Exemplo n.º 1
0
/**
 * prediction - perform a state prediction step
 * @params[in] self
 * @params[in] args
 *  - gyro
 *  - accel
 *  - dT
 * @return state
 */
static PyObject*
prediction(PyObject* self, PyObject* args)
{
	PyArrayObject *vec_gyro, *vec_accel;
	float gyro_data[3], accel_data[3];
	float dT;

	if (!PyArg_ParseTuple(args, "O!O!f", &PyArray_Type, &vec_gyro,
				   &PyArray_Type, &vec_accel, &dT))  return NULL;
	if (NULL == vec_gyro)  return NULL;
	if (NULL == vec_accel)  return NULL;

	if (!parseFloatVec3(vec_gyro, gyro_data))
		return NULL;
	if (!parseFloatVec3(vec_accel, accel_data))
		return NULL;

	INSStatePrediction(gyro_data, accel_data, dT);
	INSCovariancePrediction(dT);

	if (false) {
		const float zeros[3] = {0,0,0};
		INSSetGyroBias(zeros);
		INSSetAccelBias(zeros);
	}

	return pack_state(self);
}
Exemplo n.º 2
0
/**
 * @brief Quickly initialize INS assuming stationary and gravity is down
 *
 * Currently this is done iteratively but I'm sure it can be directly computed
 * when I sit down and work it out
 */
void converge_insgps()
{
	AHRSCalibrationData calibration;
	AHRSCalibrationGet( &calibration );
	float pos[3] = { 0, 0, 0 }, vel[3] = {
		0, 0, 0
	}, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = {
		0, 0, 0
	};
	INSGPSInit();
	INSSetAccelVar( calibration.accel_var );
	INSSetGyroBias( temp_gyro );	// set this to zero - crude bias corrected from downsample_data
	INSSetGyroVar( calibration.gyro_var );
	INSSetMagVar( calibration.mag_var );

	float temp_var[3] = { 10, 10, 10 };
	INSSetGyroVar( temp_var );	// ignore gyro's

	accel[0] = accel_data.filtered.x;
	accel[1] = accel_data.filtered.y;
	accel[2] = accel_data.filtered.z;

	// Iteratively constrain pitch and roll while updating yaw to align magnetic axis.
	for( int i = 0; i < 50; i++ ) {
		// This should be done directly but I'm too dumb.
		float rpy[3];
		Quaternion2RPY( Nav.q, rpy );
		rpy[1] =
			-atan2( accel_data.filtered.x,
					accel_data.filtered.z ) * 180 / M_PI;
		rpy[0] =
			-atan2( accel_data.filtered.y,
					accel_data.filtered.z ) * 180 / M_PI;
		// Get magnetic readings
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
		PIOS_HMC5843_ReadMag( mag_data.raw.axis );
#endif
		mag[0] = -mag_data.raw.axis[1];
		mag[1] = -mag_data.raw.axis[0];
		mag[2] = -mag_data.raw.axis[2];

		RPY2Quaternion( rpy, Nav.q );
		INSStatePrediction( temp_gyro, accel, 1 / ( float )EKF_RATE );
		INSCovariancePrediction( 1 / ( float )EKF_RATE );
		FullCorrection( mag, pos, vel, BaroAlt );
	}

	INSSetGyroVar( calibration.gyro_var );

}
Exemplo n.º 3
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
	char * function_name;
	float accel_data[3];
	float gyro_data[3];
	float mag_data[3];
	float pos_data[3];
	float vel_data[3];
	float baro_data;
	float dT;

	//All code and internal function calls go in here!
	if(!mxIsChar(prhs[0])) {
		mexErrMsgTxt("First parameter must be name of a function\n");
		return;
	} 

	if(mlStringCompare(prhs[0], "INSGPSInit")) {
		INSGPSInit();
	} else 	if(mlStringCompare(prhs[0], "INSStatePrediction")) {

		if(nrhs != 4) {
			mexErrMsgTxt("Incorrect number of inputs for state prediction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], gyro_data, 3) || 
			!mlGetFloatArray(prhs[2], accel_data, 3) ||
			!mlGetFloatArray(prhs[3], &dT, 1)) 
			return;

		INSStatePrediction(gyro_data, accel_data, dT);
		INSCovariancePrediction(dT);
	} else 	if(mlStringCompare(prhs[0], "INSFullCorrection")) {

		if(nrhs != 5) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], mag_data, 3) ||
				!mlGetFloatArray(prhs[2], pos_data, 3) ||
				!mlGetFloatArray(prhs[3], vel_data ,3) ||
				!mlGetFloatArray(prhs[4], &baro_data, 1)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		FullCorrection(mag_data, pos_data, vel_data, baro_data);
	} else 	if(mlStringCompare(prhs[0], "INSMagCorrection")) {
		if(nrhs != 2) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], mag_data, 3)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		MagCorrection(mag_data);
    } else 	if(mlStringCompare(prhs[0], "INSBaroCorrection")) {
		if(nrhs != 2) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], &baro_data, 1)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		BaroCorrection(baro_data);
	} else 	if(mlStringCompare(prhs[0], "INSMagVelBaroCorrection")) {

		if(nrhs != 4) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], mag_data, 3) ||
				!mlGetFloatArray(prhs[2], vel_data ,3) ||
				!mlGetFloatArray(prhs[3], &baro_data, 1)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		MagVelBaroCorrection(mag_data, vel_data, baro_data);
	} else 	if(mlStringCompare(prhs[0], "INSGpsCorrection")) {

		if(nrhs != 3) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], pos_data, 3) ||
				!mlGetFloatArray(prhs[2], vel_data ,3)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		GpsCorrection(pos_data, vel_data);
	} else 	if(mlStringCompare(prhs[0], "INSVelBaroCorrection")) {

		if(nrhs != 3) {
			mexErrMsgTxt("Incorrect number of inputs for correction\n");
			return;
		}

		if(!mlGetFloatArray(prhs[1], vel_data, 3) ||
				!mlGetFloatArray(prhs[2], &baro_data, 1)) {
			mexErrMsgTxt("Error with the input parameters\n");
			return;
		}

		VelBaroCorrection(vel_data, baro_data);
	} else if (mlStringCompare(prhs[0], "INSSetPosVelVar")) {
		float pos_var;
        float vel_var;
		if((nrhs != 3) || !mlGetFloatArray(prhs[1], &pos_var, 1) ||
                !mlGetFloatArray(prhs[2], &vel_var, 1)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		INSSetPosVelVar(pos_var, vel_var);
	} else if (mlStringCompare(prhs[0], "INSSetGyroBias")) {
		float gyro_bias[3];
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], gyro_bias, 3)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		INSSetGyroBias(gyro_bias);
	} else if (mlStringCompare(prhs[0], "INSSetAccelVar")) {
		float accel_var[3];
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], accel_var, 3)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		INSSetAccelVar(accel_var);
	} else if (mlStringCompare(prhs[0], "INSSetGyroVar")) {
		float gyro_var[3];
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], gyro_var, 3)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		INSSetGyroVar(gyro_var);
	} else if (mlStringCompare(prhs[0], "INSSetMagNorth")) {
		float mag_north[3];
		float Bmag;
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], mag_north, 3)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		Bmag = sqrt(mag_north[0] * mag_north[0] + mag_north[1] * mag_north[1] +
				mag_north[2] * mag_north[2]);
		mag_north[0] = mag_north[0] / Bmag;
		mag_north[1] = mag_north[1] / Bmag;
		mag_north[2] = mag_north[2] / Bmag;

		INSSetMagNorth(mag_north);
	} else if (mlStringCompare(prhs[0], "INSSetMagVar")) {
		float mag_var[3];
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], mag_var, 3)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		INSSetMagVar(mag_var);
	} else if (mlStringCompare(prhs[0], "INSSetState")) {
        int i;
		float new_state[NUMX];
		if((nrhs != 2) || !mlGetFloatArray(prhs[1], new_state, NUMX)) {
			mexErrMsgTxt("Error with input parameters\n");
			return;
		}
		for(i = 0; i < NUMX; i++)
			X[i] = new_state[i];
	} else {
		mexErrMsgTxt("Unknown function");
	}

	if(nlhs > 0) {
		// return current state vector
		double * data_out;
		int i;

		plhs[0] = mxCreateDoubleMatrix(1,13,0);
		data_out = mxGetData(plhs[0]);
		for(i = 0; i < NUMX; i++)
			data_out[i] = X[i];
	}

	if(nlhs > 1) {
		//return covariance estimate
		double * data_copy = mxCalloc(NUMX*NUMX, sizeof(double));
		int i, j, k;

		plhs[1] = mxCreateDoubleMatrix(13,13,0);
		for(i = 0; i < NUMX; i++)
			for(j = 0; j < NUMX; j++)
			{
				data_copy[j + i * NUMX] = P[j][i];
			}

		mxSetData(plhs[1], data_copy);
	}

	if(nlhs > 2) {
		//return covariance estimate
		double * data_copy = mxCalloc(NUMX*NUMV, sizeof(double));
		int i, j, k;

		plhs[2] = mxCreateDoubleMatrix(NUMX,NUMV,0);
		for(i = 0; i < NUMX; i++)
			for(j = 0; j < NUMV; j++)
			{
				data_copy[j + i * NUMX] = K[i][j];
			}

		mxSetData(plhs[2], data_copy);
	}
	return;
}
Exemplo n.º 4
0
/**
  * @brief  This function runs the EKF, talks to aux sensors with a state machine and applys control loops to servos (main control task loop)
  * @param  None
  * @retval None
  */
void run_imu(void) {
	//Static variables
	static uint32_t Iterations=0,millis_pitot;//Number of ekf iterations, pitot sample timestamp
	static Control_type control=DEFAULT_CONTROL;//The control structure
	static Ubx_Gps_Type gps;		//This is our local copy - theres is also a global, be careful with copying
	static float ac[3],Wind[3];		//The accel is not always avaliable - 100hz update
	static float AirSpeed=0,Baro_Alt,Body_x_To_x=0,Body_x_To_y=0,Mean_Baro_Offset;
	static uint32_t Baro_Pressure;		//Baro pressure is static for use in air density calculations
	static uint8_t PWM_Disabled;		//Keeps track of PWM hardware passthrough state
	//Non Static
	float ma[3],gy[3],gps_velocity[3],gps_position[3],target_vector[3],waypoint[3]={0,0,0},old_density;
	float Delta_Time=DELTA_TIME,x_down,y_down,h_offset,N_t_x,N_t_y,time_to_waypoint,Horiz_t,GPS_Errors[4];
	uint16_t SensorsUsed=0;			//We by default have no sensors
	int32_t Baro_Temperature;		//In units of 0.1C
	//Now read the gyro buffer, convert to float from uint16_t and apply the calibration
	Calibrate_3(gy,&(Gyro_Data_Buffer[1]),&Gyr_Cal_Dat);//Read gyro data buffer - skip the temperature
	//Now read the accel downconvertor buffer and apply calibration
	Accel_Access_Flag=LOCKED;		//Lock the data
	/*LOCKED*/Calibrate_3(ac,Accel_Data_Vector,&Acc_Cal_Dat);//Grab the data from the accel downsampler/DSP filter
	Accel_Access_Flag=UNLOCKED;		//Unlock the data
	//Run the EKF - we feed it float pointers but it expects float arrays - alignment has to be correct
	INSStatePrediction(gy,ac,Delta_Time);	//Run the EKF and incorporate the avaliable sensors
	INSCovariancePrediction(Delta_Time);
	//Process the GPS data
	while(Bytes_In_Buffer(&Gps_Buffer))	//Dump all the data from DMA
		Gps_Process_Byte((uint8_t)(Pop_From_Buffer(&Gps_Buffer)),&gps);
	if(gps.packetflag==REQUIRED_DATA){	
		gps_position[0]=(float)(gps.latitude-Home_Position.Latitude)*LAT_TO_METERS;//Remember, NED frame, and gps altitude needs *=-1
		gps_position[1]=(float)(gps.longitude-Home_Position.Longitude)*Long_To_Meters_Home;//This is a global set with home position
		gps_position[2]=-((float)gps.mslaltitude*0.001)+Home_Position.Altitude;//Home is in raw gps coordinates - apart from altitude in m NED
		gps_velocity[0]=(float)gps.vnorth*0.01;//Ublox velocity is in cm/s
		gps_velocity[1]=(float)gps.veast*0.01;
		gps_velocity[2]=(float)gps.vdown*0.01;
		GPS_Errors[0]=(float)gps.horizontal_error*(float)gps.horizontal_error*1e-6*GPS_SPECTRAL_FUDGE_FACTOR/2.0;//Fudge factor for spectral noise density 
		GPS_Errors[1]=(float)gps.vertical_error*(float)gps.vertical_error*1e-6*GPS_SPECTRAL_FUDGE_FACTOR;//Fudge factor is defined in ubx.h/gps header file
		GPS_Errors[2]=(float)gps.speedacc*(float)gps.speedacc*1e-4*GPS_SPECTRAL_FUDGE_FACTOR*GPS_Errors[0]/(GPS_Errors[0]+GPS_Errors[1]);
		GPS_Errors[3]=GPS_Errors[2]*GPS_Errors[1]/GPS_Errors[0];//Ublox5 only gives us 3D speed accuracy? Weight with position errors
		if(OUTDOOR==Operating_Mode)
			INSResetRGPS(GPS_Errors);//Adjust the measurement covariance matrix with reported gps error
		SensorsUsed|=POS_SENSORS|HORIZ_SENSORS|VERT_SENSORS;//Set the flagbits for the gps update
		//Correct baro pressure offset - average the gps altitude over first 100 seconds and apply correction when filter initialised
		old_density=((((float)gps.mslaltitude*0.001-Home_Position.Altitude)*Air_Density*Home_Position.g_e)+(float)Baro_Pressure-Baro_Offset\
		-Mean_Baro_Offset)*(0.01/(float)GPS_RATE);//reuse variable here
		if(Iterations++>100*GPS_RATE)
			Baro_Offset+=old_density;//fixed tau: 0.01s^-1, use the averaged offset to take out gps altitude error in the home pos
		else
			Mean_Baro_Offset+=old_density;
		if(!Gps.packetflag)Gps=gps;	//Copy the data over to the main 'thread' if the global unlocked
		gps.packetflag=0x00;		//Reset the flag
	}
	//Now the state dependant I2C stuff
	if(Completed_Jobs&(1<<MAGNO_READ)) {	//This I2C job will run whilst the prediction runs
		Completed_Jobs&=~(1<<MAGNO_READ);//Wipe the job completed bit
		Calibrate_3(ma,Magno_Data_Buffer,&Mag_Cal_Dat);//Calibrate - the EKF can take a magnetometer input in any units
		SensorsUsed|=MAG_SENSORS;	//Let the EKF know what we used
	}
	if(Completed_Jobs&(1<<BMP_24BIT)) {
		Completed_Jobs&=~(1<<BMP_24BIT);//Wipe the job completed bit
		Baro_Pressure=Bmp_Press_Buffer;	//Copy over from the read buffer
		flip_adc24(&Baro_Pressure);	//Fix endianess
		Bmp_Simp_Conv(&Baro_Temperature,&Baro_Pressure);//Convert to a pressure in Pa
		Baro_Alt=(Baro_Offset-(float)Baro_Pressure)/(Home_Position.g_e*Air_Density);//Use the air density calculation (also used in pitot), linear approx
		SensorsUsed|=BARO_SENSOR;	//We have used the baro sensor
		Balt=Baro_Alt;
		if(READ==UAVtalk_conf.semaphores[BARO_ACTUAL]) {//If this data has been read, we can update it (avoids risk of overwriting data mid packet tx)
			UAVtalk_Altitude_Array[0]=Baro_Alt;//+Home_Position.Altitude;//Populate Baro_altitude UAVtalk packet here - Altitude is MSL altitude in m
			UAVtalk_Altitude_Array[1]=(float)Baro_Temperature/10.0;//Note that as baro_actual has three independant 32bit
			UAVtalk_Altitude_Array[2]=(float)Baro_Pressure*1e-3;//Variables, can be set directly here without passing data back - note pressure in kPa
			UAVtalk_conf.semaphores[BARO_ACTUAL]=WRITE;//Set the semaphore to indicate this has been written
		}
	}
	if(Completed_Jobs&(1<<BMP_16BIT)) {
		Completed_Jobs&=~(1<<BMP_16BIT);//Wipe the job completed bit
		Bmp_Copy_Temp();		//Copy the 16 bit temperature out of its buffer into the temperature global
		old_density=Air_Density;	//Save old air density so we can find the delta
		Air_Density=Calc_Air_Density((float)gps.mslaltitude*1e-3,(float)Baro_Pressure);//Find air density using atmospheric model (Kgm^-3)
		Baro_Offset+=Baro_Alt*(Air_Density-old_density)*Home_Position.g_e;//Correct the baro offset term to account for changing density
	}
	if(Completed_Jobs&(1<<PITOT_READ)) {
		Completed_Jobs&=~(1<<PITOT_READ);//Wipe the job completed bit
		if((Millis-millis_pitot)<2*PITOT_PERIOD) {//An uncorrupted pitot data sample - the bmp085 has same address as ltc2481 global config
			Pitot_Pressure=Pitot_Conv((uint32_t)Pitot_Pressure);//Align and sign the adc value - 1lsb=~0.24Pa
			AirSpeed=Pitot_convert_Airspeed(Pitot_Pressure, Air_Density);//Windspeed
			Wind[0]*=WIND_TAU;Wind[1]*=WIND_TAU;//Low pass filter
			Wind[0]+=(1.0-WIND_TAU)*(Nav.Vel[0]-AirSpeed*Body_x_To_x);//This assumes horizontal wind and neglidgible slip
			Wind[1]+=(1.0-WIND_TAU)*(Nav.Vel[1]-AirSpeed*Body_x_To_y);
			Balt=(float)AirSpeed;	//Pitot_Pressure;//Note debug
		}
		millis_pitot=Millis;		//Save a timestamp so we can monitor conversion time, BMP085 corruption will double this
	}
	INSCorrection(ma,gps_position,gps_velocity,-Baro_Alt,SensorsUsed);//Note that Baro has to be in NED frame
	if(!Nav_Flag) {Nav_Global=Nav; Nav_Flag=(uint32_t)0x01;}//Copy over Nav state if its been unlocked
	//EKF is finished, time to run the guidance
	if(New_Waypoint_Flagged) {memcpy(waypoint,Waypoint_Global,sizeof(waypoint)); New_Waypoint_Flagged=0;}//Check for any new waypoints set
	target_vector[0]=waypoint[0]-Nav.Pos[0];//A float vector to the waypoint in NED space
	target_vector[1]=waypoint[1]-Nav.Pos[1];
	target_vector[2]=waypoint[2]-Nav.Pos[2];//Now work out the eta at the waypoint (just the x,y/North,East position)
	Horiz_t=sqrtf(target_vector[0]*target_vector[0]+target_vector[1]*target_vector[1]);//Horizontal distance to target
	N_t_x=target_vector[0]/Horiz_t;
	N_t_y=target_vector[1]/Horiz_t;		//Normalised horizontal target vector
	time_to_waypoint=Horiz_t/(control.airframe.airspeed+Wind[0]*N_t_x+Wind[1]*N_t_y);//Time if we travel in a straight line - ignores vertical offset
	N_t_x=target_vector[0]-Wind[0]*time_to_waypoint;
	N_t_y=target_vector[1]-Wind[1]*time_to_waypoint;//Modify the aiming point to account for cross track error
	AirSpeed=Nav.Vel[0]-Wind[0];AirSpeed*=AirSpeed;//Do this here to decrease runtime a little
	AirSpeed=sqrtf(AirSpeed+(Nav.Vel[1]-Wind[1])*(Nav.Vel[1]-Wind[1])+Nav.Vel[2]*Nav.Vel[2]);//Work out true airspeed assume horizontal wind
	//Move the body x,y axes into earth NED frame using Reb, looking at z=down components of body x and y
	x_down=2 * (Nav.q[1] * Nav.q[3] - Nav.q[0] * Nav.q[2]);
	y_down=2 * (Nav.q[2] * Nav.q[3] + Nav.q[0] * Nav.q[1]);
	//Work out the heading offset - z component of target vector cross body x axis
	Body_x_To_x=Nav.q[0] * Nav.q[0] + Nav.q[1] * Nav.q[1] - Nav.q[2] * Nav.q[2] - Nav.q[3] * Nav.q[3];
	Body_x_To_y=2*Nav.q[1] * Nav.q[2] + Nav.q[0] * Nav.q[3];//These are saved for subsequent iterations as static variables
	Horiz_t=sqrtf(N_t_x*N_t_x+N_t_y*N_t_y);	//Normalise the wind corrected target vector
	N_t_x/Horiz_t;
	N_t_y/Horiz_t;
	h_offset=Body_x_To_x * N_t_x + Body_x_To_y * N_t_y -1;//We do dot product to get cos(angle), then subtract 1
	if(Body_x_To_x * N_t_y - Body_x_To_y * N_t_x<0)//Multiply by -1 depending on the direction - cos(-angle)==cos(angle)
		h_offset*=-1;
	//Run the control loops if we arent controlled from the ground
	if(Ground_Flag&0x0F) {//TODO implement ground control using PWM input capture and sanity check, as well as PWM passthrough?
		if(PWM_Disabled) {//If PWM isnt already enabled, enable it
			Timer_GPIO_Enable();
			PWM_Disabled=0;
		}
		//Pitch setpoint control pid (actually a PI) -- Note- uses dynamic pressure 
		Run_PID(&(control.pitch_setpoint),&(control.airframe.pitch_setpoint),control.airframe.airspeed-AirSpeed,0);
		//Roll setpoint set by heading error
		Run_PID(&(control.roll_setpoint),&(control.airframe.roll_setpoint),h_offset,0);
		if(Ground_Flag&0xF0) {//If we are Armed, the motor can be run - defaults to disarmed
			//Throttle set according to altitude error
			Run_PID(&(control.throttle),&(control.airframe.throttle),\
			target_vector[2]-((AirSpeed*AirSpeed)-(control.airframe.airspeed*control.airframe.airspeed))/(2*Home_Position.g_e),Nav.Vel[2]);
			control.throttle.out+=control.airframe.throttle_optimal;
		}
		else
			control.throttle.out=-1.0;//Apply zero throttle to stop motor spinning
		//Elevator, remember x_down is reversed sign
		Run_PID(&(control.elevator),&(control.airframe.elevator),control.pitch_setpoint.out+x_down,gy[1]-Nav.gyro_bias[1]);
		//Ailerons, TODO - work out if signs sane
		Run_PID(&(control.ailerons),&(control.airframe.ailerons),control.roll_setpoint.out-y_down,gy[0]-Nav.gyro_bias[0]);
		//Rudder, D term takes out turbulence, and I term for roll-bank (no P?)
		Run_PID(&(control.rudder),&(control.airframe.rudder),ac[1],gy[2]-Nav.gyro_bias[2]);
		//Apply the feedforward, linking rudder to roll offset
		control.rudder.out+=control.airframe.rudder_feedforward*control.roll_setpoint.out;
		Apply_Servos(&control);//Servo driver function called here using pwm
	}
	else {//any control code to run whilst in ground mode goes here	
		if(!PWM_Disabled) {//If PWM was previously enabled, disable it
			Timer_GPIO_Enable();
			PWM_Disabled=1;
		}
	}	
}
Exemplo n.º 5
0
/**
 * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS)
 * @params[in] first_run This is the first run so trigger reinitialization
 * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0)
 * @return 0 for success, -1 for failure
 */
static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode)
{
	UAVObjEvent ev;
	GyrosData gyrosData;
	AccelsData accelsData;
	MagnetometerData magData;
	BaroAltitudeData baroData;
	GPSPositionData gpsData;
	GPSVelocityData gpsVelData;
	GyrosBiasData gyrosBias;

	static bool mag_updated = false;
	static bool baro_updated;
	static bool gps_updated;
	static bool gps_vel_updated;

	static float baroOffset = 0;

	static uint32_t ins_last_time = 0;
	static bool inited;

	float NED[3] = {0.0f, 0.0f, 0.0f};
	float vel[3] = {0.0f, 0.0f, 0.0f};
	float zeros[3] = {0.0f, 0.0f, 0.0f};

	// Perform the update
	uint16_t sensors = 0;
	float dT;

	// Wait until the gyro and accel object is updated, if a timeout then go to failsafe
	if ( (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) ||
	     (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) )
	{
		// Do not set attitude timeout warnings in simulation mode
		if (!AttitudeActualReadOnly()){
			AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING);
			return -1;
		}
	}

	if (inited) {
		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;
	}

	if (first_run) {
		inited = false;
		init_stage = 0;

		mag_updated = 0;
		baro_updated = 0;
		gps_updated = 0;
		gps_vel_updated = 0;

		ins_last_time = PIOS_DELAY_GetRaw();

		return 0;
	}

	mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE);
	baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE;
	gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;
	gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode;

	// Get most recent data
	GyrosGet(&gyrosData);
	AccelsGet(&accelsData);
	MagnetometerGet(&magData);
	BaroAltitudeGet(&baroData);
	GPSPositionGet(&gpsData);
	GPSVelocityGet(&gpsVelData);
	GyrosBiasGet(&gyrosBias);

	// Discard mag if it has NAN (normally from bad calibration)
	mag_updated &= (magData.x == magData.x && magData.y == magData.y && magData.z == magData.z);
	// Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily
	// switching between indoor and outdoor mode with Set = false)
	mag_updated &= (homeLocation.Be[0] != 0 || homeLocation.Be[1] != 0 || homeLocation.Be[2]);

	// Have a minimum requirement for gps usage
	gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE);

	if (!inited)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else if (outdoor_mode && gpsData.Satellites < 7)
		AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR);
	else
		AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
			
	if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) {
		// Don't initialize until all sensors are read
		if (init_stage == 0 && !outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float pos[3] = {0.0f, 0.0f, 0.0f};

			// Initialize barometric offset to homelocation altitude
			baroOffset = -baroData.Altitude;
			pos[2] = -(baroData.Altitude + baroOffset);

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;
			INSSetState(pos, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage == 0 && outdoor_mode) {
			float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f};
			float q[4];
			float NED[3];

			// Reset the INS algorithm
			INSGPSInit();
			INSSetMagVar(revoCalibration.mag_var);
			INSSetAccelVar(revoCalibration.accel_var);
			INSSetGyroVar(revoCalibration.gyro_var);
			INSSetBaroVar(revoCalibration.baro_var);

			INSSetMagNorth(homeLocation.Be);

			// Initialize the gyro bias from the settings
			float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
			INSSetGyroBias(gyro_bias);

			GPSPositionData gpsPosition;
			GPSPositionGet(&gpsPosition);

			// Transform the GPS position into NED coordinates
			getNED(&gpsPosition, NED);
			
			// Initialize barometric offset to cirrent GPS NED coordinate
			baroOffset = -NED[2] - baroData.Altitude;

			xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS);
			MagnetometerGet(&magData);

			// Set initial attitude
			AttitudeActualData attitudeActual;
			attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI;
			attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI;
			RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1);
			AttitudeActualSet(&attitudeActual);

			q[0] = attitudeActual.q1;
			q[1] = attitudeActual.q2;
			q[2] = attitudeActual.q3;
			q[3] = attitudeActual.q4;

			INSSetState(NED, zeros, q, zeros, zeros);
			INSResetP(Pdiag);
		} else if (init_stage > 0) {
			// Run prediction a bit before any corrections
			dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;

			GyrosBiasGet(&gyrosBias);
			float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f, 
				(gyrosData.y + gyrosBias.y) * F_PI / 180.0f, 
				(gyrosData.z + gyrosBias.z) * F_PI / 180.0f};
			INSStatePrediction(gyros, &accelsData.x, dT);
			
			AttitudeActualData attitude;
			AttitudeActualGet(&attitude);
			attitude.q1 = Nav.q[0];
			attitude.q2 = Nav.q[1];
			attitude.q3 = Nav.q[2];
			attitude.q4 = Nav.q[3];
			Quaternion2RPY(&attitude.q1,&attitude.Roll);
			AttitudeActualSet(&attitude);
		}

		init_stage++;
		if(init_stage > 10)
			inited = true;

		ins_last_time = PIOS_DELAY_GetRaw();	

		return 0;
	}

	if (!inited)
		return 0;

	dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f;
	ins_last_time = PIOS_DELAY_GetRaw();

	// This should only happen at start up or at mode switches
	if(dT > 0.01f)
		dT = 0.01f;
	else if(dT <= 0.001f)
		dT = 0.001f;

	// If the gyro bias setting was updated we should reset
	// the state estimate of the EKF
	if(gyroBiasSettingsUpdated) {
		float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f};
		INSSetGyroBias(gyro_bias);
		gyroBiasSettingsUpdated = false;
	}

	// Because the sensor module remove the bias we need to add it
	// back in here so that the INS algorithm can track it correctly
	float gyros[3] = {gyrosData.x * F_PI / 180.0f, gyrosData.y * F_PI / 180.0f, gyrosData.z * F_PI / 180.0f};
	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE) {
		gyros[0] += gyrosBias.x * F_PI / 180.0f;
		gyros[1] += gyrosBias.y * F_PI / 180.0f;
		gyros[2] += gyrosBias.z * F_PI / 180.0f;
	}

	// Advance the state estimate
	INSStatePrediction(gyros, &accelsData.x, dT);

	// Copy the attitude into the UAVO
	AttitudeActualData attitude;
	AttitudeActualGet(&attitude);
	attitude.q1 = Nav.q[0];
	attitude.q2 = Nav.q[1];
	attitude.q3 = Nav.q[2];
	attitude.q4 = Nav.q[3];
	Quaternion2RPY(&attitude.q1,&attitude.Roll);
	AttitudeActualSet(&attitude);

	// Advance the covariance estimate
	INSCovariancePrediction(dT);

	if(mag_updated)
		sensors |= MAG_SENSORS;

	if(baro_updated)
		sensors |= BARO_SENSOR;

	INSSetMagNorth(homeLocation.Be);
	
	if (gps_updated && outdoor_mode)
	{
		INSSetPosVelVar(revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_POS], revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_VEL]);
		sensors |= POS_SENSORS;

		if (0) { // Old code to take horizontal velocity from GPS Position update
			sensors |= HORIZ_SENSORS;
			vel[0] = gpsData.Groundspeed * cosf(gpsData.Heading * F_PI / 180.0f);
			vel[1] = gpsData.Groundspeed * sinf(gpsData.Heading * F_PI / 180.0f);
			vel[2] = 0;
		}
		// Transform the GPS position into NED coordinates
		getNED(&gpsData, NED);

		// Track barometric altitude offset with a low pass filter
		baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset +
		    (1.0f - BARO_OFFSET_LOWPASS_ALPHA )
		    * ( -NED[2] - baroData.Altitude );

	} else if (!outdoor_mode) {
		INSSetPosVelVar(1e2f, 1e2f);
		vel[0] = vel[1] = vel[2] = 0;
		NED[0] = NED[1] = 0;
		NED[2] = -(baroData.Altitude + baroOffset);
		sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS;
		sensors |= POS_SENSORS |VERT_SENSORS;
	}

	if (gps_vel_updated && outdoor_mode) {
		sensors |= HORIZ_SENSORS | VERT_SENSORS;
		vel[0] = gpsVelData.North;
		vel[1] = gpsVelData.East;
		vel[2] = gpsVelData.Down;
	}
	
	/*
	 * TODO: Need to add a general sanity check for all the inputs to make sure their kosher
	 * although probably should occur within INS itself
	 */
	if (sensors)
		INSCorrection(&magData.x, NED, vel, ( baroData.Altitude + baroOffset ), sensors);

	// Copy the position and velocity into the UAVO
	PositionActualData positionActual;
	PositionActualGet(&positionActual);
	positionActual.North = Nav.Pos[0];
	positionActual.East = Nav.Pos[1];
	positionActual.Down = Nav.Pos[2];
	PositionActualSet(&positionActual);
	
	VelocityActualData velocityActual;
	VelocityActualGet(&velocityActual);
	velocityActual.North = Nav.Vel[0];
	velocityActual.East = Nav.Vel[1];
	velocityActual.Down = Nav.Vel[2];
	VelocityActualSet(&velocityActual);

	if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE && !gyroBiasSettingsUpdated) {
		// Copy the gyro bias into the UAVO except when it was updated
		// from the settings during the calculation, then consume it
		// next cycle
		gyrosBias.x = Nav.gyro_bias[0] * 180.0f / F_PI;
		gyrosBias.y = Nav.gyro_bias[1] * 180.0f / F_PI;
		gyrosBias.z = Nav.gyro_bias[2] * 180.0f / F_PI;
		GyrosBiasSet(&gyrosBias);
	}

	return 0;
}
Exemplo n.º 6
0
int main()
{
	float gyro[3], accel[3], mag[3];
	float vel[3] = { 0, 0, 0 };
	/* Normaly we get/set UAVObjects but this one only needs to be set.
	We will never expect to get this from another module*/
	AttitudeActualData attitude_actual;
	AHRSSettingsData ahrs_settings;

	/* Brings up System using CMSIS functions, enables the LEDs. */
	PIOS_SYS_Init();

	/* Delay system */
	PIOS_DELAY_Init();

	/* Communication system */
	PIOS_COM_Init();

	/* ADC system */
	AHRS_ADC_Config( adc_oversampling );

	/* Setup the Accelerometer FS (Full-Scale) GPIO */
	PIOS_GPIO_Enable( 0 );
	SET_ACCEL_2G;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
	/* Magnetic sensor system */
	PIOS_I2C_Init();
	PIOS_HMC5843_Init();

	// Get 3 ID bytes
	strcpy(( char * )mag_data.id, "ZZZ" );
	PIOS_HMC5843_ReadID( mag_data.id );
#endif

	/* SPI link to master */
//	PIOS_SPI_Init();
	AhrsInitComms();
	AHRSCalibrationConnectCallback( calibration_callback );
	GPSPositionConnectCallback( gps_callback );

	ahrs_state = AHRS_IDLE;

	while( !AhrsLinkReady() ) {
		AhrsPoll();
		while( ahrs_state != AHRS_DATA_READY ) ;
		ahrs_state = AHRS_PROCESSING;
		downsample_data();
		ahrs_state = AHRS_IDLE;
		if(( total_conversion_blocks % 50 ) == 0 )
			PIOS_LED_Toggle( LED1 );
	}


	AHRSSettingsGet(&ahrs_settings);


	/* Use simple averaging filter for now */
	for( int i = 0; i < adc_oversampling; i++ )
		fir_coeffs[i] = 1;
	fir_coeffs[adc_oversampling] = adc_oversampling;

	if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_INSGPS) {
		// compute a data point and initialize INS
		downsample_data();
		converge_insgps();
	}


#ifdef DUMP_RAW
	int previous_conversion;
	while( 1 ) {
		AhrsPoll();
		int result;
		uint8_t framing[16] = {
			0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
			15
		};
		while( ahrs_state != AHRS_DATA_READY ) ;
		ahrs_state = AHRS_PROCESSING;

		if( total_conversion_blocks != previous_conversion + 1 )
			PIOS_LED_On( LED1 );	// not keeping up
		else
			PIOS_LED_Off( LED1 );
		previous_conversion = total_conversion_blocks;

		downsample_data();
		ahrs_state = AHRS_IDLE;;

		// Dump raw buffer
		result = PIOS_COM_SendBuffer( PIOS_COM_AUX, &framing[0], 16 );	// framing header
		result += PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & total_conversion_blocks, sizeof( total_conversion_blocks ) );	// dump block number
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & valid_data_buffer[0],
								 ADC_OVERSAMPLE *
								 ADC_CONTINUOUS_CHANNELS *
								 sizeof( valid_data_buffer[0] ) );
		if( result == 0 )
			PIOS_LED_Off( LED1 );
		else {
			PIOS_LED_On( LED1 );
		}
	}
#endif

	timer_start();

	/******************* Main EKF loop ****************************/
	while( 1 ) {
		AhrsPoll();
		AHRSCalibrationData calibration;
		AHRSCalibrationGet( &calibration );
		BaroAltitudeData baro_altitude;
		BaroAltitudeGet( &baro_altitude );
		GPSPositionData gps_position;
		GPSPositionGet( &gps_position );
		AHRSSettingsGet(&ahrs_settings);

		// Alive signal
		if(( total_conversion_blocks % 100 ) == 0 )
			PIOS_LED_Toggle( LED1 );

#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
		// Get magnetic readings
		if( PIOS_HMC5843_NewDataAvailable() ) {
			PIOS_HMC5843_ReadMag( mag_data.raw.axis );
			mag_data.updated = 1;
		}
		attitude_raw.magnetometers[0] = mag_data.raw.axis[0];
		attitude_raw.magnetometers[2] = mag_data.raw.axis[1];
		attitude_raw.magnetometers[2] = mag_data.raw.axis[2];

#endif
		// Delay for valid data

		counter_val = timer_count();
		running_counts = counter_val - last_counter_idle_end;
		last_counter_idle_start = counter_val;

		while( ahrs_state != AHRS_DATA_READY ) ;

		counter_val = timer_count();
		idle_counts = counter_val - last_counter_idle_start;
		last_counter_idle_end = counter_val;

		ahrs_state = AHRS_PROCESSING;

		downsample_data();

		/***************** SEND BACK SOME RAW DATA ************************/
		// Hacky - grab one sample from buffer to populate this.  Need to send back
		// all raw data if it's happening
		accel_data.raw.x = valid_data_buffer[0];
		accel_data.raw.y = valid_data_buffer[2];
		accel_data.raw.z = valid_data_buffer[4];

		gyro_data.raw.x = valid_data_buffer[1];
		gyro_data.raw.y = valid_data_buffer[3];
		gyro_data.raw.z = valid_data_buffer[5];

		gyro_data.temp.xy = valid_data_buffer[6];
		gyro_data.temp.z = valid_data_buffer[7];

		if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_INSGPS) {
			/******************** INS ALGORITHM **************************/

			// format data for INS algo
			gyro[0] = gyro_data.filtered.x;
			gyro[1] = gyro_data.filtered.y;
			gyro[2] = gyro_data.filtered.z;
			accel[0] = accel_data.filtered.x,
					   accel[1] = accel_data.filtered.y,
								  accel[2] = accel_data.filtered.z,
											 // Note: The magnetometer driver returns registers X,Y,Z from the chip which are
											 // (left, backward, up).  Remapping to (forward, right, down).
											 mag[0] = -( mag_data.raw.axis[1] - calibration.mag_bias[1] );
			mag[1] = -( mag_data.raw.axis[0] - calibration.mag_bias[0] );
			mag[2] = -( mag_data.raw.axis[2] - calibration.mag_bias[2] );

			INSStatePrediction( gyro, accel,
								1 / ( float )EKF_RATE );
			INSCovariancePrediction( 1 / ( float )EKF_RATE );

			if( gps_updated && gps_position.Status == GPSPOSITION_STATUS_FIX3D ) {
				// Compute velocity from Heading and groundspeed
				vel[0] =
					gps_position.Groundspeed *
					cos( gps_position.Heading * M_PI / 180 );
				vel[1] =
					gps_position.Groundspeed *
					sin( gps_position.Heading * M_PI / 180 );

				// Completely unprincipled way to make the position variance
				// increase as data quality decreases but keep it bounded
				// Variance becomes 40 m^2 and 40 (m/s)^2 when no gps
				INSSetPosVelVar( 0.004 );

				HomeLocationData home;
				HomeLocationGet( &home );
				float ned[3];
				double lla[3] = {( double ) gps_position.Latitude / 1e7, ( double ) gps_position.Longitude / 1e7, ( double )( gps_position.GeoidSeparation + gps_position.Altitude )};
				// convert from cm back to meters
				double ecef[3] = {( double )( home.ECEF[0] / 100 ), ( double )( home.ECEF[1] / 100 ), ( double )( home.ECEF[2] / 100 )};
				LLA2Base( lla, ecef, ( float( * )[3] ) home.RNE, ned );

				if( gps_updated ) { //FIXME: Is this correct?
					//TOOD: add check for altitude updates
					FullCorrection( mag, ned,
									vel,
									baro_altitude.Altitude );
					gps_updated = false;
				} else {
					GpsBaroCorrection( ned,
									   vel,
									   baro_altitude.Altitude );
				}

				gps_updated = false;
				mag_data.updated = 0;
			} else if( gps_position.Status == GPSPOSITION_STATUS_FIX3D
					   && mag_data.updated == 1 ) {
				MagCorrection( mag );	// only trust mags if outdoors
				mag_data.updated = 0;
			} else {
				// Indoors, update with zero position and velocity and high covariance
				INSSetPosVelVar( 0.1 );
				vel[0] = 0;
				vel[1] = 0;
				vel[2] = 0;

				VelBaroCorrection( vel,
								   baro_altitude.Altitude );
//                MagVelBaroCorrection(mag,vel,altitude_data.altitude);  // only trust mags if outdoors
			}

			attitude_actual.q1 = Nav.q[0];
			attitude_actual.q2 = Nav.q[1];
			attitude_actual.q3 = Nav.q[2];
			attitude_actual.q4 = Nav.q[3];
		} else if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_SIMPLE ) {
			float q[4];
			float rpy[3];
			/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
			/* Very simple computation of the heading and attitude from accel. */
			rpy[2] =
				atan2(( mag_data.raw.axis[0] ),
					  ( -1 * mag_data.raw.axis[1] ) ) * 180 /
				M_PI;
			rpy[1] =
				atan2( accel_data.filtered.x,
					   accel_data.filtered.z ) * 180 / M_PI;
			rpy[0] =
				atan2( accel_data.filtered.y,
					   accel_data.filtered.z ) * 180 / M_PI;

			RPY2Quaternion( rpy, q );
			attitude_actual.q1 = q[0];
			attitude_actual.q2 = q[1];
			attitude_actual.q3 = q[2];
			attitude_actual.q4 = q[3];
		}

		ahrs_state = AHRS_IDLE;

#ifdef DUMP_FRIENDLY
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "b: %d\r\n",
				total_conversion_blocks );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "a: %d %d %d\r\n",
				( int16_t )( accel_data.filtered.x * 1000 ),
				( int16_t )( accel_data.filtered.y * 1000 ),
				( int16_t )( accel_data.filtered.z * 1000 ) );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "g: %d %d %d\r\n",
				( int16_t )( gyro_data.filtered.x * 1000 ),
				( int16_t )( gyro_data.filtered.y * 1000 ),
				( int16_t )( gyro_data.filtered.z * 1000 ) );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "m: %d %d %d\r\n",
				mag_data.raw.axis[0],
				mag_data.raw.axis[1],
				mag_data.raw.axis[2] );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX,
				"q: %d %d %d %d\r\n",
				( int16_t )( Nav.q[0] * 1000 ),
				( int16_t )( Nav.q[1] * 1000 ),
				( int16_t )( Nav.q[2] * 1000 ),
				( int16_t )( Nav.q[3] * 1000 ) );
#endif
#ifdef DUMP_EKF
		uint8_t framing[16] = {
			15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
			0
		};
		extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX];	// linearized system matrices
		extern float P[NUMX][NUMX], X[NUMX];	// covariance matrix and state vector
		extern float Q[NUMW], R[NUMV];	// input noise and measurement noise variances
		extern float K[NUMX][NUMV];	// feedback gain matrix

		// Dump raw buffer
		int8_t result;
		result = PIOS_COM_SendBuffer( PIOS_COM_AUX, &framing[0], 16 );	// framing header
		result += PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & total_conversion_blocks, sizeof( total_conversion_blocks ) );	// dump block number
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & mag_data,
								 sizeof( mag_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & gps_data,
								 sizeof( gps_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & accel_data,
								 sizeof( accel_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & gyro_data,
								 sizeof( gyro_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & Q,
								 sizeof( float ) * NUMX * NUMX );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & K,
								 sizeof( float ) * NUMX * NUMV );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & X,
								 sizeof( float ) * NUMX * NUMX );

		if( result == 0 )
			PIOS_LED_Off( LED1 );
		else {
			PIOS_LED_On( LED1 );
		}
#endif
		AttitudeActualSet( &attitude_actual );

		/*FIXME: This is dangerous. There is no locking for UAVObjects
		so it could stomp all over the airspeed/climb rate etc.
		This used to be done in the OP module which was bad.
		Having ~4ms latency for the round trip makes it worse here.
		*/
		PositionActualData pos;
		PositionActualGet( &pos );
		for( int ct = 0; ct < 3; ct++ ) {
			pos.NED[ct] = Nav.Pos[ct];
			pos.Vel[ct] = Nav.Vel[ct];
		}
		PositionActualSet( &pos );

		static bool was_calibration = false;
		AhrsStatusData status;
		AhrsStatusGet( &status );
		if( was_calibration != status.CalibrationSet ) {
			was_calibration = status.CalibrationSet;
			if( status.CalibrationSet ) {
				calibrate_sensors();
				AhrsStatusGet( &status );
				status.CalibrationSet = true;
			}
		}
		status.CPULoad = (( float )running_counts /
						  ( float )( idle_counts + running_counts ) ) * 100;

		status.IdleTimePerCyle = idle_counts / ( TIMER_RATE / 10000 );
		status.RunningTimePerCyle = running_counts / ( TIMER_RATE / 10000 );
		status.DroppedUpdates = ekf_too_slow;
		AhrsStatusSet( &status );

	}

	return 0;
}