctrl, nvtxs);
  cind = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);
  todo = idxwspacemalloc(ctrl, nvtxs);
  maxpwgt = idxwspacemalloc(ctrl, nparts);
  cpvec = idxwspacemalloc(ctrl, nparts);
  npcmps = idxset(nparts, 0, idxwspacemalloc(ctrl, nparts));

  for (i=0; i<nvtxs; i++) 
    perm[i] = todo[i] = i;

  /* Find the connected componends induced by the partition */
  ncmps = -1;
  first = last = 0;
  nleft = nvtxs;
  while (nleft > 0) {
    if (first == last) { /* Find another starting vertex */
      cptr[++ncmps] = first;
      ASSERT(touched[todo[0]] == 0);
      i = todo[0];
      cind[last++] = i;
      touched[i] = 1;
      me = where[i];
      npcmps[me]++;
    }

    i = cind[first++];
    k = perm[i];
    j = todo[k] = todo[--nleft];
    perm[j] = k;

    for (j=xadj[i]; j<xadj[i+1]; j++) {
      k = adjncy[j];
      if (where[k] == me && !touched[k]) {
        cind[last++] = k;
        touched[k] = 1;
      }
    }
  }
  cptr[++ncmps] = first;

  /* printf("I found %d components, for this %d-way partition\n", ncmps, nparts); */

  if (ncmps > nparts) { /* There are more components than processors */
    /* First determine the max allowed load imbalance */
    tvwgt = idxsum(nparts, pwgts);
    for (i=0; i<nparts; i++)
      maxpwgt[i] = ubfactor*tpwgts[i]*tvwgt;

    deltawgt = 5;

    for (i=0; i<ncmps; i++) {
      me = where[cind[cptr[i]]];  /* Get the domain of this component */
      if (npcmps[me] == 1)
        continue;  /* Skip it because it is contigous */

      /*printf("Trying to move %d from %d\n", i, me); */

      /* Determine the weight of the block to be moved and abort if too high */
      for (cwgt=0, j=cptr[i]; j<cptr[i+1]; j++) 
        cwgt += vwgt[cind[j]];

      if (cwgt > .30*pwgts[me])
        continue;  /* Skip the component if it is over 30% of the weight */

      /* Determine the connectivity */
      idxset(nparts, 0, cpvec);
      for (j=cptr[i]; j<cptr[i+1]; j++) {
        ii = cind[j];
        for (jj=xadj[ii]; jj<xadj[ii+1]; jj++) 
          cpvec[where[adjncy[jj]]] += adjwgt[jj];
      }
      cpvec[me] = 0;

      target = -1;
      for (j=0; j<nparts; j++) {
        if (cpvec[j] > 0 && (cwgt < deltawgt || pwgts[j] + cwgt < maxpwgt[j])) {
          if (target == -1 || cpvec[target] < cpvec[j])
            target = j;
        }
      }

      /* printf("\tMoving it to %d [%d]\n", target, cpvec[target]);*/

      if (target != -1) {
        /* Assign all the vertices of 'me' to 'target' and update data structures */
        INC_DEC(pwgts[target], pwgts[me], cwgt);
        npcmps[me]--;

        MoveGroup(ctrl, graph, nparts, target, i, cptr, cind);
      }
    }

  }

  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 26
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void GrowBisectionNode(CtrlType *ctrl, GraphType *graph, float ubfactor)
{
  int i, j, k, nvtxs, drain, nleft, first, last, pwgts[2], tpwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *bndind;
  idxtype *queue, *touched, *gain, *bestwhere;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  queue = idxmalloc(nvtxs, "BisectGraph: queue");
  touched = idxmalloc(nvtxs, "BisectGraph: touched");

  tpwgts[0] = idxsum(nvtxs, vwgt);
  tpwgts[1] = tpwgts[0]/2;
  tpwgts[0] -= tpwgts[1];

  maxpwgt[0] = ubfactor*tpwgts[0];
  maxpwgt[1] = ubfactor*tpwgts[1];
  minpwgt[0] = (1.0/ubfactor)*tpwgts[0];
  minpwgt[1] = (1.0/ubfactor)*tpwgts[1];

  /* Allocate memory for graph->rdata. Allocate sufficient memory for both edge and node */
  graph->rdata = idxmalloc(5*nvtxs+3, "GrowBisectionNode: graph->rdata");
  graph->pwgts    = graph->rdata;
  graph->where    = graph->rdata + 3;
  graph->bndptr   = graph->rdata + nvtxs + 3;
  graph->bndind   = graph->rdata + 2*nvtxs + 3;
  graph->nrinfo   = (NRInfoType *)(graph->rdata + 3*nvtxs + 3);
  graph->id       = graph->rdata + 3*nvtxs + 3;
  graph->ed       = graph->rdata + 4*nvtxs + 3;
  
  where = graph->where;
  bndind = graph->bndind;

  nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = tpwgts[0]+tpwgts[1];
  for (nbfs++; nbfs>0; nbfs--) {
    idxset(nvtxs, 0, touched);

    pwgts[1] = tpwgts[0]+tpwgts[1];
    pwgts[0] = 0;

    idxset(nvtxs, 1, where);

    queue[0] = RandomInRange(nvtxs);
    touched[queue[0]] = 1;
    first = 0; last = 1;
    nleft = nvtxs-1;
    drain = 0;

    /* Start the BFS from queue to get a partition */
    if (nbfs >= 1) {
      for (;;) {
        if (first == last) { /* Empty. Disconnected graph! */
          if (nleft == 0 || drain)
            break;
  
          k = RandomInRange(nleft);
          for (i=0; i<nvtxs; i++) {
            if (touched[i] == 0) {
              if (k == 0)
                break;
              else
                k--;
            }
          }

          queue[0] = i;
          touched[i] = 1;
          first = 0; last = 1;;
          nleft--;
        }

        i = queue[first++];
        if (pwgts[1]-vwgt[i] < minpwgt[1]) {
          drain = 1;
          continue;
        }

        where[i] = 0;
        INC_DEC(pwgts[0], pwgts[1], vwgt[i]);
        if (pwgts[1] <= maxpwgt[1])
          break;

        drain = 0;
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = adjncy[j];
          if (touched[k] == 0) {
            queue[last++] = k;
            touched[k] = 1;
            nleft--;
          }
        }
      }
    }

    /*************************************************************
    * Do some partition refinement 
    **************************************************************/
    Compute2WayPartitionParams(ctrl, graph);
    Balance2Way(ctrl, graph, tpwgts, ubfactor);
    FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4);

    /* Construct and refine the vertex separator */
    for (i=0; i<graph->nbnd; i++) 
      where[bndind[i]] = 2;

    Compute2WayNodePartitionParams(ctrl, graph); 
    FM_2WayNodeRefine(ctrl, graph, ubfactor, 6);

    /* printf("ISep: [%d %d %d] %d\n", graph->pwgts[0], graph->pwgts[1], graph->pwgts[2], bestcut); */

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  Compute2WayNodePartitionParams(ctrl, graph); 

  GKfree(&bestwhere, &queue, &touched, LTERM);
}
Exemplo n.º 27
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Greedy_KWayEdgeBalanceMConn(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts, float ubfactor, int npasses)
{
  int i, ii, iii, j, jj, k, l, pass, nvtxs, nbnd, tvwgt, myndegrees, oldgain, gain, nmoves; 
  int from, me, to, oldcut, vwgt, maxndoms, nadd;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where, *pwgts, *perm, *bndptr, *bndind, *minwgt, *maxwgt, *moved, *itpwgts;
  idxtype *phtable, *pmat, *pmatptr, *ndoms;
  EDegreeType *myedegrees;
  RInfoType *myrinfo;
  PQueueType queue;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;

  where = graph->where;
  pwgts = graph->pwgts;
  
  pmat = ctrl->wspace.pmat;
  phtable = idxwspacemalloc(ctrl, nparts);
  ndoms = idxwspacemalloc(ctrl, nparts);

  ComputeSubDomainGraph(graph, nparts, pmat, ndoms);


  /* Setup the weight intervals of the various subdomains */
  minwgt =  idxwspacemalloc(ctrl, nparts);
  maxwgt = idxwspacemalloc(ctrl, nparts);
  itpwgts = idxwspacemalloc(ctrl, nparts);
  tvwgt = idxsum(nparts, pwgts);
  ASSERT(tvwgt == idxsum(nvtxs, graph->vwgt));

  for (i=0; i<nparts; i++) {
    itpwgts[i] = tpwgts[i]*tvwgt;
    maxwgt[i] = tpwgts[i]*tvwgt*ubfactor;
    minwgt[i] = tpwgts[i]*tvwgt*(1.0/ubfactor);
  }

  perm = idxwspacemalloc(ctrl, nvtxs);
  moved = idxwspacemalloc(ctrl, nvtxs);

  PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]);

  IFSET(ctrl->dbglvl, DBG_REFINE,
     printf("Partitions: [%6d %6d]-[%6d %6d], Balance: %5.3f, Nv-Nb[%6d %6d]. Cut: %6d [B]\n",
             pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], minwgt[0], maxwgt[0], 
             1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nvtxs, graph->nbnd,
             graph->mincut));

  for (pass=0; pass<npasses; pass++) {
    ASSERT(ComputeCut(graph, where) == graph->mincut);

    /* Check to see if things are out of balance, given the tolerance */
    for (i=0; i<nparts; i++) {
      if (pwgts[i] > maxwgt[i])
        break;
    }
    if (i == nparts) /* Things are balanced. Return right away */
      break;

    PQueueReset(&queue);
    idxset(nvtxs, -1, moved);

    oldcut = graph->mincut;
    nbnd = graph->nbnd;

    RandomPermute(nbnd, perm, 1);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[perm[ii]];
      PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id);
      moved[i] = 2;
    }

    maxndoms = ndoms[idxamax(nparts, ndoms)];

    for (nmoves=0;;) {
      if ((i = PQueueGetMax(&queue)) == -1) 
        break;
      moved[i] = 1;

      myrinfo = graph->rinfo+i;
      from = where[i];
      vwgt = graph->vwgt[i];

      if (pwgts[from]-vwgt < minwgt[from]) 
        continue;   /* This cannot be moved! */

      myedegrees = myrinfo->edegrees;
      myndegrees = myrinfo->ndegrees;

      /* Determine the valid domains */
      for (j=0; j<myndegrees; j++) {
        to = myedegrees[j].pid;
        phtable[to] = 1;
        pmatptr = pmat + to*nparts;
        for (nadd=0, k=0; k<myndegrees; k++) {
          if (k == j)
            continue;

          l = myedegrees[k].pid;
          if (pmatptr[l] == 0) {
            if (ndoms[l] > maxndoms-1) {
              phtable[to] = 0;
              nadd = maxndoms;
              break;
            }
            nadd++;
          }
        }
        if (ndoms[to]+nadd > maxndoms)
          phtable[to] = 0;
      }

      for (k=0; k<myndegrees; k++) {
        to = myedegrees[k].pid;
        if (!phtable[to])
          continue;
        if (pwgts[to]+vwgt <= maxwgt[to] || itpwgts[from]*(pwgts[to]+vwgt) <= itpwgts[to]*pwgts[from]) 
          break;
      }
      if (k == myndegrees)
        continue;  /* break out if you did not find a candidate */

      for (j=k+1; j<myndegrees; j++) {
        to = myedegrees[j].pid;
        if (!phtable[to])
          continue;
        if (itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]) 
          k = j;
      }

      to = myedegrees[k].pid;

      if (pwgts[from] < maxwgt[from] && pwgts[to] > minwgt[to] && myedegrees[k].ed-myrinfo->id < 0) 
        continue;

      /*=====================================================================
      * If we got here, we can now move the vertex from 'from' to 'to' 
      *======================================================================*/
      graph->mincut -= myedegrees[k].ed-myrinfo->id;

      IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut));

      /* Update pmat to reflect the move of 'i' */
      pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed);
      pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed);
      if (pmat[from*nparts+to] == 0) {
        ndoms[from]--;
        if (ndoms[from]+1 == maxndoms)
          maxndoms = ndoms[idxamax(nparts, ndoms)];
      }
      if (pmat[to*nparts+from] == 0) {
        ndoms[to]--;
        if (ndoms[to]+1 == maxndoms)
          maxndoms = ndoms[idxamax(nparts, ndoms)];
      }


      /* Update where, weight, and ID/ED information of the vertex you moved */
      where[i] = to;
      INC_DEC(pwgts[to], pwgts[from], vwgt);
      myrinfo->ed += myrinfo->id-myedegrees[k].ed;
      SWAP(myrinfo->id, myedegrees[k].ed, j);
      if (myedegrees[k].ed == 0) 
        myedegrees[k] = myedegrees[--myrinfo->ndegrees];
      else
        myedegrees[k].pid = from;

      if (myrinfo->ed == 0)
        BNDDelete(nbnd, bndind, bndptr, i);

      /* Update the degrees of adjacent vertices */
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        ii = adjncy[j];
        me = where[ii];

        myrinfo = graph->rinfo+ii;
        if (myrinfo->edegrees == NULL) {
          myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
          ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
        }
        myedegrees = myrinfo->edegrees;

        ASSERT(CheckRInfo(myrinfo));

        oldgain = (myrinfo->ed-myrinfo->id);

        if (me == from) {
          INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

          if (myrinfo->ed > 0 && bndptr[ii] == -1)
            BNDInsert(nbnd, bndind, bndptr, ii);
        }
        else if (me == to) {
          INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

          if (myrinfo->ed == 0 && bndptr[ii] != -1)
            BNDDelete(nbnd, bndind, bndptr, ii);
        }

        /* Remove contribution from the .ed of 'from' */
        if (me != from) {
          for (k=0; k<myrinfo->ndegrees; k++) {
            if (myedegrees[k].pid == from) {
              if (myedegrees[k].ed == adjwgt[j])
                myedegrees[k] = myedegrees[--myrinfo->ndegrees];
              else
                myedegrees[k].ed -= adjwgt[j];
              break;
            }
          }
        }

        /* Add contribution to the .ed of 'to' */
        if (me != to) {
          for (k=0; k<myrinfo->ndegrees; k++) {
            if (myedegrees[k].pid == to) {
              myedegrees[k].ed += adjwgt[j];
              break;
            }
          }
          if (k == myrinfo->ndegrees) {
            myedegrees[myrinfo->ndegrees].pid = to;
            myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
          }
        }

        /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */
        if (me != from && me != to) {
          pmat[me*nparts+from] -= adjwgt[j];
          pmat[from*nparts+me] -= adjwgt[j];
          if (pmat[me*nparts+from] == 0) {
            ndoms[me]--;
            if (ndoms[me]+1 == maxndoms)
              maxndoms = ndoms[idxamax(nparts, ndoms)];
          }
          if (pmat[from*nparts+me] == 0) {
            ndoms[from]--;
            if (ndoms[from]+1 == maxndoms)
              maxndoms = ndoms[idxamax(nparts, ndoms)];
          }

          if (pmat[me*nparts+to] == 0) {
            ndoms[me]++;
            if (ndoms[me] > maxndoms) {
              printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms);
              maxndoms = ndoms[me];
            }
          }
          if (pmat[to*nparts+me] == 0) {
            ndoms[to]++;
            if (ndoms[to] > maxndoms) {
              printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms);
              maxndoms = ndoms[to];
            }
          }
          pmat[me*nparts+to] += adjwgt[j];
          pmat[to*nparts+me] += adjwgt[j];
        }

        /* Update the queue */
        if (me == to || me == from) { 
          gain = myrinfo->ed-myrinfo->id;
          if (moved[ii] == 2) {
            if (myrinfo->ed > 0)
              PQueueUpdate(&queue, ii, oldgain, gain);
            else {
              PQueueDelete(&queue, ii, oldgain);
              moved[ii] = -1;
            }
          }
          else if (moved[ii] == -1 && myrinfo->ed > 0) {
            PQueueInsert(&queue, ii, gain);
            moved[ii] = 2;
          }
        } 

        ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]);
        ASSERT(CheckRInfo(myrinfo));
      }
      nmoves++;
    }

    graph->nbnd = nbnd;

    IFSET(ctrl->dbglvl, DBG_REFINE,
       printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %6d, %d\n",
               pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)],
               1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, graph->mincut,idxsum(nparts, ndoms)));
  }

  PQueueFree(ctrl, &queue);

  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nparts);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);

}
Exemplo n.º 28
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void GrowBisection(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor)
{
  int i, j, k, nvtxs, drain, nleft, first, last, pwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where;
  idxtype *queue, *touched, *gain, *bestwhere;


  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  Allocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  queue = idxmalloc(nvtxs, "BisectGraph: queue");
  touched = idxmalloc(nvtxs, "BisectGraph: touched");

  ASSERTP(tpwgts[0]+tpwgts[1] == idxsum(nvtxs, vwgt), ("%d %d\n", tpwgts[0]+tpwgts[1], idxsum(nvtxs, vwgt)));

  maxpwgt[0] = ubfactor*tpwgts[0];
  maxpwgt[1] = ubfactor*tpwgts[1];
  minpwgt[0] = (1.0/ubfactor)*tpwgts[0];
  minpwgt[1] = (1.0/ubfactor)*tpwgts[1];

  nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(nvtxs, graph->adjwgtsum)+1;  /* The +1 is for the 0 edges case */
  for (; nbfs>0; nbfs--) {
    idxset(nvtxs, 0, touched);

    pwgts[1] = tpwgts[0]+tpwgts[1];
    pwgts[0] = 0;

    idxset(nvtxs, 1, where);

    queue[0] = RandomInRange(nvtxs);
    touched[queue[0]] = 1;
    first = 0; last = 1;
    nleft = nvtxs-1;
    drain = 0;

    /* Start the BFS from queue to get a partition */
    for (;;) {
      if (first == last) { /* Empty. Disconnected graph! */
        if (nleft == 0 || drain)
          break;

        k = RandomInRange(nleft);
        for (i=0; i<nvtxs; i++) {
          if (touched[i] == 0) {
            if (k == 0)
              break;
            else
              k--;
          }
        }

        queue[0] = i;
        touched[i] = 1;
        first = 0; last = 1;;
        nleft--;
      }

      i = queue[first++];
      if (pwgts[0] > 0 && pwgts[1]-vwgt[i] < minpwgt[1]) {
        drain = 1;
        continue;
      }

      where[i] = 0;
      INC_DEC(pwgts[0], pwgts[1], vwgt[i]);
      if (pwgts[1] <= maxpwgt[1])
        break;

      drain = 0;
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        k = adjncy[j];
        if (touched[k] == 0) {
          queue[last++] = k;
          touched[k] = 1;
          nleft--;
        }
      }
    }

    /* Check to see if we hit any bad limiting cases */
    if (pwgts[1] == 0) { 
      i = RandomInRange(nvtxs);
      where[i] = 1;
      INC_DEC(pwgts[1], pwgts[0], vwgt[i]);
    }

    /*************************************************************
    * Do some partition refinement 
    **************************************************************/
    Compute2WayPartitionParams(ctrl, graph);
    /*printf("IPART: %3d [%5d %5d] [%5d %5d] %5d\n", graph->nvtxs, pwgts[0], pwgts[1], graph->pwgts[0], graph->pwgts[1], graph->mincut); */

    Balance2Way(ctrl, graph, tpwgts, ubfactor);
    /*printf("BPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut);*/

    FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4);
    /*printf("RPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut);*/

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  GKfree(&bestwhere, &queue, &touched, LTERM);
}
Exemplo n.º 29
0
/*************************************************************************
* This function moves a collection of vertices and updates their rinfo
**************************************************************************/
void MoveGroupMConn(CtrlType *ctrl, GraphType *graph, idxtype *ndoms, idxtype *pmat,
                    int nparts, int to, int nind, idxtype *ind)
{
  int i, ii, iii, j, jj, k, l, nvtxs, nbnd, myndegrees; 
  int from, me;
  idxtype *xadj, *adjncy, *adjwgt;
  idxtype *where, *bndptr, *bndind;
  EDegreeType *myedegrees;
  RInfoType *myrinfo;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  where = graph->where;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  nbnd = graph->nbnd;

  for (iii=0; iii<nind; iii++) {
    i = ind[iii];
    from = where[i];

    myrinfo = graph->rinfo+i;
    if (myrinfo->edegrees == NULL) {
      myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
      ctrl->wspace.cdegree += xadj[i+1]-xadj[i];
      myrinfo->ndegrees = 0;
    }
    myedegrees = myrinfo->edegrees;

    /* find the location of 'to' in myrinfo or create it if it is not there */
    for (k=0; k<myrinfo->ndegrees; k++) {
      if (myedegrees[k].pid == to)
        break;
    }
    if (k == myrinfo->ndegrees) {
      myedegrees[k].pid = to;
      myedegrees[k].ed = 0;
      myrinfo->ndegrees++;
    }

    graph->mincut -= myedegrees[k].ed-myrinfo->id;

    /* Update pmat to reflect the move of 'i' */
    pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed);
    pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed);
    if (pmat[from*nparts+to] == 0) 
      ndoms[from]--;
    if (pmat[to*nparts+from] == 0) 
      ndoms[to]--;

    /* Update where, weight, and ID/ED information of the vertex you moved */
    where[i] = to;
    myrinfo->ed += myrinfo->id-myedegrees[k].ed;
    SWAP(myrinfo->id, myedegrees[k].ed, j);
    if (myedegrees[k].ed == 0) 
      myedegrees[k] = myedegrees[--myrinfo->ndegrees];
    else
      myedegrees[k].pid = from;

    if (myrinfo->ed-myrinfo->id < 0 && bndptr[i] != -1)
      BNDDelete(nbnd, bndind, bndptr, i);

    /* Update the degrees of adjacent vertices */
    for (j=xadj[i]; j<xadj[i+1]; j++) {
      ii = adjncy[j];
      me = where[ii];

      myrinfo = graph->rinfo+ii;
      if (myrinfo->edegrees == NULL) {
        myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
        ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii];
      }
      myedegrees = myrinfo->edegrees;

      ASSERT(CheckRInfo(myrinfo));

      if (me == from) {
        INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);

        if (myrinfo->ed-myrinfo->id >= 0 && bndptr[ii] == -1)
          BNDInsert(nbnd, bndind, bndptr, ii);
      }
      else if (me == to) {
        INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);

        if (myrinfo->ed-myrinfo->id < 0 && bndptr[ii] != -1)
          BNDDelete(nbnd, bndind, bndptr, ii);
      }

      /* Remove contribution from the .ed of 'from' */
      if (me != from) {
        for (k=0; k<myrinfo->ndegrees; k++) {
          if (myedegrees[k].pid == from) {
            if (myedegrees[k].ed == adjwgt[j])
              myedegrees[k] = myedegrees[--myrinfo->ndegrees];
            else
              myedegrees[k].ed -= adjwgt[j];
            break;
          }
        }
      }

      /* Add contribution to the .ed of 'to' */
      if (me != to) {
        for (k=0; k<myrinfo->ndegrees; k++) {
          if (myedegrees[k].pid == to) {
            myedegrees[k].ed += adjwgt[j];
            break;
          }
        }
        if (k == myrinfo->ndegrees) {
          myedegrees[myrinfo->ndegrees].pid = to;
          myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];
        }
      }

      /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */
      if (me != from && me != to) {
        pmat[me*nparts+from] -= adjwgt[j];
        pmat[from*nparts+me] -= adjwgt[j];
        if (pmat[me*nparts+from] == 0) 
          ndoms[me]--;
        if (pmat[from*nparts+me] == 0) 
          ndoms[from]--;

        if (pmat[me*nparts+to] == 0) 
          ndoms[me]++;
        if (pmat[to*nparts+me] == 0) 
          ndoms[to]++;

        pmat[me*nparts+to] += adjwgt[j];
        pmat[to*nparts+me] += adjwgt[j];
      }

      ASSERT(CheckRInfo(myrinfo));
    }

    ASSERT(CheckRInfo(graph->rinfo+i));
  }

  graph->nbnd = nbnd;

}
Exemplo n.º 30
0
void FM_2WayNodeRefine1Sided(ctrl_t *ctrl, graph_t *graph, idx_t niter)
{
  idx_t i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind, iend;
  idx_t *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
  idx_t *mptr, *mind, *swaps;
  rpq_t *queue; 
  nrinfo_t *rinfo;
  idx_t higain, mincut, initcut, mincutorder;	
  idx_t pass, to, other, limit;
  idx_t badmaxpwgt, mindiff, newdiff;
  real_t mult;

  WCOREPUSH;

  nvtxs  = graph->nvtxs;
  xadj   = graph->xadj;
  adjncy = graph->adjncy;
  vwgt   = graph->vwgt;

  bndind = graph->bndind;
  bndptr = graph->bndptr;
  where  = graph->where;
  pwgts  = graph->pwgts;
  rinfo  = graph->nrinfo;

  queue = rpqCreate(nvtxs);

  swaps = iwspacemalloc(ctrl, nvtxs);
  mptr  = iwspacemalloc(ctrl, nvtxs+1);
  mind  = iwspacemalloc(ctrl, 2*nvtxs);

  mult = 0.5*ctrl->ubfactors[0];
  badmaxpwgt = (idx_t)(mult*(pwgts[0]+pwgts[1]+pwgts[2]));

  IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
    printf("Partitions-N1: [%6"PRIDX" %6"PRIDX"] Nv-Nb[%6"PRIDX" %6"PRIDX"]. ISep: %6"PRIDX"\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));

  to = (pwgts[0] < pwgts[1] ? 1 : 0);
  for (pass=0; pass<2*niter; pass++) {  /* the 2*niter is for the two sides */
    other = to; 
    to    = (to+1)%2;

    rpqReset(queue);

    mincutorder = -1;
    initcut = mincut = graph->mincut;
    nbnd = graph->nbnd;

    /* use the swaps array in place of the traditional perm array to save memory */
    my_irandArrayPermute_r(nbnd, swaps, nbnd, 1, &ctrl->curseed);
    for (ii=0; ii<nbnd; ii++) {
      i = bndind[swaps[ii]];
      ASSERT(where[i] == 2);
      rpqInsert(queue, i, vwgt[i]-rinfo[i].edegrees[other]);
    }

    ASSERT(CheckNodeBnd(graph, nbnd));
    ASSERT(CheckNodePartitionParams(graph));

    limit = (ctrl->compress ? gk_min(5*nbnd, 500) : gk_min(3*nbnd, 300));

    /******************************************************
    * Get into the FM loop
    *******************************************************/
    IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startwctimer(ctrl->Aux3Tmr));
    mptr[0] = nmind = 0;
    mindiff = iabs(pwgts[0]-pwgts[1]);
    for (nswaps=0; nswaps<nvtxs; nswaps++) {
      if ((higain = rpqGetTop(queue)) == -1)
        break;

      ASSERT(bndptr[higain] != -1);

      /* The following check is to ensure we break out if there is a posibility
         of over-running the mind array.  */
      if (nmind + xadj[higain+1]-xadj[higain] >= 2*nvtxs-1) 
        break;

      if (pwgts[to]+vwgt[higain] > badmaxpwgt) 
        break;  /* No point going any further. Balance will be bad */

      pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);

      newdiff = iabs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
      if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
        mincut      = pwgts[2];
        mincutorder = nswaps;
        mindiff     = newdiff;
      }
      else {
        if (nswaps - mincutorder > 3*limit || 
            (nswaps - mincutorder > limit && pwgts[2] > 1.10*mincut)) {
          pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]);
          break; /* No further improvement, break out */
        }
      }

      BNDDelete(nbnd, bndind, bndptr, higain);
      pwgts[to]     += vwgt[higain];
      where[higain]  = to;
      swaps[nswaps]  = higain;  


      /**********************************************************
      * Update the degrees of the affected nodes
      ***********************************************************/
      IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startwctimer(ctrl->Aux1Tmr));
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];

        if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
          rinfo[k].edegrees[to] += vwgt[higain];
        }
        else if (where[k] == other) { /* This vertex is pulled into the separator */
          ASSERTP(bndptr[k] == -1, ("%"PRIDX" %"PRIDX" %"PRIDX"\n", k, bndptr[k], where[k]));
          BNDInsert(nbnd, bndind, bndptr, k);

          mind[nmind++] = k;  /* Keep track for rollback */
          where[k] = 2;
          pwgts[other] -= vwgt[k];

          edegrees = rinfo[k].edegrees;
          edegrees[0] = edegrees[1] = 0;
          for (jj=xadj[k], iend=xadj[k+1]; jj<iend; jj++) {
            kk = adjncy[jj];
            if (where[kk] != 2) 
              edegrees[where[kk]] += vwgt[kk];
            else {
              rinfo[kk].edegrees[other] -= vwgt[k];

              /* Since the moves are one-sided this vertex has not been moved yet */
              rpqUpdate(queue, kk, vwgt[kk]-rinfo[kk].edegrees[other]); 
            }
          }

          /* Insert the new vertex into the priority queue. Safe due to one-sided moves */
          rpqInsert(queue, k, vwgt[k]-edegrees[other]);
        }
      }
      mptr[nswaps+1] = nmind;
      IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopwctimer(ctrl->Aux1Tmr));


      IFSET(ctrl->dbglvl, METIS_DBG_MOVEINFO,
            printf("Moved %6"PRIDX" to %3"PRIDX", Gain: %5"PRIDX" [%5"PRIDX"] \t[%5"PRIDX" %5"PRIDX" %5"PRIDX"] [%3"PRIDX" %2"PRIDX"]\n", 
                higain, to, (vwgt[higain]-rinfo[higain].edegrees[other]), vwgt[higain], 
                pwgts[0], pwgts[1], pwgts[2], nswaps, limit));
    }
    IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopwctimer(ctrl->Aux3Tmr));


    /****************************************************************
    * Roll back computation 
    *****************************************************************/
    IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startwctimer(ctrl->Aux2Tmr));
    for (nswaps--; nswaps>mincutorder; nswaps--) {
      higain = swaps[nswaps];

      ASSERT(CheckNodePartitionParams(graph));
      ASSERT(where[higain] == to);

      INC_DEC(pwgts[2], pwgts[to], vwgt[higain]);
      where[higain] = 2;
      BNDInsert(nbnd, bndind, bndptr, higain);

      edegrees = rinfo[higain].edegrees;
      edegrees[0] = edegrees[1] = 0;
      for (j=xadj[higain]; j<xadj[higain+1]; j++) {
        k = adjncy[j];
        if (where[k] == 2) 
          rinfo[k].edegrees[to] -= vwgt[higain];
        else
          edegrees[where[k]] += vwgt[k];
      }

      /* Push nodes out of the separator */
      for (j=mptr[nswaps]; j<mptr[nswaps+1]; j++) {
        k = mind[j];
        ASSERT(where[k] == 2);
        where[k] = other;
        INC_DEC(pwgts[other], pwgts[2], vwgt[k]);
        BNDDelete(nbnd, bndind, bndptr, k);
        for (jj=xadj[k], iend=xadj[k+1]; jj<iend; jj++) {
          kk = adjncy[jj];
          if (where[kk] == 2) 
            rinfo[kk].edegrees[other] += vwgt[k];
        }
      }
    }
    IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopwctimer(ctrl->Aux2Tmr));

    ASSERT(mincut == pwgts[2]);

    IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
      printf("\tMinimum sep: %6"PRIDX" at %5"PRIDX", PWGTS: [%6"PRIDX" %6"PRIDX"], NBND: %6"PRIDX"\n", mincut, mincutorder, pwgts[0], pwgts[1], nbnd));

    graph->mincut = mincut;
    graph->nbnd   = nbnd;

    if (pass%2 == 1 && (mincutorder == -1 || mincut >= initcut))
      break;
  }

  rpqDestroy(queue);

  WCOREPOP;
}