Exemplo n.º 1
0
static void ssolve_permuteA(IV ** oldToNewIV, IV ** newToOldIV,
			 IVL ** symbfacIVL, ETree * frontETree,
			 InpMtx * mtxA, FILE * msgFile, int symmetryflag)
{
	int *oldToNew;

	*oldToNewIV = ETree_oldToNewVtxPerm(frontETree);
	oldToNew = IV_entries(*oldToNewIV);
	*newToOldIV = ETree_newToOldVtxPerm(frontETree);
	ETree_permuteVertices(frontETree, *oldToNewIV);
	InpMtx_permute(mtxA, oldToNew, oldToNew);
	if(symmetryflag!=2) InpMtx_mapToUpperTriangle(mtxA);
	InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS);
	InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS);
	*symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA);
	if (DEBUG_LVL > 1) {
		fprintf(msgFile, "\n\n old-to-new permutation vector");
		IV_writeForHumanEye(*oldToNewIV, msgFile);
		fprintf(msgFile, "\n\n new-to-old permutation vector");
		IV_writeForHumanEye(*newToOldIV, msgFile);
		fprintf(msgFile, "\n\n front tree after permutation");
		ETree_writeForHumanEye(frontETree, msgFile);
		fprintf(msgFile, "\n\n input matrix after permutation");
		InpMtx_writeForHumanEye(mtxA, msgFile);
		fprintf(msgFile, "\n\n symbolic factorization");
		IVL_writeForHumanEye(*symbfacIVL, msgFile);
		fflush(msgFile);
	}
}
Exemplo n.º 2
0
/*
   -------------------------------------------------
   purpose -- to write a Graph object for a human eye

   return value -- 1 if success, 0 otherwise

   created -- 95sep29, cca
   -------------------------------------------------
*/
int
Graph_writeForHumanEye ( 
   Graph    *graph, 
   FILE   *fp 
) {
int   ierr, rc ;

if ( graph == NULL || fp == NULL ) {
   fprintf(stderr, "\n fatal error in Graph_writeForHumanEye(%p,%p)"
           "\n bad input\n", graph, fp) ;
   spoolesFatal();
}
/*
   ------------------------
   write out the statistics
   ------------------------
*/
if ( (rc = Graph_writeStats(graph, fp)) == 0 ) {
   fprintf(stderr, "\n fatal error in Graph_writeForHumanEye(%p,%p)"
           "\n rc = %d, return from Graph_writeStats(%p,%p)\n",
           graph, fp, rc, graph, fp) ;
   return(0) ;
}
if ( graph->adjIVL != NULL ) {
/*
   ----------------------------------
   write out the adjacency IVL object
   ----------------------------------
*/
   fprintf(fp, "\n\n adjacency IVL object") ;
   rc = IVL_writeForHumanEye(graph->adjIVL, fp) ;
   if ( rc < 0 ) {
      fprintf(stderr, "\n fatal error in Graph_writeForHumanEye(%p,%p)"
              "\n rc = %d, return from IVL_writeForHumanEye(%p,%p)" 
              "\n while attempting to write out adjIVL\n",
              graph, fp, rc, graph->adjIVL, fp) ;
      return(0) ;
   }
}
/*
   ----------------------------------------------
   write out the vertex weights vector if present
   ----------------------------------------------
*/
if ( graph->type % 2 == 1 ) {
   if ( graph->vwghts == NULL ) {
      fprintf(stderr, 
              "\n fatal error in Graph_writeForHumanEye(%p,%p)"
              "\n graph->type = %d, graph->vwghts == NULL\n",
              graph, fp, graph->type) ;
      return(0) ;
   }
   fprintf(fp, "\n\n vertex weights ") ;
   IVfp80(fp, graph->nvtx + graph->nvbnd, graph->vwghts, 80, &ierr) ;
   if ( ierr < 0 ) {
      fprintf(stderr, 
              "\n fatal error in Graph_writeForHumanEye(%p,%p)"
              "\n ierr = %d, return from vwghts[] IVfp80\n", 
              graph, fp, ierr) ;
      return(0) ;
   }
}
/*
   ------------------------------------------------
   write out the edge weight IVL object, if present
   ------------------------------------------------
*/
if ( graph->type >= 2 ) {
   if ( graph->ewghtIVL == NULL ) {
      fprintf(stderr, 
              "\n fatal error in Graph_writeForHumanEye(%p,%p)"
              "\n graph->type = %d, graph->ewghtIVL == NULL\n",
              graph, fp, graph->type) ;
      return(0) ;
   }
   fprintf(fp, "\n\n edge weights IVL object") ;
   rc = IVL_writeForHumanEye(graph->ewghtIVL, fp) ;
   if ( rc < 0 ) {
      fprintf(stderr, 
              "\n fatal error in Graph_writeForHumanEye(%p,%p)"
              "\n rc = %d, return from IVL_writeForHumanEye(%p,%p)"
              "\n while attempting to write out ewghtIVL\n",
              graph, fp, rc, graph->ewghtIVL, fp) ;
      return(0) ;
   }
}

return(1) ; }
Exemplo n.º 3
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   --------------------------------------------------------------------
   this program tests the Graph_MPI_Bcast() method

   (1) process root generates a random Graph object
       and computes its checksum
   (2) process root broadcasts the Graph object to the other processors
   (3) each process computes the checksum of its Graph object
   (4) the checksums are compared on root

   created -- 98sep10, cca
   --------------------------------------------------------------------
*/
{
char         *buffer ;
double       chksum, t1, t2 ;
double       *sums ;
Drand        drand ;
int          iproc, length, loc, msglvl, myid, nitem, nproc, 
             nvtx, root, seed, size, type, v ;
int          *list ;
FILE         *msgFile ;
Graph        *graph ;
/*
   ---------------------------------------------------------------
   find out the identity of this process and the number of process
   ---------------------------------------------------------------
*/
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;
MPI_Comm_size(MPI_COMM_WORLD, &nproc) ;
fprintf(stdout, "\n process %d of %d, argc = %d", myid, nproc, argc) ;
fflush(stdout) ;
if ( argc != 8 ) {
   fprintf(stdout, 
           "\n\n usage : %s msglvl msgFile type nvtx nitem root seed "
           "\n    msglvl      -- message level"
           "\n    msgFile     -- message file"
           "\n    type        -- type of graph"
           "\n    nvtx        -- # of vertices"
           "\n    nitem       -- # of items used to generate graph"
           "\n    root        -- root processor for broadcast"
           "\n    seed        -- random number seed"
           "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else {
   length = strlen(argv[2]) + 1 + 4 ;
   buffer = CVinit(length, '\0') ;
   sprintf(buffer, "%s.%d", argv[2], myid) ;
   if ( (msgFile = fopen(buffer, "w")) == NULL ) {
      fprintf(stderr, "\n fatal error in %s"
              "\n unable to open file %s\n",
              argv[0], argv[2]) ;
      return(-1) ;
   }
   CVfree(buffer) ;
}
type  = atoi(argv[3]) ;
nvtx  = atoi(argv[4]) ;
nitem = atoi(argv[5]) ;
root  = atoi(argv[6]) ;
seed  = atoi(argv[7]) ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl  -- %d" 
        "\n msgFile -- %s" 
        "\n type    -- %d" 
        "\n nvtx    -- %d" 
        "\n nitem   -- %d" 
        "\n root    -- %d" 
        "\n seed    -- %d" 
        "\n",
        argv[0], msglvl, argv[2], type, nvtx, nitem, root, seed) ;
fflush(msgFile) ;
/*
   -----------------------
   set up the Graph object
   -----------------------
*/
MARKTIME(t1) ;
graph = Graph_new() ;
if ( myid == root ) {
   InpMtx   *inpmtx ;
   int      nedges, totewght, totvwght, v ;
   int      *adj, *vwghts ;
   IVL      *adjIVL, *ewghtIVL ;
/*
   -----------------------
   generate a random graph
   -----------------------
*/
   inpmtx = InpMtx_new() ;
   InpMtx_init(inpmtx, INPMTX_BY_ROWS, INPMTX_INDICES_ONLY, nitem, 0) ;
   Drand_setDefaultFields(&drand) ;
   Drand_setSeed(&drand, seed) ;
   Drand_setUniform(&drand, 0, nvtx) ;
   Drand_fillIvector(&drand, nitem, InpMtx_ivec1(inpmtx)) ;
   Drand_fillIvector(&drand, nitem, InpMtx_ivec2(inpmtx)) ;
   InpMtx_setNent(inpmtx, nitem) ;
   InpMtx_changeStorageMode(inpmtx, INPMTX_BY_VECTORS) ;
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n inpmtx mtx filled with raw entries") ;
      InpMtx_writeForHumanEye(inpmtx, msgFile) ;
      fflush(msgFile) ;
   }
   adjIVL = InpMtx_fullAdjacency(inpmtx) ;
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n full adjacency structure") ;
      IVL_writeForHumanEye(adjIVL, msgFile) ;
      fflush(msgFile) ;
   }
   nedges = adjIVL->tsize ;
   if ( type == 1 || type == 3 ) {
      Drand_setUniform(&drand, 1, 10) ;
      vwghts = IVinit(nvtx, 0) ;
      Drand_fillIvector(&drand, nvtx, vwghts) ;
      totvwght = IVsum(nvtx, vwghts) ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n\n vertex weights") ;
         IVfprintf(msgFile, nvtx, vwghts) ;
         fflush(msgFile) ;
      }
   } else {
      vwghts = NULL ;
      totvwght = nvtx ;
   }
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n totvwght %d", totvwght) ;
      fflush(msgFile) ;
   }
   if ( type == 2 || type == 3 ) {
      ewghtIVL = IVL_new() ;
      IVL_init1(ewghtIVL, IVL_CHUNKED, nvtx) ;
      Drand_setUniform(&drand, 1, 100) ;
      totewght = 0 ;
      for ( v = 0 ; v < nvtx ; v++ ) {
         IVL_listAndSize(adjIVL, v, &size, &adj) ;
         IVL_setList(ewghtIVL, v, size, NULL) ;
         IVL_listAndSize(ewghtIVL, v, &size, &adj) ;
         Drand_fillIvector(&drand, size, adj) ;
         totewght += IVsum(size, adj) ;
      }
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n\n ewghtIVL") ;
         IVL_writeForHumanEye(ewghtIVL, msgFile) ;
         fflush(msgFile) ;
      }
   } else {
      ewghtIVL = NULL ;
      totewght = nedges ;
   }
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n\n totewght %d", totewght) ;
      fflush(msgFile) ;
   }
   Graph_init2(graph, type, nvtx, 0, nedges, totvwght, totewght,
               adjIVL, vwghts, ewghtIVL) ;
   InpMtx_free(inpmtx) ;
}
MARKTIME(t2) ;
fprintf(msgFile, 
        "\n CPU %8.3f : initialize the Graph object", t2 - t1) ;
fflush(msgFile) ;
if ( msglvl > 2 ) {
   Graph_writeForHumanEye(graph, msgFile) ;
} else {
   Graph_writeStats(graph, msgFile) ;
}
fflush(msgFile) ;
if ( myid == root ) {
/*
   ----------------------------------------
   compute the checksum of the Graph object
   ----------------------------------------
*/
   chksum = graph->type + graph->nvtx + graph->nvbnd 
          + graph->nedges + graph->totvwght + graph->totewght ;
   for ( v = 0 ; v < nvtx ; v++ ) {
      IVL_listAndSize(graph->adjIVL, v, &size, &list) ;
      chksum += 1 + v + size + IVsum(size, list) ;
   }
   if ( graph->vwghts != NULL ) {
      chksum += IVsum(nvtx, graph->vwghts) ;
   }
   if ( graph->ewghtIVL != NULL ) {
      for ( v = 0 ; v < nvtx ; v++ ) {
         IVL_listAndSize(graph->ewghtIVL, v, &size, &list) ;
         chksum += 1 + v + size + IVsum(size, list) ;
      }
   }
   fprintf(msgFile, "\n\n local chksum = %12.4e", chksum) ;
   fflush(msgFile) ;
}
/*
   --------------------------
   broadcast the Graph object
   --------------------------
*/
MARKTIME(t1) ;
graph = Graph_MPI_Bcast(graph, root, msglvl, msgFile, MPI_COMM_WORLD) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : broadcast the Graph object", t2 - t1) ;
if ( msglvl > 2 ) {
   Graph_writeForHumanEye(graph, msgFile) ;
} else {
   Graph_writeStats(graph, msgFile) ;
}
/*
   ----------------------------------------
   compute the checksum of the Graph object
   ----------------------------------------
*/
chksum = graph->type + graph->nvtx + graph->nvbnd 
       + graph->nedges + graph->totvwght + graph->totewght ;
for ( v = 0 ; v < nvtx ; v++ ) {
   IVL_listAndSize(graph->adjIVL, v, &size, &list) ;
   chksum += 1 + v + size + IVsum(size, list) ;
}
if ( graph->vwghts != NULL ) {
   chksum += IVsum(nvtx, graph->vwghts) ;
}
if ( graph->ewghtIVL != NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      IVL_listAndSize(graph->ewghtIVL, v, &size, &list) ;
      chksum += 1 + v + size + IVsum(size, list) ;
   }
}
fprintf(msgFile, "\n\n local chksum = %12.4e", chksum) ;
fflush(msgFile) ;
/*
   ---------------------------------------
   gather the checksums from the processes
   ---------------------------------------
*/
sums = DVinit(nproc, 0.0) ;
MPI_Gather((void *) &chksum, 1, MPI_DOUBLE, 
           (void *) sums, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD) ;
if ( myid == 0 ) {
   fprintf(msgFile, "\n\n sums") ;
   DVfprintf(msgFile, nproc, sums) ;
   for ( iproc = 0 ; iproc < nproc ; iproc++ ) {
      sums[iproc] -= chksum ;
   }
   fprintf(msgFile, "\n\n errors") ;
   DVfprintf(msgFile, nproc, sums) ;
   fprintf(msgFile, "\n\n maxerror = %12.4e", DVmax(nproc, sums, &loc));
}
/*
   ----------------
   free the objects
   ----------------
*/
DVfree(sums) ;
Graph_free(graph) ;
/*
   ------------------------
   exit the MPI environment
   ------------------------
*/
MPI_Finalize() ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(0) ; }
Exemplo n.º 4
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ------------------------------------------------------
   (1) read in an ETree object.
   (2) read in an Graph object.
   (3) find the optimal domain/schur complement partition
       for a semi-implicit factorization
   
   created -- 96oct03, cca
   ------------------------------------------------------
*/
{
char     *inETreeFileName, *inGraphFileName, *outIVfileName ;
double   alpha, nA21, nfent1, nfops1, nL11, nL22, nPhi, nV, t1, t2 ;
Graph    *graph ;
int      ii, inside, J, K, msglvl, nfind1, nfront, nJ, nleaves1, 
         nnode1, nvtx, rc, sizeJ, totalgain, vsize, v, w ;
int      *adjJ, *compids, *nodwghts, *vadj, *vtxToFront, *vwghts ;
IV       *compidsIV ;
IVL      *symbfacIVL ;
ETree    *etree ;
FILE     *msgFile ;
Tree     *tree ;

if ( argc != 7 ) {
   fprintf(stdout, 
"\n\n usage : %s msglvl msgFile inETreeFile inGraphFile alpha"
"\n         outIVfile "
"\n    msglvl       -- message level"
"\n    msgFile      -- message file"
"\n    inETreeFile  -- input file, must be *.etreef or *.etreeb"
"\n    inGraphFile  -- input file, must be *.graphf or *.graphb"
"\n    alpha        -- weight parameter"
"\n       alpha = 0 --> minimize storage"
"\n       alpha = 1 --> minimize solve ops"
"\n    outIVfile    -- output file for oldToNew vector,"
"\n                    must be *.ivf or *.ivb"
"\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inETreeFileName  = argv[3] ;
inGraphFileName  = argv[4] ;
alpha            = atof(argv[5]) ;
outIVfileName    = argv[6] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl        -- %d" 
        "\n msgFile       -- %s" 
        "\n inETreeFile   -- %s" 
        "\n inGraphFile   -- %s" 
        "\n alpha         -- %f" 
        "\n outIVfile     -- %s" 
        "\n",
        argv[0], msglvl, argv[2], 
        inETreeFileName, inGraphFileName, alpha, outIVfileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   spoolesFatal();
}
etree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   spoolesFatal();
}
ETree_leftJustify(etree) ;
fprintf(msgFile, "\n\n after reading ETree object from file %s",
        inETreeFileName) ;
if ( msglvl > 2 ) {
   ETree_writeForHumanEye(etree, msgFile) ;
} else {
   ETree_writeStats(etree, msgFile) ;
}
fflush(msgFile) ;
nfront     = ETree_nfront(etree) ;
tree       = ETree_tree(etree) ;
nodwghts   = ETree_nodwghts(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
/*
   ------------------------
   read in the Graph object
   ------------------------
*/
if ( strcmp(inGraphFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   spoolesFatal();
}
graph = Graph_new() ;
MARKTIME(t1) ;
rc = Graph_readFromFile(graph, inGraphFileName) ;
nvtx = graph->nvtx ;
vwghts = graph->vwghts ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s",
        t2 - t1, inGraphFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)",
           rc, graph, inGraphFileName) ;
   spoolesFatal();
}
fprintf(msgFile, "\n\n after reading Graph object from file %s",
        inGraphFileName) ;
if ( msglvl > 2 ) {
   Graph_writeForHumanEye(graph, msgFile) ;
} else {
   Graph_writeStats(graph, msgFile) ;
}
fflush(msgFile) ;
/*
   ----------------------
   compute the statistics
   ----------------------
*/
nnode1 = etree->tree->n ;
nfind1 = ETree_nFactorIndices(etree) ;
nfent1 = ETree_nFactorEntries(etree, SPOOLES_SYMMETRIC) ;
nfops1 = ETree_nFactorOps(etree, SPOOLES_REAL, SPOOLES_SYMMETRIC) ;
nleaves1 = Tree_nleaves(etree->tree) ;
fprintf(stdout, "\n root front %d has %d vertices",
        etree->tree->root,
        etree->nodwghtsIV->vec[etree->tree->root]) ;
/*
   ---------------------------------
   create the symbolic factorization
   ---------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(etree, graph) ;
if ( msglvl > 2 ) {
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
} else {
   IVL_writeStats(symbfacIVL, msgFile) ;
}
fflush(msgFile) ;
/*
   --------------------------
   find the optimal partition
   --------------------------
*/
compidsIV = ETree_optPart(etree, graph, symbfacIVL, alpha,
                          &totalgain, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(compidsIV, msgFile) ;
} else {
   IV_writeStats(compidsIV, msgFile) ;
}
fflush(msgFile) ;
compids = IV_entries(compidsIV) ;
/*
   ------------------------------------------------------
   compute the number of vertices in the schur complement
   ------------------------------------------------------
*/
for ( J = 0, nPhi = nV = 0. ; J < nfront ; J++ ) {
   if ( compids[J] == 0 ) {
      nPhi += nodwghts[J] ;
   }
   nV += nodwghts[J] ;
}
/*
   --------------------------------------------
   compute the number of entries in L11 and L22
   --------------------------------------------
*/
nL11 = nL22 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   nJ = nodwghts[J] ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ;
   }
   IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ;
   for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) {
      w = adjJ[ii] ;
      K = vtxToFront[w] ;
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    w = %d, K = %d", w, K) ;
      }
      if ( K > J && compids[K] == compids[J] ) {
         inside += (vwghts == NULL) ? 1 : vwghts[w] ;
         if ( msglvl > 3 ) {
            fprintf(msgFile, ", inside") ;
         }
      }
   }
   if ( compids[J] != 0 ) {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L11",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL11 += (nJ*(nJ+1))/2 + nJ*inside ;
   } else {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L22",
                 inside, (nJ*(nJ+1))/2 + nJ*inside) ;
      }
      nL22 += (nJ*(nJ+1))/2 + nJ*inside ;
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f",
           nfent1, nL11, nL22) ;
}
/*
   ------------------------------------
   compute the number of entries in A21
   ------------------------------------
*/
nA21 = 0 ;
if ( vwghts != NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      J = vtxToFront[v] ;
      if ( compids[J] != 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            K = vtxToFront[w] ;
            if ( compids[K] == 0 ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21 += vwghts[v] * vwghts[w] ;
            }
         }
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      J = vtxToFront[v] ;
      if ( compids[J] != 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            K = vtxToFront[w] ;
            if ( compids[K] == 0 ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21++ ;
            }
         }
      }
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile,
           "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f",
           nfent1, nL11, nL22, nA21) ;
   fprintf(msgFile,
      "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f"
      "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f",
      nfent1, nL11 + nA21 + nL22,
      nfent1/(nL11 + nA21 + nL22),
      2*nfent1, 4*nL11 + 2*nA21 + 2*nL22,
      2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
   fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f",
           nPhi/nV,
           nfent1/(nL11 + nA21 + nL22),
           2*nfent1/(4*nL11 + 2*nA21 + 2*nL22)) ;
}
/*
   ----------------
   free the objects
   ----------------
*/
ETree_free(etree) ;
Graph_free(graph) ;
IVL_free(symbfacIVL) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }
Exemplo n.º 5
0
/*
   -------------------------------------------------------------
   purpose -- 

   the IVL object ivl and IV object ownersIV are both found on 
   each process.  the ownersIV object is identical over all the 
   processes, and owners[ii] tells which processes owns list ii 
   of the ivl object. on return from this method, the ivl object 
   is replicated over all the processes. each process sends 
   the lists that it owns to all the other processes.

   created -- 98apr03, cca
   -------------------------------------------------------------
*/
void
IVL_MPI_allgather (
   IVL        *ivl,
   IV         *ownersIV,
   int        stats[],
   int        msglvl,
   FILE       *msgFile,
   int        firsttag,
   MPI_Comm   comm
) {
int          count, destination, ii, ilist, incount, jlist, 
             jproc, left, maxcount, myid, nlist, nmylists, 
             notherlists, nowners, nproc, offset, outcount, 
             right, size, source, tag ;
int          *counts, *inbuffer, *list, *outbuffer, *owners ;
MPI_Status   status ;
/*
   ---------------
   check the input
   ---------------
*/
if ( ivl == NULL || ownersIV == NULL ) {
   fprintf(stderr, "\n fatal error in IVL_MPI_allgather()"
           "\n ivl = %p, ownersIV = %p\n",
           ivl, ownersIV) ;
   exit(-1) ;
}
/*
   ----------------------------------------------
   get id of self, # of processes and # of fronts
   ----------------------------------------------
*/
MPI_Comm_rank(comm, &myid) ;
MPI_Comm_size(comm, &nproc) ;
nlist = ivl->nlist ;
IV_sizeAndEntries(ownersIV, &nowners, &owners) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n inside IVL_MPI_allgather()"
           "\n nproc = %d, myid = %d, nlist = %d, nowners = %d",
           nproc, myid, nlist, nowners) ;
   fflush(msgFile) ;
}
if ( nlist != nowners || owners == NULL ) {
   fprintf(stderr, "\n fatal error in IVL_MPI_allgather()"
           "\n nlist = %d, nowners = %d, owners = %p\n",
           nlist, nowners, owners) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n ivl") ;
   IVL_writeForHumanEye(ivl, msgFile) ;
   fprintf(msgFile, "\n\n ownersIV") ;
   IV_writeForHumanEye(ownersIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   -----------------------------------------------
   step 1 : determine the size of the message that
            this process will send to the others
   -----------------------------------------------
*/
for ( ilist = 0, outcount = 1 ; ilist < nlist ; ilist++ ) {
   if ( owners[ilist] < 0 || owners[ilist] >= nproc ) {
      fprintf(stderr, "\n owners[%d] = %d", ilist, owners[ilist]) ;
      exit(-1) ;
   }
   if ( owners[ilist] == myid ) {
      outcount += 2 ;
      IVL_listAndSize(ivl, ilist, &size, &list) ;
      outcount += size ;
   }
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n outcount = %d", outcount) ;
   fflush(msgFile) ;
}
/*
   ----------------------------------------------------
   do an all-to-all gather/scatter
   counts[jproc] = # of int's in the message from jproc
   ----------------------------------------------------
*/
counts = IVinit(nproc, 0) ;
counts[myid] = outcount ;
MPI_Allgather((void *) &counts[myid], 1, MPI_INT,
              (void *) counts,  1, MPI_INT, comm) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n counts") ;
   IVfprintf(msgFile, nproc, counts) ;
   fflush(msgFile) ;
}
/*
   -----------------------------
   set up the in and out buffers
   -----------------------------
*/
if ( outcount > 0 ) {
   outbuffer = IVinit(outcount, -1) ;
   for ( ilist = nmylists = 0, ii = 1 ; ilist < nlist ; ilist++ ) {
      if ( owners[ilist] == myid ) {
         nmylists++ ;
         IVL_listAndSize(ivl, ilist, &size, &list) ;
         outbuffer[ii++] = ilist ;
         outbuffer[ii++] = size  ;
         if ( size > 0 ) {
            IVcopy(size, &outbuffer[ii], list) ;
            ii += size ;
         }
      }
   }
   outbuffer[0] = nmylists ;
   if ( ii != outcount ) {
      fprintf(stderr, "\n myid = %d, ii = %d, outcount = %d",
              myid, ii, outcount) ;
      fprintf(msgFile, "\n myid = %d, ii = %d, outcount = %d",
              myid, ii, outcount) ;
      exit(-1) ;
   }
} else {
   outbuffer = NULL ;
}
maxcount = IVmax(nproc, counts, &jproc) ;
if ( maxcount > 0 ) {
   inbuffer = IVinit(maxcount, -1) ;
} else {
   inbuffer = NULL ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n outbuffer %p, maxcount %d, inbuffer %p",
           outbuffer, maxcount, inbuffer) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------
   step 2: loop over the other processes
      send and receive information
   -------------------------------------
*/
for ( offset = 1, tag = firsttag ; offset < nproc ; offset++, tag++ ) {
   right = (myid + offset) % nproc ;
   if ( offset <= myid ) {
      left = myid - offset ;
   } else {
      left = nproc + myid - offset ;
   }
   if ( outcount > 0 ) {
      destination = right ;
      stats[0]++ ;
      stats[2] += outcount*sizeof(int) ;
   } else {
      destination = MPI_PROC_NULL ;
   }
   incount = counts[left] ;
   if ( incount > 0 ) {
      source = left ;
      stats[1]++ ;
      stats[3] += incount*sizeof(int) ;
   } else {
      source = MPI_PROC_NULL ;
   }
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n offset %d, source %d, destination %d",
              offset, source, destination) ;
      fflush(msgFile) ;
   }
/*
   -----------------
   do a send/receive
   -----------------
*/
   MPI_Sendrecv(outbuffer, outcount, MPI_INT, destination, tag,
                inbuffer,  incount,  MPI_INT, source,      tag,
                comm, &status) ;
   if ( source != MPI_PROC_NULL ) {
      MPI_Get_count(&status, MPI_INT, &count) ;
      if ( count != incount ) {
         fprintf(stderr,
                 "\n 1. fatal error in IVL_MPI_allgather()"
                 "\n proc %d : source = %d, count = %d, incount = %d\n",
                 myid, source, count, incount) ;
         exit(-1) ;
      }
   }
/*
   ----------------------------
   set the values in the vector
   ----------------------------
*/
   notherlists = inbuffer[0] ;
   for ( ilist = 0, ii = 1 ; ilist < notherlists ; ilist++ ) {
      jlist = inbuffer[ii++] ;
      size  = inbuffer[ii++] ;
      if ( size > 0 ) {
         IVL_setList(ivl, jlist, size, &inbuffer[ii]) ;
         ii += size ;
      }
   }
   if ( ii != incount ) {
      fprintf(msgFile, "\n ii = %d, incount = %d", ii, incount) ;
      fprintf(stderr, "\n ii = %d, incount = %d", ii, incount) ;
      exit(-1) ;
   }
   if ( msglvl > 2 ) {
      fprintf(msgFile, "\n after setting values") ;
      IVL_writeForHumanEye(ivl, msgFile) ;
      fflush(msgFile) ;
   }
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
IVfree(counts) ;
if ( outbuffer != NULL ) {
   IVfree(outbuffer) ;
}
if ( inbuffer != NULL ) {
   IVfree(inbuffer) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n leaving IVL_MPI_gatherall()") ;
   fflush(msgFile) ;
}
return ; }
Exemplo n.º 6
0
/*
   -------------------------------------------
   purpose -- to write an IVL object to a file

   input --

      fn -- filename
        *.ivlb -- binary
        *.ivlf -- formatted
        anything else -- for human eye

   return value -- 1 if success, 0 otherwise

   created -- 95sep29, cca
   -------------------------------------------
*/
int
IVL_writeToFile ( 
   IVL    *ivl, 
   char   *fn 
) {
FILE   *fp ;
int    fnlength, rc, sulength ;
/*
   ---------------
   check the input
   ---------------
*/
if ( ivl == NULL || fn == NULL ) {
   fprintf(stderr, "\n fatal error in IVL_writeToFile(%p,%s)"
    "\n bad input\n", ivl, fn) ; 
}
switch ( ivl->type ) {
case IVL_CHUNKED :
case IVL_SOLO    :
case IVL_UNKNOWN :
   break ;
default :
   fprintf(stderr, "\n fatal error in IVL_writeToFile(%p,%s)"
           "\n bad type = %d", ivl, fn, ivl->type) ;
   return(0) ;
}
/*
   ------------------
   write out the file
   ------------------
*/
fnlength = strlen(fn) ;
sulength = strlen(suffixb) ;
if ( fnlength > sulength ) {
   if ( strcmp(&fn[fnlength-sulength], suffixb) == 0 ) {
      if ( (fp = fopen(fn, "wb")) == NULL ) {
         fprintf(stderr, "\n error in IVL_writeToFile(%p,%s)"
                 "\n unable to open file %s", ivl, fn, fn) ;
         rc = 0 ;
      } else {
         rc = IVL_writeToBinaryFile(ivl, fp) ;
         fclose(fp) ;
      }
   } else if ( strcmp(&fn[fnlength-sulength], suffixf) == 0 ) {
      if ( (fp = fopen(fn, "w")) == NULL ) {
         fprintf(stderr, "\n error in IVL_writeToFile(%p,%s)"
                 "\n unable to open file %s", ivl, fn, fn) ;
         rc = 0 ;
      } else {
         rc = IVL_writeToFormattedFile(ivl, fp) ;
         fclose(fp) ;
      }
   } else {
      if ( (fp = fopen(fn, "a")) == NULL ) {
         fprintf(stderr, "\n error in IVL_writeToFile(%p,%s)"
                 "\n unable to open file %s", ivl, fn, fn) ;
         rc = 0 ;
      } else {
         rc = IVL_writeForHumanEye(ivl, fp) ;
         fclose(fp) ;
      }
   }
} else {
   if ( (fp = fopen(fn, "a")) == NULL ) {
      fprintf(stderr, "\n error in IVL_writeToFile(%p,%s)"
              "\n unable to open file %s", ivl, fn, fn) ;
      rc = 0 ;
   } else {
      rc = IVL_writeForHumanEye(ivl, fp) ;
      fclose(fp) ;
   }
}
return(rc) ; }
Exemplo n.º 7
0
PetscErrorCode MatFactorNumeric_SeqSpooles(Mat F,Mat A,const MatFactorInfo *info)
{  
  Mat_Spooles        *lu = (Mat_Spooles*)(F)->spptr;
  ChvManager         *chvmanager ;
  Chv                *rootchv ;
  IVL                *adjIVL;
  PetscErrorCode     ierr;
  PetscInt           nz,nrow=A->rmap->n,irow,nedges,neqns=A->cmap->n,*ai,*aj,i,*diag=0,fierr;
  PetscScalar        *av;
  double             cputotal,facops;
#if defined(PETSC_USE_COMPLEX)
  PetscInt           nz_row,*aj_tmp;
  PetscScalar        *av_tmp;
#else
  PetscInt           *ivec1,*ivec2,j;
  double             *dvec;
#endif
  PetscBool          isSeqAIJ,isMPIAIJ;
  
  PetscFunctionBegin;
  if (lu->flg == DIFFERENT_NONZERO_PATTERN) { /* first numeric factorization */      
    (F)->ops->solve   = MatSolve_SeqSpooles;
    (F)->assembled    = PETSC_TRUE; 
    
    /* set Spooles options */
    ierr = SetSpoolesOptions(A, &lu->options);CHKERRQ(ierr); 

    lu->mtxA = InpMtx_new();
  }

  /* copy A to Spooles' InpMtx object */
  ierr = PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);CHKERRQ(ierr);
  ierr = PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isMPIAIJ);CHKERRQ(ierr);
  if (isSeqAIJ){
    Mat_SeqAIJ   *mat = (Mat_SeqAIJ*)A->data;
    ai=mat->i; aj=mat->j; av=mat->a;
    if (lu->options.symflag == SPOOLES_NONSYMMETRIC) {
      nz=mat->nz;
    } else { /* SPOOLES_SYMMETRIC || SPOOLES_HERMITIAN */
      nz=(mat->nz + A->rmap->n)/2;
      diag=mat->diag;
    }
  } else { /* A is SBAIJ */
      Mat_SeqSBAIJ *mat = (Mat_SeqSBAIJ*)A->data;
      ai=mat->i; aj=mat->j; av=mat->a;
      nz=mat->nz;
  } 
  InpMtx_init(lu->mtxA, INPMTX_BY_ROWS, lu->options.typeflag, nz, 0);
 
#if defined(PETSC_USE_COMPLEX)
    for (irow=0; irow<nrow; irow++) {
      if ( lu->options.symflag == SPOOLES_NONSYMMETRIC || !(isSeqAIJ || isMPIAIJ)){
        nz_row = ai[irow+1] - ai[irow];
        aj_tmp = aj + ai[irow];
        av_tmp = av + ai[irow];
      } else {
        nz_row = ai[irow+1] - diag[irow];
        aj_tmp = aj + diag[irow];
        av_tmp = av + diag[irow];
      }
      for (i=0; i<nz_row; i++){
        InpMtx_inputComplexEntry(lu->mtxA, irow, *aj_tmp++,PetscRealPart(*av_tmp),PetscImaginaryPart(*av_tmp));
        av_tmp++;
      }
    }
#else
    ivec1 = InpMtx_ivec1(lu->mtxA); 
    ivec2 = InpMtx_ivec2(lu->mtxA);
    dvec  = InpMtx_dvec(lu->mtxA);
    if ( lu->options.symflag == SPOOLES_NONSYMMETRIC || !isSeqAIJ){
      for (irow = 0; irow < nrow; irow++){
        for (i = ai[irow]; i<ai[irow+1]; i++) ivec1[i] = irow;
      }
      IVcopy(nz, ivec2, aj);
      DVcopy(nz, dvec, av);
    } else { 
      nz = 0;
      for (irow = 0; irow < nrow; irow++){
        for (j = diag[irow]; j<ai[irow+1]; j++) {
          ivec1[nz] = irow;
          ivec2[nz] = aj[j];
          dvec[nz]  = av[j];
          nz++;
        }
      }
    }
    InpMtx_inputRealTriples(lu->mtxA, nz, ivec1, ivec2, dvec); 
#endif

  InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS); 
  if ( lu->options.msglvl > 0 ) {
    int err;
    printf("\n\n input matrix");
    ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix");CHKERRQ(ierr);
    InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile);
    err = fflush(lu->options.msgFile);
    if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
  }

  if ( lu->flg == DIFFERENT_NONZERO_PATTERN){ /* first numeric factorization */  
    /*---------------------------------------------------
    find a low-fill ordering
         (1) create the Graph object
         (2) order the graph 
    -------------------------------------------------------*/  
    if (lu->options.useQR){
      adjIVL = InpMtx_adjForATA(lu->mtxA);
    } else {
      adjIVL = InpMtx_fullAdjacency(lu->mtxA);
    }
    nedges = IVL_tsize(adjIVL);

    lu->graph = Graph_new();
    Graph_init2(lu->graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL);
    if ( lu->options.msglvl > 2 ) {
      int err;

      if (lu->options.useQR){
        ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n graph of A^T A");CHKERRQ(ierr);
      } else {
        ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n graph of the input matrix");CHKERRQ(ierr);
      }
      Graph_writeForHumanEye(lu->graph, lu->options.msgFile);
      err = fflush(lu->options.msgFile);
      if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
    }

    switch (lu->options.ordering) {
    case 0:
      lu->frontETree = orderViaBestOfNDandMS(lu->graph,
                     lu->options.maxdomainsize, lu->options.maxzeros, lu->options.maxsize,
                     lu->options.seed, lu->options.msglvl, lu->options.msgFile); break;
    case 1:
      lu->frontETree = orderViaMMD(lu->graph,lu->options.seed,lu->options.msglvl,lu->options.msgFile); break;
    case 2:
      lu->frontETree = orderViaMS(lu->graph, lu->options.maxdomainsize,
                     lu->options.seed,lu->options.msglvl,lu->options.msgFile); break;
    case 3:
      lu->frontETree = orderViaND(lu->graph, lu->options.maxdomainsize, 
                     lu->options.seed,lu->options.msglvl,lu->options.msgFile); break;
    default:
      SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Unknown Spooles's ordering");
    }

    if ( lu->options.msglvl > 0 ) {
      int err;

      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n front tree from ordering");CHKERRQ(ierr);
      ETree_writeForHumanEye(lu->frontETree, lu->options.msgFile);
      err = fflush(lu->options.msgFile);
      if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
    }
  
    /* get the permutation, permute the front tree */
    lu->oldToNewIV = ETree_oldToNewVtxPerm(lu->frontETree);
    lu->oldToNew   = IV_entries(lu->oldToNewIV);
    lu->newToOldIV = ETree_newToOldVtxPerm(lu->frontETree);
    if (!lu->options.useQR) ETree_permuteVertices(lu->frontETree, lu->oldToNewIV);

    /* permute the matrix */
    if (lu->options.useQR){
      InpMtx_permute(lu->mtxA, NULL, lu->oldToNew);
    } else {
      InpMtx_permute(lu->mtxA, lu->oldToNew, lu->oldToNew); 
      if ( lu->options.symflag == SPOOLES_SYMMETRIC) {
        InpMtx_mapToUpperTriangle(lu->mtxA); 
      }
#if defined(PETSC_USE_COMPLEX)
      if ( lu->options.symflag == SPOOLES_HERMITIAN ) {
        InpMtx_mapToUpperTriangleH(lu->mtxA); 
      }
#endif
      InpMtx_changeCoordType(lu->mtxA, INPMTX_BY_CHEVRONS);
    }
    InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS);

    /* get symbolic factorization */
    if (lu->options.useQR){
      lu->symbfacIVL = SymbFac_initFromGraph(lu->frontETree, lu->graph);
      IVL_overwrite(lu->symbfacIVL, lu->oldToNewIV);
      IVL_sortUp(lu->symbfacIVL);
      ETree_permuteVertices(lu->frontETree, lu->oldToNewIV);
    } else {
      lu->symbfacIVL = SymbFac_initFromInpMtx(lu->frontETree, lu->mtxA);
    }
    if ( lu->options.msglvl > 2 ) {
      int err;

      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n old-to-new permutation vector");CHKERRQ(ierr);
      IV_writeForHumanEye(lu->oldToNewIV, lu->options.msgFile);
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n new-to-old permutation vector");CHKERRQ(ierr);
      IV_writeForHumanEye(lu->newToOldIV, lu->options.msgFile);
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n front tree after permutation");CHKERRQ(ierr);
      ETree_writeForHumanEye(lu->frontETree, lu->options.msgFile);
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix after permutation");CHKERRQ(ierr);
      InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile);
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n symbolic factorization");CHKERRQ(ierr);
      IVL_writeForHumanEye(lu->symbfacIVL, lu->options.msgFile);
      err = fflush(lu->options.msgFile);
      if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
    }  

    lu->frontmtx   = FrontMtx_new();
    lu->mtxmanager = SubMtxManager_new();
    SubMtxManager_init(lu->mtxmanager, NO_LOCK, 0);

  } else { /* new num factorization using previously computed symbolic factor */ 

    if (lu->options.pivotingflag) { /* different FrontMtx is required */
      FrontMtx_free(lu->frontmtx);   
      lu->frontmtx   = FrontMtx_new();
    } else {
      FrontMtx_clearData (lu->frontmtx); 
    }

    SubMtxManager_free(lu->mtxmanager);  
    lu->mtxmanager = SubMtxManager_new();
    SubMtxManager_init(lu->mtxmanager, NO_LOCK, 0);

    /* permute mtxA */
    if (lu->options.useQR){
      InpMtx_permute(lu->mtxA, NULL, lu->oldToNew);
    } else {
      InpMtx_permute(lu->mtxA, lu->oldToNew, lu->oldToNew); 
      if ( lu->options.symflag == SPOOLES_SYMMETRIC ) {
        InpMtx_mapToUpperTriangle(lu->mtxA); 
      }
      InpMtx_changeCoordType(lu->mtxA, INPMTX_BY_CHEVRONS);
    }
    InpMtx_changeStorageMode(lu->mtxA, INPMTX_BY_VECTORS);
    if ( lu->options.msglvl > 2 ) {
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n input matrix after permutation");CHKERRQ(ierr);
      InpMtx_writeForHumanEye(lu->mtxA, lu->options.msgFile); 
    } 
  } /* end of if( lu->flg == DIFFERENT_NONZERO_PATTERN) */
  
  if (lu->options.useQR){
    FrontMtx_init(lu->frontmtx, lu->frontETree, lu->symbfacIVL, lu->options.typeflag, 
                 SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
                 lu->mtxmanager, lu->options.msglvl, lu->options.msgFile);
  } else {
    FrontMtx_init(lu->frontmtx, lu->frontETree, lu->symbfacIVL, lu->options.typeflag, lu->options.symflag, 
                FRONTMTX_DENSE_FRONTS, lu->options.pivotingflag, NO_LOCK, 0, NULL, 
                lu->mtxmanager, lu->options.msglvl, lu->options.msgFile);   
  }

  if ( lu->options.symflag == SPOOLES_SYMMETRIC ) {  /* || SPOOLES_HERMITIAN ? */
    if ( lu->options.patchAndGoFlag == 1 ) {
      lu->frontmtx->patchinfo = PatchAndGoInfo_new();
      PatchAndGoInfo_init(lu->frontmtx->patchinfo, 1, lu->options.toosmall, lu->options.fudge,
                       lu->options.storeids, lu->options.storevalues);
    } else if ( lu->options.patchAndGoFlag == 2 ) {
      lu->frontmtx->patchinfo = PatchAndGoInfo_new();
      PatchAndGoInfo_init(lu->frontmtx->patchinfo, 2, lu->options.toosmall, lu->options.fudge,
                       lu->options.storeids, lu->options.storevalues);
    }   
  }

  /* numerical factorization */
  chvmanager = ChvManager_new();
  ChvManager_init(chvmanager, NO_LOCK, 1);
  DVfill(10, lu->cpus, 0.0);
  if (lu->options.useQR){
    facops = 0.0 ; 
    FrontMtx_QR_factor(lu->frontmtx, lu->mtxA, chvmanager, 
                   lu->cpus, &facops, lu->options.msglvl, lu->options.msgFile);
    if ( lu->options.msglvl > 1 ) {
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix");CHKERRQ(ierr);
      ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n facops = %9.2f", facops);CHKERRQ(ierr);
    }
  } else {
    IVfill(20, lu->stats, 0);
    rootchv = FrontMtx_factorInpMtx(lu->frontmtx, lu->mtxA, lu->options.tau, 0.0, 
            chvmanager, &fierr, lu->cpus,lu->stats,lu->options.msglvl,lu->options.msgFile); 
    if (rootchv) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"\n matrix found to be singular");    
    if (fierr >= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"\n error encountered at front %D", fierr);
    
    if(lu->options.FrontMtxInfo){
      ierr = PetscPrintf(PETSC_COMM_SELF,"\n %8d pivots, %8d pivot tests, %8d delayed rows and columns\n",lu->stats[0], lu->stats[1], lu->stats[2]);CHKERRQ(ierr);
      cputotal = lu->cpus[8] ;
      if ( cputotal > 0.0 ) {
        ierr = PetscPrintf(PETSC_COMM_SELF,
           "\n                               cpus   cpus/totaltime"
           "\n    initialize fronts       %8.3f %6.2f"
           "\n    load original entries   %8.3f %6.2f"
           "\n    update fronts           %8.3f %6.2f"
           "\n    assemble postponed data %8.3f %6.2f"
           "\n    factor fronts           %8.3f %6.2f"
           "\n    extract postponed data  %8.3f %6.2f"
           "\n    store factor entries    %8.3f %6.2f"
           "\n    miscellaneous           %8.3f %6.2f"
           "\n    total time              %8.3f \n",
           lu->cpus[0], 100.*lu->cpus[0]/cputotal,
           lu->cpus[1], 100.*lu->cpus[1]/cputotal,
           lu->cpus[2], 100.*lu->cpus[2]/cputotal,
           lu->cpus[3], 100.*lu->cpus[3]/cputotal,
           lu->cpus[4], 100.*lu->cpus[4]/cputotal,
           lu->cpus[5], 100.*lu->cpus[5]/cputotal,
           lu->cpus[6], 100.*lu->cpus[6]/cputotal,
	   lu->cpus[7], 100.*lu->cpus[7]/cputotal, cputotal);CHKERRQ(ierr);
      }
    }
  }
  ChvManager_free(chvmanager);

  if ( lu->options.msglvl > 0 ) {
    int err;

    ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix");CHKERRQ(ierr);
    FrontMtx_writeForHumanEye(lu->frontmtx, lu->options.msgFile);
    err = fflush(lu->options.msgFile);
    if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
  }

  if ( lu->options.symflag == SPOOLES_SYMMETRIC ) { /* || SPOOLES_HERMITIAN ? */
    if ( lu->options.patchAndGoFlag == 1 ) {
      if ( lu->frontmtx->patchinfo->fudgeIV != NULL ) {
        if (lu->options.msglvl > 0 ){
          ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n small pivots found at these locations");CHKERRQ(ierr);
          IV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeIV, lu->options.msgFile);
        }
      }
      PatchAndGoInfo_free(lu->frontmtx->patchinfo);
    } else if ( lu->options.patchAndGoFlag == 2 ) {
      if (lu->options.msglvl > 0 ){
        if ( lu->frontmtx->patchinfo->fudgeIV != NULL ) {
          ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n small pivots found at these locations");CHKERRQ(ierr);
          IV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeIV, lu->options.msgFile);
        }
        if ( lu->frontmtx->patchinfo->fudgeDV != NULL ) {
          ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n perturbations");CHKERRQ(ierr);
          DV_writeForHumanEye(lu->frontmtx->patchinfo->fudgeDV, lu->options.msgFile);
        }
      }
      PatchAndGoInfo_free(lu->frontmtx->patchinfo);
    }
  }

  /* post-process the factorization */
  FrontMtx_postProcess(lu->frontmtx, lu->options.msglvl, lu->options.msgFile);
  if ( lu->options.msglvl > 2 ) {
    int err;

    ierr = PetscFPrintf(PETSC_COMM_SELF,lu->options.msgFile, "\n\n factor matrix after post-processing");CHKERRQ(ierr);
    FrontMtx_writeForHumanEye(lu->frontmtx, lu->options.msgFile);
    err = fflush(lu->options.msgFile);
    if (err) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SYS,"fflush() failed on file");    
  }

  lu->flg = SAME_NONZERO_PATTERN;
  lu->CleanUpSpooles = PETSC_TRUE;
  PetscFunctionReturn(0);
}
Exemplo n.º 8
0
NM_Status
SpoolesSolver :: solve(SparseMtrx *A, FloatArray *b, FloatArray *x)
{
    int errorValue, mtxType, symmetryflag;
    int seed = 30145, pivotingflag = 0;
    int *oldToNew, *newToOld;
    double droptol = 0.0, tau = 1.e300;
    double cpus [ 10 ];
    int stats [ 20 ];

    ChvManager *chvmanager;
    Chv *rootchv;
    InpMtx *mtxA;
    DenseMtx *mtxY, *mtxX;

    // first check whether Lhs is defined
    if ( !A ) {
        _error("solveYourselfAt: unknown Lhs");
    }

    // and whether Rhs
    if ( !b ) {
        _error("solveYourselfAt: unknown Rhs");
    }

    // and whether previous Solution exist
    if ( !x ) {
        _error("solveYourselfAt: unknown solution array");
    }

    if ( x->giveSize() != b->giveSize() ) {
        _error("solveYourselfAt: size mismatch");
    }

    Timer timer;
    timer.startTimer();

    if ( A->giveType() != SMT_SpoolesMtrx ) {
        _error("solveYourselfAt: SpoolesSparseMtrx Expected");
    }

    mtxA = ( ( SpoolesSparseMtrx * ) A )->giveInpMtrx();
    mtxType = ( ( SpoolesSparseMtrx * ) A )->giveValueType();
    symmetryflag = ( ( SpoolesSparseMtrx * ) A )->giveSymmetryFlag();

    int i;
    int neqns = A->giveNumberOfRows();
    int nrhs = 1;
    /* convert right-hand side to DenseMtx */
    mtxY = DenseMtx_new();
    DenseMtx_init(mtxY, mtxType, 0, 0, neqns, nrhs, 1, neqns);
    DenseMtx_zero(mtxY);
    for ( i = 0; i < neqns; i++ ) {
        DenseMtx_setRealEntry( mtxY, i, 0, b->at(i + 1) );
    }

    if ( ( Lhs != A ) || ( this->lhsVersion != A->giveVersion() ) ) {
        //
        // lhs has been changed -> new factorization
        //

        Lhs = A;
        this->lhsVersion = A->giveVersion();

        if ( frontmtx ) {
            FrontMtx_free(frontmtx);
        }

        if ( newToOldIV ) {
            IV_free(newToOldIV);
        }

        if ( oldToNewIV ) {
            IV_free(oldToNewIV);
        }

        if ( frontETree ) {
            ETree_free(frontETree);
        }

        if ( symbfacIVL ) {
            IVL_free(symbfacIVL);
        }

        if ( mtxmanager ) {
            SubMtxManager_free(mtxmanager);
        }

        if ( graph ) {
            Graph_free(graph);
        }

        /*
         * -------------------------------------------------
         * STEP 3 : find a low-fill ordering
         * (1) create the Graph object
         * (2) order the graph using multiple minimum degree
         * -------------------------------------------------
         */
        int nedges;
        graph = Graph_new();
        adjIVL = InpMtx_fullAdjacency(mtxA);
        nedges = IVL_tsize(adjIVL);
        Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
                    NULL, NULL);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n graph of the input matrix");
            Graph_writeForHumanEye(graph, msgFile);
            fflush(msgFile);
        }

        frontETree = orderViaMMD(graph, seed, msglvl, msgFile);
        if ( msglvl > 0 ) {
            fprintf(msgFile, "\n\n front tree from ordering");
            ETree_writeForHumanEye(frontETree, msgFile);
            fflush(msgFile);
        }

        /*
         * ----------------------------------------------------
         * STEP 4: get the permutation, permute the front tree,
         * permute the matrix and right hand side, and
         * get the symbolic factorization
         * ----------------------------------------------------
         */
        oldToNewIV = ETree_oldToNewVtxPerm(frontETree);
        oldToNew   = IV_entries(oldToNewIV);
        newToOldIV = ETree_newToOldVtxPerm(frontETree);
        newToOld   = IV_entries(newToOldIV);
        ETree_permuteVertices(frontETree, oldToNewIV);
        InpMtx_permute(mtxA, oldToNew, oldToNew);
        if (  symmetryflag == SPOOLES_SYMMETRIC ||
              symmetryflag == SPOOLES_HERMITIAN ) {
            InpMtx_mapToUpperTriangle(mtxA);
        }

        InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS);
        InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS);
        symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n old-to-new permutation vector");
            IV_writeForHumanEye(oldToNewIV, msgFile);
            fprintf(msgFile, "\n\n new-to-old permutation vector");
            IV_writeForHumanEye(newToOldIV, msgFile);
            fprintf(msgFile, "\n\n front tree after permutation");
            ETree_writeForHumanEye(frontETree, msgFile);
            fprintf(msgFile, "\n\n input matrix after permutation");
            InpMtx_writeForHumanEye(mtxA, msgFile);
            fprintf(msgFile, "\n\n symbolic factorization");
            IVL_writeForHumanEye(symbfacIVL, msgFile);
            fflush(msgFile);
        }

        Tree_writeToFile(frontETree->tree, (char*)"haggar.treef");
        /*--------------------------------------------------------------------*/
        /*
         * ------------------------------------------
         * STEP 5: initialize the front matrix object
         * ------------------------------------------
         */
        frontmtx   = FrontMtx_new();
        mtxmanager = SubMtxManager_new();
        SubMtxManager_init(mtxmanager, NO_LOCK, 0);
        FrontMtx_init(frontmtx, frontETree, symbfacIVL, mtxType, symmetryflag,
                      FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL,
                      mtxmanager, msglvl, msgFile);
        /*--------------------------------------------------------------------*/
        /*
         * -----------------------------------------
         * STEP 6: compute the numeric factorization
         * -----------------------------------------
         */
        chvmanager = ChvManager_new();
        ChvManager_init(chvmanager, NO_LOCK, 1);
        DVfill(10, cpus, 0.0);
        IVfill(20, stats, 0);
        rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
                                        chvmanager, & errorValue, cpus, stats, msglvl, msgFile);
        ChvManager_free(chvmanager);
        if ( msglvl > 0 ) {
            fprintf(msgFile, "\n\n factor matrix");
            FrontMtx_writeForHumanEye(frontmtx, msgFile);
            fflush(msgFile);
        }

        if ( rootchv != NULL ) {
            fprintf(msgFile, "\n\n matrix found to be singular\n");
            exit(-1);
        }

        if ( errorValue >= 0 ) {
            fprintf(msgFile, "\n\n error encountered at front %d", errorValue);
            exit(-1);
        }

        /*--------------------------------------------------------------------*/
        /*
         * --------------------------------------
         * STEP 7: post-process the factorization
         * --------------------------------------
         */
        FrontMtx_postProcess(frontmtx, msglvl, msgFile);
        if ( msglvl > 2 ) {
            fprintf(msgFile, "\n\n factor matrix after post-processing");
            FrontMtx_writeForHumanEye(frontmtx, msgFile);
            fflush(msgFile);
        }

        /*--------------------------------------------------------------------*/
    }

    /*
     * ----------------------------------------------------
     * STEP 4: permute the right hand side
     * ----------------------------------------------------
     */
    DenseMtx_permuteRows(mtxY, oldToNewIV);
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n right hand side matrix after permutation");
        DenseMtx_writeForHumanEye(mtxY, msgFile);
    }

    /*
     * -------------------------------
     * STEP 8: solve the linear system
     * -------------------------------
     */
    mtxX = DenseMtx_new();
    DenseMtx_init(mtxX, mtxType, 0, 0, neqns, nrhs, 1, neqns);
    DenseMtx_zero(mtxX);
    FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager,
                   cpus, msglvl, msgFile);
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n solution matrix in new ordering");
        DenseMtx_writeForHumanEye(mtxX, msgFile);
        fflush(msgFile);
    }

    /*--------------------------------------------------------------------*/
    /*
     * -------------------------------------------------------
     * STEP 9: permute the solution into the original ordering
     * -------------------------------------------------------
     */
    DenseMtx_permuteRows(mtxX, newToOldIV);
    if ( msglvl > 0 ) {
        fprintf(msgFile, "\n\n solution matrix in original ordering");
        DenseMtx_writeForHumanEye(mtxX, msgFile);
        fflush(msgFile);
    }

    // DenseMtx_writeForMatlab(mtxX, "x", msgFile) ;
    /*--------------------------------------------------------------------*/
    /* fetch data to oofem vectors */
    double *xptr = x->givePointer();
    for ( i = 0; i < neqns; i++ ) {
        DenseMtx_realEntry(mtxX, i, 0, xptr + i);
        // printf ("x(%d) = %e\n", i+1, *(xptr+i));
    }

    // DenseMtx_copyRowIntoVector(mtxX, 0, x->givePointer());

    timer.stopTimer();
    OOFEM_LOG_DEBUG( "SpoolesSolver info: user time consumed by solution: %.2fs\n", timer.getUtime() );

    /*
     * -----------
     * free memory
     * -----------
     */
    DenseMtx_free(mtxX);
    DenseMtx_free(mtxY);
    /*--------------------------------------------------------------------*/
    return ( 1 );
}
Exemplo n.º 9
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   -------------------------------------------------
   this program tests the IVL_MPI_allgather() method

   (1) each process generates the same owners[n] map
   (2) each process creates an IVL object 
       and fills its owned lists with random numbers
   (3) the processes gather-all's the lists of ivl

   created -- 98apr03, cca
   -------------------------------------------------
*/
{
char         *buffer ;
double       chksum, globalsum, t1, t2 ;
Drand        drand ;
int          ilist, length, myid, msglvl, nlist, 
             nproc, rc, seed, size, tag ;
int          *list, *owners, *vec ;
int          stats[4], tstats[4] ;
IV           *ownersIV ;
IVL          *ivl ;
FILE         *msgFile ;
/*
   ---------------------------------------------------------------
   find out the identity of this process and the number of process
   ---------------------------------------------------------------
*/
MPI_Init(&argc, &argv) ;
MPI_Comm_rank(MPI_COMM_WORLD, &myid) ;
MPI_Comm_size(MPI_COMM_WORLD, &nproc) ;
fprintf(stdout, "\n process %d of %d, argc = %d", myid, nproc, argc) ;
fflush(stdout) ;
if ( argc != 5 ) {
   fprintf(stdout, 
           "\n\n usage : %s msglvl msgFile n seed "
           "\n    msglvl  -- message level"
           "\n    msgFile -- message file"
           "\n    nlist   -- number of lists in the IVL object"
           "\n    seed    -- random number seed"
           "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else {
   length = strlen(argv[2]) + 1 + 4 ;
   buffer = CVinit(length, '\0') ;
   sprintf(buffer, "%s.%d", argv[2], myid) ;
   if ( (msgFile = fopen(buffer, "w")) == NULL ) {
      fprintf(stderr, "\n fatal error in %s"
              "\n unable to open file %s\n",
              argv[0], argv[2]) ;
      return(-1) ;
   }
   CVfree(buffer) ;
}
nlist = atoi(argv[3]) ;
seed  = atoi(argv[4]) ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl  -- %d" 
        "\n msgFile -- %s" 
        "\n nlist   -- %d" 
        "\n seed    -- %d" 
        "\n",
        argv[0], msglvl, argv[2], nlist, seed) ;
fflush(msgFile) ;
/*
   ----------------------------
   generate the ownersIV object
   ----------------------------
*/
MARKTIME(t1) ;
ownersIV = IV_new() ;
IV_init(ownersIV, nlist, NULL) ;
owners = IV_entries(ownersIV) ;
Drand_setDefaultFields(&drand) ;
Drand_setSeed(&drand, seed) ;
Drand_setUniform(&drand, 0, nproc) ;
Drand_fillIvector(&drand, nlist, owners) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize the ownersIV object",
        t2 - t1) ;
fflush(msgFile) ;
fprintf(msgFile, "\n\n ownersIV generated") ;
if ( msglvl > 2 ) {
   IV_writeForHumanEye(ownersIV, msgFile) ;
} else {
   IV_writeStats(ownersIV, msgFile) ;
}
fflush(msgFile) ;
/*
   --------------------------------------------
   set up the IVL object and fill owned entries
   --------------------------------------------
*/
MARKTIME(t1) ;
ivl = IVL_new() ;
IVL_init1(ivl, IVL_CHUNKED, nlist) ;
vec = IVinit(nlist, -1) ;
Drand_setSeed(&drand, seed + myid) ;
Drand_setUniform(&drand, 0, nlist) ;
for ( ilist = 0 ; ilist < nlist ; ilist++ ) {
   if ( owners[ilist] == myid ) {
      size = (int) Drand_value(&drand) ;
      Drand_fillIvector(&drand, size, vec) ;
      IVL_setList(ivl, ilist, size, vec) ;
   }
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize the IVL object",
        t2 - t1) ;
fflush(msgFile) ;
if ( msglvl > 2 ) {
   IVL_writeForHumanEye(ivl, msgFile) ;
} else {
   IVL_writeStats(ivl, msgFile) ;
}
fflush(msgFile) ;
/*
   --------------------------------------------
   compute the local checksum of the ivl object
   --------------------------------------------
*/
for ( ilist = 0, chksum = 0.0 ; ilist < nlist ; ilist++ ) {
   if ( owners[ilist] == myid ) {
      IVL_listAndSize(ivl, ilist, &size, &list) ;
      chksum += 1 + ilist + size + IVsum(size, list) ;
   }
}
fprintf(msgFile, "\n\n local partial chksum = %12.4e", chksum) ;
fflush(msgFile) ;
/*
   -----------------------
   get the global checksum
   -----------------------
*/
rc = MPI_Allreduce((void *) &chksum, (void *) &globalsum, 
                   1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD) ;
/*
   --------------------------------
   execute the all-gather operation
   --------------------------------
*/
tag = 47 ;
IVzero(4, stats) ;
IVL_MPI_allgather(ivl, ownersIV, 
                  stats, msglvl, msgFile, tag, MPI_COMM_WORLD) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n return from IVL_MPI_allgather()") ;
   fprintf(msgFile, 
           "\n local send stats : %10d messages with %10d bytes"
           "\n local recv stats : %10d messages with %10d bytes",
           stats[0], stats[2], stats[1], stats[3]) ;
   fflush(msgFile) ;
}
MPI_Reduce((void *) stats, (void *) tstats, 4, MPI_INT,
          MPI_SUM, 0, MPI_COMM_WORLD) ;
if ( myid == 0 ) {
   fprintf(msgFile, 
           "\n total send stats : %10d messages with %10d bytes"
           "\n total recv stats : %10d messages with %10d bytes",
           tstats[0], tstats[2], tstats[1], tstats[3]) ;
   fflush(msgFile) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n ivl") ;
   IVL_writeForHumanEye(ivl, msgFile) ;
   fflush(msgFile) ;
}
/*
   -----------------------------------------
   compute the checksum of the entire object
   -----------------------------------------
*/
for ( ilist = 0, chksum = 0.0 ; ilist < nlist ; ilist++ ) {
   IVL_listAndSize(ivl, ilist, &size, &list) ;
   chksum += 1 + ilist + size + IVsum(size, list) ;
}
fprintf(msgFile, 
        "\n globalsum = %12.4e, chksum = %12.4e, error = %12.4e",
        globalsum, chksum, fabs(globalsum - chksum)) ;
fflush(msgFile) ;
/*
   ----------------
   free the objects
   ----------------
*/
IV_free(ownersIV) ;
IVL_free(ivl) ;
/*
   ------------------------
   exit the MPI environment
   ------------------------
*/
MPI_Finalize() ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(0) ; }
Exemplo n.º 10
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
   --------------------------------------------------
   QR all-in-one program
   (1) read in matrix entries and form InpMtx object
       of A and A^TA
   (2) form Graph object of A^TA
   (3) order matrix and form front tree
   (4) get the permutation, permute the matrix and 
       front tree and get the symbolic factorization
   (5) compute the numeric factorization
   (6) read in right hand side entries
   (7) compute the solution

   created -- 98jun11, cca
   --------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char            *matrixFileName, *rhsFileName ;
ChvManager      *chvmanager ;
DenseMtx        *mtxB, *mtxX ;
double          facops, imag, real, value ;
double          cpus[10] ;
ETree           *frontETree ;
FILE            *inputFile, *msgFile ;
FrontMtx        *frontmtx ;
Graph           *graph ;
int             ient, irow, jcol, jrhs, jrow, msglvl, neqns,
                nedges, nent, nrhs, nrow, seed, type ;
InpMtx          *mtxA ;
IV              *newToOldIV, *oldToNewIV ;
IVL             *adjIVL, *symbfacIVL ;
SubMtxManager   *mtxmanager ;
/*--------------------------------------------------------------------*/
/*
   --------------------
   get input parameters
   --------------------
*/
if ( argc != 7 ) {
   fprintf(stdout, 
      "\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed"
      "\n    msglvl -- message level"
      "\n    msgFile -- message file"
      "\n    type    -- type of entries"
      "\n      1 (SPOOLES_REAL)    -- real entries"
      "\n      2 (SPOOLES_COMPLEX) -- complex entries"
      "\n    matrixFileName -- matrix file name, format"
      "\n       nrow ncol nent"
      "\n       irow jcol entry"
      "\n        ..."
      "\n        note: indices are zero based"
      "\n    rhsFileName -- right hand side file name, format"
      "\n       nrow "
      "\n       entry[0]"
      "\n       ..."
      "\n       entry[nrow-1]"
      "\n    seed -- random number seed, used for ordering"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
type           = atoi(argv[3]) ;
matrixFileName = argv[4] ;
rhsFileName    = argv[5] ;
seed           = atoi(argv[6]) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 1: read the entries from the input file 
   and create the InpMtx object of A
   --------------------------------------------
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf(inputFile, "%d %d %d", &nrow, &neqns, &nent) ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
      InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
   }
} else {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
      InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n input matrix") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ----------------------------------------
   STEP 2: read the right hand side entries
   ----------------------------------------
*/
inputFile = fopen(rhsFileName, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 0, 0, nrow, nrhs, 1, nrow) ;
DenseMtx_zero(mtxB) ;
if ( type == SPOOLES_REAL ) {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le", &value) ;
         DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;
      }
   }
} else {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le %le", &real, &imag) ;
         DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;
      }
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------
   STEP 3 : find a low-fill ordering
   (1) create the Graph object for A^TA or A^HA
   (2) order the graph using multiple minimum degree
   -------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_adjForATA(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
            NULL, NULL) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n graph of A^T A") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 4: get the permutation, permute the matrix and 
           front tree and get the symbolic factorization
   -----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
InpMtx_permute(mtxA, NULL, IV_entries(oldToNewIV)) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
IVL_overwrite(symbfacIVL, oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n old-to-new permutation vector") ;
   IV_writeForHumanEye(oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation vector") ;
   IV_writeForHumanEye(newToOldIV, msgFile) ;
   fprintf(msgFile, "\n\n front tree after permutation") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fprintf(msgFile, "\n\n input matrix after permutation") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 5: initialize the front matrix object
   ------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
if ( type == SPOOLES_REAL ) {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
                 mtxmanager, msglvl, msgFile) ;
} else {
   FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, 
                 SPOOLES_HERMITIAN, FRONTMTX_DENSE_FRONTS, 
                 SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL,
                 mtxmanager, msglvl, msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 6: compute the numeric factorization
   -----------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVzero(10, cpus) ;
facops = 0.0 ;
FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, 
                   cpus, &facops, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix") ;
   fprintf(msgFile, "\n facops = %9.2f", facops) ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------
   STEP 7: post-process the factorization
   --------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------
   STEP 8: solve the linear system
   -------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager,
                  cpus, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n solution matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------------
   STEP 9: permute the solution into the original ordering
   -------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n solution matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------
   free the working storage
   ------------------------
*/
InpMtx_free(mtxA) ;
FrontMtx_free(frontmtx) ;
Graph_free(graph) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
ETree_free(frontETree) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
/*--------------------------------------------------------------------*/
return(1) ; }
Exemplo n.º 11
0
/*
   --------------------------------------------------------------------
   fill *pndom with ndom, the number of domains.
   fill *pnseg with nseg, the number of segments.
   domains are numbered in [0, ndom), segments in [ndom,ndom+nseg).

   return -- an IV object that contains the map 
             from vertices to segments

   created -- 99feb29, cca
   --------------------------------------------------------------------
*/
IV *
GPart_domSegMap (
   GPart   *gpart,
   int     *pndom,
   int     *pnseg
) {
FILE    *msgFile ;
Graph   *g ;
int     adjdom, count, d, first, ierr, ii, jj1, jj2, last, ndom, 
        msglvl, nextphi, nPhi, nPsi, nV, phi, phi0, phi1, phi2, phi3, 
        psi, sigma, size, size0, size1, size2, v, vsize, w ;
int     *adj, *adj0, *adj1, *adj2, *compids, *dmark, *dsmap, *head, 
        *link, *list, *offsets, *PhiToPsi, *PhiToV, *PsiToSigma, 
        *vadj, *VtoPhi ;
IV      *dsmapIV ;
IVL     *PhiByPhi, *PhiByPowD, *PsiByPowD ;
/*
   --------------------
   set the initial time
   --------------------
*/
icputimes = 0 ;
MARKTIME(cputimes[icputimes]) ;
/*
   ---------------
   check the input
   ---------------
*/
if (  gpart == NULL 
   || (g = gpart->g) == NULL 
   || pndom == NULL
   || pnseg == NULL ) {
   fprintf(stderr, "\n fatal error in GPart_domSegMap(%p,%p,%p)"
           "\n bad input\n", gpart, pndom, pnseg) ;
   exit(-1) ;
}
compids = IV_entries(&gpart->compidsIV) ;
msglvl  = gpart->msglvl  ;
msgFile = gpart->msgFile ;
/*
   ------------------------
   create the map IV object
   ------------------------
*/
nV = g->nvtx ;
dsmapIV = IV_new() ;
IV_init(dsmapIV, nV, NULL) ;
dsmap = IV_entries(dsmapIV) ;
/*
   ----------------------------------
   check compids[] and get the number 
   of domains and interface vertices
   ----------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
ndom = nPhi = 0 ;
for ( v = 0 ; v < nV ; v++ ) {
   if ( (d = compids[v]) < 0 ) {
      fprintf(stderr, 
              "\n fatal error in GPart_domSegMap(%p,%p,%p)"
              "\n compids[%d] = %d\n", gpart, pndom, pnseg,
              v, compids[v]) ;
      exit(-1) ;
   } else if ( d == 0 ) {
      nPhi++ ;
   } else if ( ndom < d ) {
      ndom = d ;
   }
}
*pndom = ndom ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n Inside GPart_domSegMap") ;
   fprintf(msgFile, "\n %d domains, %d Phi vertices", ndom, nPhi) ;
}
if ( ndom == 1 ) {
   IVfill(nV, dsmap, 0) ;
   *pndom = 1 ;
   *pnseg = 0 ;
   return(dsmapIV) ;
}
/*
   --------------------------------
   get the maps
   PhiToV : [0,nPhi) |---> [0,nV)
   VtoPhi : [0,nV)   |---> [0,nPhi)
   --------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
PhiToV = IVinit(nPhi, -1) ;
VtoPhi = IVinit(nV,   -1) ;
for ( v = 0, phi = 0 ; v < nV ; v++ ) {
   if ( (d = compids[v]) == 0 ) {
      PhiToV[phi] = v ;
      VtoPhi[v]   = phi++ ;
   }
}
if ( phi != nPhi ) {
   fprintf(stderr, 
           "\n fatal error in GPart_domSegMap(%p,%p,%p)"
           "\n phi = %d != %d = nPhi\n", 
           gpart, pndom, pnseg, phi, nPhi) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n PhiToV(%d) :", nPhi) ;
   IVfp80(msgFile, nPhi, PhiToV, 15, &ierr) ;
   fflush(msgFile) ;
}
if ( msglvl > 3 ) {
   fprintf(msgFile, "\n VtoPhi(%d) :", nV) ;
   IVfp80(msgFile, nV, VtoPhi, 15, &ierr) ;
   fflush(msgFile) ;
}
/*
   ---------------------------------------------------
   create an IVL object, PhiByPowD, to hold lists from 
   the interface vertices to their adjacent domains
   ---------------------------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
dmark = IVinit(ndom+1, -1) ;
if ( nPhi >= ndom ) {
   list = IVinit(nPhi, -1) ;
} else {
   list = IVinit(ndom, -1) ;
}
PhiByPowD = IVL_new() ;
IVL_init1(PhiByPowD, IVL_CHUNKED, nPhi) ;
for ( phi = 0 ; phi < nPhi ; phi++ ) {
   v = PhiToV[phi] ;
   Graph_adjAndSize(g, v, &vsize, &vadj) ;
/*
if ( phi == 0 ) {
   int   ierr ;
   fprintf(msgFile, "\n adj(%d,%d) = ", v, phi) ;
   IVfp80(msgFile, vsize, vadj, 15, &ierr) ;
   fflush(msgFile) ;
}
*/
   count = 0 ;
   for ( ii = 0 ; ii < vsize ; ii++ ) {
      if ( (w = vadj[ii]) < nV  
        && (d = compids[w]) > 0 
        && dmark[d] != phi ) {
         dmark[d] = phi ;
         list[count++] = d ;
      }
   }
   if ( count > 0 ) {
      IVqsortUp(count, list) ;
      IVL_setList(PhiByPowD, phi, count, list) ;
   }
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n PhiByPowD : interface x adjacent domains") ;
   IVL_writeForHumanEye(PhiByPowD, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------------------------
   create an IVL object, PhiByPhi to hold lists
   from the interface vertices to interface vertices.
   (s,t) are in the list if (s,t) is an edge in the graph
   and s and t do not share an adjacent domain
   -------------------------------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
PhiByPhi = IVL_new() ;
IVL_init1(PhiByPhi, IVL_CHUNKED, nPhi) ;
offsets = IVinit(nPhi,  0)  ;
head    = IVinit(nPhi, -1) ;
link    = IVinit(nPhi, -1) ;
for ( phi1 = 0 ; phi1 < nPhi ; phi1++ ) {
   count = 0 ;
   if ( msglvl > 2 ) {
      v = PhiToV[phi1] ;
      Graph_adjAndSize(g, v, &vsize, &vadj) ;
      fprintf(msgFile, "\n checking out phi = %d, v = %d", phi1, v) ;
      fprintf(msgFile, "\n adj(%d) : ", v) ;
      IVfp80(msgFile, vsize, vadj, 10, &ierr) ;
   }
/*
   -------------------------------------------------------------
   get (phi1, phi0) edges that were previously put into the list
   -------------------------------------------------------------
*/
   if ( msglvl > 3 ) {
      if ( head[phi1] == -1 ) {
         fprintf(msgFile, "\n    no previous edges") ;
      } else {
         fprintf(msgFile, "\n    previous edges :") ;
      }
   }
   for ( phi0 = head[phi1] ; phi0 != -1 ; phi0 = nextphi ) {
      if ( msglvl > 3 ) {
         fprintf(msgFile, " %d", phi0) ;
      }
      nextphi = link[phi0] ;
      list[count++] = phi0 ;
      IVL_listAndSize(PhiByPhi, phi0, &size0, &adj0) ;
      if ( (ii = ++offsets[phi0]) < size0 ) {
/*
         ----------------------------
         link phi0 into the next list
         ----------------------------
*/
         phi2       = adj0[ii]   ;
         link[phi0] = head[phi2] ;
         head[phi2] = phi0       ;
      }
   }
/*
   --------------------------
   get new edges (phi1, phi2)
   --------------------------
*/
   IVL_listAndSize(PhiByPowD, phi1, &size1, &adj1) ;
   v = PhiToV[phi1] ;
   Graph_adjAndSize(g, v, &vsize, &vadj) ;
   for ( ii = 0 ; ii < vsize ; ii++ ) {
      if (  (w = vadj[ii]) < nV 
         && compids[w] == 0 
         && (phi2 = VtoPhi[w]) > phi1 ) {
         if ( msglvl > 3 ) {
            fprintf(msgFile, "\n    checking out phi2 = %d", phi2) ;
         }
/*
         --------------------------------------------------
         see if phi1 and phi2 have a common adjacent domain
         --------------------------------------------------
*/
         IVL_listAndSize(PhiByPowD, phi2, &size2, &adj2) ;
         adjdom = 0 ;
         jj1 = jj2 = 0 ;
         while ( jj1 < size1 && jj2 < size2 ) {
            if ( adj1[jj1] < adj2[jj2] ) {
               jj1++ ;
            } else if ( adj1[jj1] > adj2[jj2] ) {
               jj2++ ;
            } else {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, ", common adj domain %d", adj1[jj1]) ;
               }
               adjdom = 1 ;
               break ;
            }
         }
         if ( adjdom == 0 ) {
            if ( msglvl > 3 ) {
               fprintf(msgFile, ", no adjacent domain") ;
            }
            list[count++] = phi2 ;
         }
      }
   }
   if ( count > 0 ) {
/*
      ---------------------
      set the list for phi1
      ---------------------
*/
      IVqsortUp(count, list) ;
      IVL_setList(PhiByPhi, phi1, count, list) ;
      if ( msglvl > 2 ) {
         fprintf(msgFile, "\n    edge list for %d :", phi1) ;
         IVfp80(msgFile, count, list, 15, &ierr) ;
      }
      for ( ii = 0, phi2 = -1 ; ii < count ; ii++ ) {
         if ( list[ii] > phi1 ) {
            offsets[phi1] = ii ;
            phi2 = list[ii] ;
            break ;
         }
      }
      if ( phi2 != -1 ) {
      if ( msglvl > 2 ) {
         fprintf(msgFile, 
                 "\n       linking %d into list for %d", phi1, phi2) ;
      }
         link[phi1] = head[phi2] ;
         head[phi2] = phi1       ;
      }
/*
      phi2 = list[0] ;
      link[phi1] = head[phi2] ;
      head[phi2] = phi1 ;
*/
   }
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n PhiByPhi : interface x interface") ;
   IVL_writeForHumanEye(PhiByPhi, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------
   get the PhiToPsi map
   --------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
PhiToPsi = IVinit(nPhi, -1) ;
nPsi = 0 ;
for ( phi = 0 ; phi < nPhi ; phi++ ) {
   if ( PhiToPsi[phi] == -1 ) {
/*
      ---------------------------
      phi not yet mapped to a psi
      ---------------------------
*/
      first = last = 0 ;
      list[0] = phi ;
      PhiToPsi[phi] = nPsi ;
      while ( first <= last ) {
         phi2 = list[first++] ;
         IVL_listAndSize(PhiByPhi, phi2, &size, &adj) ;
         for ( ii = 0 ; ii < size ; ii++ ) {
            phi3 = adj[ii] ;
            if ( PhiToPsi[phi3] == -1 ) {
               PhiToPsi[phi3] = nPsi ;
               list[++last] = phi3 ; 
            }
         }
      }
      nPsi++ ;
   }
}
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n nPsi = %d", nPsi) ;
   fflush(msgFile) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n PhiToPsi(%d) :", nPhi) ;
   IVfp80(msgFile, nPhi, PhiToPsi, 15, &ierr) ;
   fflush(msgFile) ;
}
/*
   ---------------------------------
   create an IVL object, Psi --> 2^D
   ---------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
IVfill(nPsi, head, -1) ;
IVfill(nPhi, link, -1) ;
for ( phi = 0 ; phi < nPhi ; phi++ ) {
   psi = PhiToPsi[phi] ;
   link[phi] = head[psi] ;
   head[psi] =   phi     ;
}
PsiByPowD = IVL_new() ;
IVL_init1(PsiByPowD, IVL_CHUNKED, nPsi) ;
IVfill(ndom+1, dmark, -1) ;
for ( psi = 0 ; psi < nPsi ; psi++ ) {
   count = 0 ;
   for ( phi = head[psi] ; phi != -1 ; phi = link[phi] ) {
      v = PhiToV[phi] ;
      Graph_adjAndSize(g, v, &size, &adj) ;
      for ( ii = 0 ; ii < size ; ii++ ) {
         if (  (w = adj[ii]) < nV
            && (d = compids[w]) > 0 
            && dmark[d] != psi ) {
            dmark[d]      = psi ;
            list[count++] =  d  ;
         }
      }
   }
   if ( count > 0 ) {
      IVqsortUp(count, list) ;
      IVL_setList(PsiByPowD, psi, count, list) ;
   }
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n PsiByPowD(%d) :", nPhi) ;
   IVL_writeForHumanEye(PsiByPowD, msgFile) ;
   fflush(msgFile) ;
}
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
/*
   -------------------------------------
   now get the map Psi |---> Sigma that 
   is the equivalence map over PhiByPowD
   -------------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
PsiToSigma = IVL_equivMap1(PsiByPowD) ;
*pnseg = 1 + IVmax(nPsi, PsiToSigma, &ii) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n nSigma = %d", *pnseg) ;
   fprintf(msgFile, "\n PsiToSigma(%d) :", nPhi) ;
   IVfp80(msgFile, nPsi, PsiToSigma, 15, &ierr) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------------------------------
   now fill the map from the vertices to the domains and segments
   --------------------------------------------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
for ( v = 0 ; v < nV ; v++ ) {
   if ( (d = compids[v]) > 0 ) {
      dsmap[v] = d - 1 ;
   } else {
      phi      = VtoPhi[v] ;
      psi      = PhiToPsi[phi] ;
      sigma    = PsiToSigma[psi] ;
      dsmap[v] = ndom + sigma ;
   }
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
IVL_free(PhiByPhi)  ;
IVL_free(PhiByPowD) ;
IVL_free(PsiByPowD) ;
IVfree(PhiToV)      ;
IVfree(VtoPhi)      ;
IVfree(dmark)       ;
IVfree(list)        ;
IVfree(PhiToPsi)    ;
IVfree(head)        ;
IVfree(link)        ;
IVfree(offsets)     ;
IVfree(PsiToSigma)  ;
icputimes++ ;
MARKTIME(cputimes[icputimes]) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n domain/segment map timings split") ;
   fprintf(msgFile, 
   "\n %9.5f : create the DSmap object"
   "\n %9.5f : get numbers of domain and interface vertices"
   "\n %9.5f : generate PhiToV and VtoPhi"
   "\n %9.5f : generate PhiByPowD"
   "\n %9.5f : generate PhiByPhi"
   "\n %9.5f : generate PhiToPsi"
   "\n %9.5f : generate PsiByPowD"
   "\n %9.5f : generate PsiToSigma"
   "\n %9.5f : generate dsmap"
   "\n %9.5f : free working storage"
   "\n %9.5f : total time",
   cputimes[1] - cputimes[0],
   cputimes[2] - cputimes[1],
   cputimes[3] - cputimes[2],
   cputimes[4] - cputimes[3],
   cputimes[5] - cputimes[4],
   cputimes[6] - cputimes[5],
   cputimes[7] - cputimes[6],
   cputimes[8] - cputimes[7],
   cputimes[9] - cputimes[8],
   cputimes[10] - cputimes[9],
   cputimes[11] - cputimes[0]) ;
}

return(dsmapIV) ; }
Exemplo n.º 12
0
Arquivo: init.c Projeto: bialk/SPOOLES
/*
   --------------------------------------------------------------------
   purpose -- to fill submtx with a submatrix of the front matrix.
      the fronts that form the submatrix are found in frontidsIV.

      all information in submtx is local, front #'s are from 0 to
      one less than the number of fronts in the submatrix, equation
      #'s are from 0 to one less than the number of rows and columns
      in the submatrix. the global row and column ids for the submatrix
      are stored in rowsIV and colsIV on return.

   return values ---
      1 -- normal return
     -1 -- submtx is NULL
     -2 -- frontmtx is NULL
     -3 -- frontmtx is not in 2-D mode
     -4 -- frontidsIV is NULL
     -5 -- frontidsIV is invalid
     -6 -- rowsIV is NULL
     -7 -- colsIV is NULL
     -8 -- unable to create front tree
     -9 -- unable to create symbfacIVL
    -10 -- unable to create coladjIVL
    -11 -- unable to create rowadjIVL
    -12 -- unable to create upperblockIVL
    -13 -- unable to create lowerblockIVL

   created -- 98oct17, cca
   --------------------------------------------------------------------
*/
int
FrontMtx_initFromSubmatrix (
   FrontMtx   *submtx,
   FrontMtx   *frontmtx,
   IV         *frontidsIV,
   IV         *rowsIV,
   IV         *colsIV,
   int        msglvl,
   FILE       *msgFile
) {
ETree    *etreeSub ;
int      ii, J, Jsub, K, Ksub, ncol, nfront, nfrontSub, neqnSub, nJ,
         nrow, offset, rc, size, vSub ;
int      *bndwghts, *colind, *colmap, *cols, *frontSubIds, 
         *list, *nodwghts, *rowind, *rowmap, *rows ;
IV       *frontsizesIVsub, *vtxIV ;
IVL      *coladjIVLsub, *lowerblockIVLsub, *rowadjIVLsub, 
         *symbfacIVLsub, *upperblockIVLsub ;
SubMtx   *mtx ;
/*
   ---------------
   check the input
   ---------------
*/
if ( submtx == NULL ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n submtx is NULL\n") ;
   return(-1) ;
}
if ( frontmtx == NULL ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n frontmtx is NULL\n") ;
   return(-2) ;
}
if ( ! FRONTMTX_IS_2D_MODE(frontmtx) ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n frontmtx mode is not 2D\n") ;
   return(-3) ;
}
if ( frontidsIV == NULL ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n frontidsIV is NULL\n") ;
   return(-4) ;
}
nfront = FrontMtx_nfront(frontmtx) ;
IV_sizeAndEntries(frontidsIV, &nfrontSub, &frontSubIds) ;
if ( nfrontSub < 0 || nfrontSub > nfront ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n invalid frontidsIV"
           "\n nfrontSub = %d, nfront %d\n", nfrontSub, nfront) ;
   return(-5) ;
}
for ( ii = 0 ; ii < nfrontSub ; ii++ ) {
   if ( (J = frontSubIds[ii]) < 0 || J >= nfront ) {
      fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
              "\n invalid frontidsIV"
              "\n frontSubIds[%d] = %d, nfront = %d\n",
              ii, J, nfront) ;
      return(-5) ;
   }
}
if ( rowsIV == NULL ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n rowsIV is NULL\n") ;
   return(-6) ;
}
if ( colsIV == NULL ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n colsIV is NULL\n") ;
   return(-7) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   clear the data for the submatrix and set the 
   scalar values (some inherited from the global matrix)
   -----------------------------------------------------
*/
FrontMtx_clearData(submtx) ;
submtx->nfront       = nfrontSub ;
submtx->type         = frontmtx->type ;
submtx->symmetryflag = frontmtx->symmetryflag ;
submtx->sparsityflag = frontmtx->sparsityflag ;
submtx->pivotingflag = frontmtx->pivotingflag ;
submtx->dataMode     = FRONTMTX_2D_MODE ;
/*
   ---------------------------------------------------------------
   initialize the front tree for the submatrix.

   note: on return, vtxIV is filled with the vertices originally
   in the submatrix, (pivoting may change this), needed to find
   symbolic factorization IVL object

   note: at return, the boundary weights are likely to be invalid,
   since we have no way of knowing what boundary indices for a
   front are really in the domain. this will be changed after we
   have the symbolic factorization.
   ---------------------------------------------------------------
*/
etreeSub = submtx->frontETree = ETree_new() ;
vtxIV = IV_new() ;
rc = ETree_initFromSubtree(etreeSub, frontidsIV, 
                           frontmtx->frontETree, vtxIV) ;
if ( rc != 1 ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
         "\n unable to create submatrix's front ETree, rc = %d\n", rc) ;
   return(-8) ;
}
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n submatrix ETree") ;
   ETree_writeForHumanEye(etreeSub, msgFile) ;
   fprintf(msgFile, "\n\n submatrix original equations") ;
   IV_writeForHumanEye(vtxIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   ------------------------------------------------------
   set the # of equations (perhap temporarily if pivoting 
   has delayed some rows and columns), and the tree.
   ------------------------------------------------------
*/
submtx->neqns = neqnSub = IV_size(vtxIV) ;
submtx->tree  = etreeSub->tree ;
/*
   -----------------------------------------------------
   initialize the symbolic factorization for the subtree
   -----------------------------------------------------
*/
symbfacIVLsub = submtx->symbfacIVL = IVL_new() ;
rc = IVL_initFromSubIVL(symbfacIVLsub, frontmtx->symbfacIVL,
                        frontidsIV, vtxIV) ;
if ( rc != 1 ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
         "\n unable to create submatrix's symbfac, rc = %d\n", rc) ;
   return(-9) ;
}
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n submatrix symbolic factorizatio") ;
   IVL_writeForHumanEye(symbfacIVLsub, msgFile) ;
   fflush(msgFile) ;
}
/*
   ---------------------------------------------
   adjust the boundary weights of the front tree
   ---------------------------------------------
*/
nodwghts = ETree_nodwghts(etreeSub) ;
bndwghts = ETree_bndwghts(etreeSub) ;
for ( J = 0 ; J < nfrontSub ; J++ ) {
   IVL_listAndSize(symbfacIVLsub, J, &size, &list) ;
   bndwghts[J] = size - nodwghts[J] ;
}
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n submatrix ETree after bndweight adjustment") ;
   ETree_writeForHumanEye(etreeSub, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------
   set the front sizes for the submatrix
   -------------------------------------
*/
frontsizesIVsub = submtx->frontsizesIV = IV_new() ;
IV_init(frontsizesIVsub, nfrontSub, NULL) ;
IVgather(nfrontSub, IV_entries(frontsizesIVsub), 
         IV_entries(frontmtx->frontsizesIV),
         IV_entries(frontidsIV)) ;
neqnSub = submtx->neqns = IV_sum(frontsizesIVsub) ;
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n %d equations in submatrix", neqnSub) ;
   fprintf(msgFile, "\n\n front sizes for submatrix") ;
   IV_writeForHumanEye(frontsizesIVsub, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------------------------------------
   fill rowsIV and colsIV with the row and column ids of the submatrix
   -------------------------------------------------------------------
*/
IV_setSize(rowsIV, neqnSub) ;
IV_setSize(colsIV, neqnSub) ;
rows = IV_entries(rowsIV) ;
cols = IV_entries(colsIV) ;
for ( Jsub = offset = 0 ; Jsub < nfrontSub ; Jsub++ ) {
   if ( (nJ = FrontMtx_frontSize(submtx, Jsub)) > 0 ) {
      J = frontSubIds[Jsub] ;
      FrontMtx_columnIndices(frontmtx, J, &size, &list) ;
      IVcopy(nJ, cols + offset, list) ;
      FrontMtx_rowIndices(frontmtx, J, &size, &list) ;
      IVcopy(nJ, rows + offset, list) ;
      offset += nJ ;
   }
}
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n row ids for submatrix") ;
   IV_writeForHumanEye(rowsIV, msgFile) ;
   fprintf(msgFile, "\n\n column ids for submatrix") ;
   IV_writeForHumanEye(colsIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   ----------------------------------
   get the row and column adjacencies
   ----------------------------------
*/
if ( FRONTMTX_IS_PIVOTING(frontmtx) ) {
   submtx->neqns = neqnSub ;
   coladjIVLsub  = submtx->coladjIVL = IVL_new() ;
   rc = IVL_initFromSubIVL(coladjIVLsub, frontmtx->coladjIVL,
                           frontidsIV, colsIV) ;
   if ( rc != 1 ) {
      fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n unable to create submatrix's coladjIVL, rc = %d\n", rc) ;
      return(-10) ;
   }
   if ( msglvl > 4 ) {
      fprintf(msgFile, "\n\n submatrix col adjacency") ;
      IVL_writeForHumanEye(coladjIVLsub, msgFile) ;
      fflush(msgFile) ;
   }
   if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
      rowadjIVLsub = submtx->rowadjIVL = IVL_new() ;
      rc = IVL_initFromSubIVL(rowadjIVLsub, frontmtx->rowadjIVL,
                              frontidsIV, rowsIV) ;
      if ( rc != 1 ) {
         fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n unable to create submatrix's rowadjIVL, rc = %d\n", rc) ;
         return(-11) ;
      }
      if ( msglvl > 4 ) {
         fprintf(msgFile, "\n\n submatrix row adjacency") ;
         IVL_writeForHumanEye(rowadjIVLsub, msgFile) ;
         fflush(msgFile) ;
      }
   }
}
IV_free(vtxIV) ;
/*
   ----------------------------------------------
   get the rowmap[] and colmap[] vectors,
   needed to translate indices in the submatrices
   ----------------------------------------------
*/
colmap = IVinit(frontmtx->neqns, -1) ;
for ( ii = 0 ; ii < neqnSub ; ii++ ) {
   colmap[cols[ii]] = ii ;
}
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
   rowmap = IVinit(frontmtx->neqns, -1) ;
   for ( ii = 0 ; ii < neqnSub ; ii++ ) {
      rowmap[rows[ii]] = ii ;
   }
} else {
   rowmap = colmap ;
}
/*
   -----------------------------------------------------------
   get the upper and lower block IVL objects for the submatrix
   -----------------------------------------------------------
*/
upperblockIVLsub = submtx->upperblockIVL = IVL_new() ;
rc = IVL_initFromSubIVL(upperblockIVLsub, frontmtx->upperblockIVL,
                        frontidsIV, frontidsIV) ;
if ( rc != 1 ) {
   fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
        "\n unable to create upperblockIVL, rc = %d\n", rc) ;
   return(-12) ;
}
if ( msglvl > 4 ) {
   fprintf(msgFile, "\n\n upper block adjacency IVL object") ;
   IVL_writeForHumanEye(upperblockIVLsub, msgFile) ;
   fflush(msgFile) ;
}
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
   lowerblockIVLsub = submtx->lowerblockIVL = IVL_new() ;
   rc = IVL_initFromSubIVL(lowerblockIVLsub, frontmtx->lowerblockIVL,
                           frontidsIV, frontidsIV) ;
   if ( rc != 1 ) {
      fprintf(stderr, "\n error in FrontMtx_initFromSubmatrix()"
           "\n unable to create lowerblockIVL, rc = %d\n", rc) ;
      return(-13) ;
   }
   if ( msglvl > 4 ) {
      fprintf(msgFile, "\n\n lower block adjacency IVL object") ;
      IVL_writeForHumanEye(lowerblockIVLsub, msgFile) ;
      fflush(msgFile) ;
   }
}
/*
   ----------------------------------------------------------------
   allocate the vector and hash table(s) for the factor submatrices
   ----------------------------------------------------------------
*/
ALLOCATE(submtx->p_mtxDJJ, struct _SubMtx *, nfrontSub) ;
for ( J = 0 ; J < nfrontSub ; J++ ) {
   submtx->p_mtxDJJ[J] = NULL ;
}
submtx->upperhash = I2Ohash_new() ;
I2Ohash_init(submtx->upperhash, nfrontSub, nfrontSub, nfrontSub) ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
   submtx->lowerhash = I2Ohash_new() ;
   I2Ohash_init(submtx->lowerhash, nfrontSub, nfrontSub, nfrontSub) ;
}
/*
   -----------------------------------------------------------------
   remove the diagonal submatrices from the factor matrix
   and insert into the submatrix object. note: front row and column
   ids must be changed to their local values, and the row and column
   indices must be mapped to local indices.
   -----------------------------------------------------------------
*/
for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) {
   J = frontSubIds[Jsub] ;
   if ( (mtx = frontmtx->p_mtxDJJ[J]) != NULL ) {
      SubMtx_setIds(mtx, Jsub, Jsub) ;
      SubMtx_columnIndices(mtx, &ncol, &colind) ;
      IVgather(ncol, colind, colmap, colind) ;
      SubMtx_rowIndices(mtx, &nrow, &rowind) ;
      IVgather(nrow, rowind, rowmap, rowind) ;
      submtx->p_mtxDJJ[Jsub] = mtx ;
      frontmtx->p_mtxDJJ[J]  = NULL ;
      submtx->nentD += mtx->nent ;
   }
}
/*
   ----------------------------------------------------------------
   remove the upper triangular submatrices from the factor matrix
   and insert into the submatrix object. note: front row and column
   ids must be changed to their local values. if the matrix is on
   the diagonal, i.e., U(J,J), its row and column indices must be 
   mapped to local indices.
   ----------------------------------------------------------------
*/
for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) {
   J = frontSubIds[Jsub] ;
   FrontMtx_upperAdjFronts(submtx, Jsub, &size, &list) ;
   for ( ii = 0 ; ii < size ; ii++ ) {
      Ksub = list[ii] ;
      K = frontSubIds[Ksub] ;
      if ( 1 == I2Ohash_remove(frontmtx->upperhash, 
                               J, K, (void *) &mtx) ) {
         SubMtx_setIds(mtx, Jsub, Ksub) ;
         if ( K == J ) {
            SubMtx_columnIndices(mtx, &ncol, &colind) ;
            IVgather(ncol, colind, colmap, colind) ;
            SubMtx_rowIndices(mtx, &nrow, &rowind) ;
            IVgather(nrow, rowind, rowmap, rowind) ;
         }
         I2Ohash_insert(submtx->upperhash, Jsub, Ksub, (void *) mtx) ;
         submtx->nentU += mtx->nent ;
      }
   }
}
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
/*
   ----------------------------------------------------------------
   remove the lower triangular submatrices from the factor matrix
   and insert into the submatrix object. note: front row and column
   ids must be changed to their local values. if the matrix is on
   the diagonal, i.e., L(J,J), its row and column indices must be 
   mapped to local indices.
   ----------------------------------------------------------------
*/
   for ( Jsub = 0 ; Jsub < nfrontSub ; Jsub++ ) {
      J = frontSubIds[Jsub] ;
      FrontMtx_lowerAdjFronts(submtx, Jsub, &size, &list) ;
      for ( ii = 0 ; ii < size ; ii++ ) {
         Ksub = list[ii] ;
         K = frontSubIds[Ksub] ;
         if ( 1 == I2Ohash_remove(frontmtx->lowerhash, 
                                  K, J, (void *) &mtx) ) {
            SubMtx_setIds(mtx, Ksub, Jsub) ;
            if ( K == J ) {
               SubMtx_columnIndices(mtx, &ncol, &colind) ;
               IVgather(ncol, colind, colmap, colind) ;
               SubMtx_rowIndices(mtx, &nrow, &rowind) ;
               IVgather(nrow, rowind, rowmap, rowind) ;
            }
            I2Ohash_insert(submtx->lowerhash, Ksub, Jsub, (void *) mtx);
            submtx->nentL += mtx->nent ;
         }
      }
   }
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
IVfree(colmap) ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
   IVfree(rowmap) ;
}
return(1) ; }
Exemplo n.º 13
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
   --------------------------------------------------
   all-in-one program to solve A X = B
   using a multithreaded factorization and solve
   We use a patch-and-go strategy 
   for the factorization without pivoting
   (1) read in matrix entries and form DInpMtx object
   (2) form Graph object
   (3) order matrix and form front tree
   (4) get the permutation, permute the matrix and 
       front tree and get the symbolic factorization
   (5) compute the numeric factorization
   (6) read in right hand side entries
   (7) compute the solution

   created -- 98jun04, cca
   --------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char            *matrixFileName, *rhsFileName ;
DenseMtx        *mtxB, *mtxX ;
Chv             *rootchv ;
ChvManager      *chvmanager ;
double          fudge, imag, real, tau = 100., toosmall, value ;
double          cpus[10] ;
DV              *cumopsDV ;
ETree           *frontETree ;
FrontMtx        *frontmtx ;
FILE            *inputFile, *msgFile ;
Graph           *graph ;
InpMtx          *mtxA ;
int             error, ient, irow, jcol, jrhs, jrow, lookahead, msglvl, 
                ncol, nedges, nent, neqns, nfront, nrhs, nrow, nthread,
                patchAndGoFlag, seed, 
                storeids, storevalues, symmetryflag, type ;
int             *newToOld, *oldToNew ;
int             stats[20] ;
IV              *newToOldIV, *oldToNewIV, *ownersIV ;
IVL             *adjIVL, *symbfacIVL ;
SolveMap        *solvemap ;
SubMtxManager   *mtxmanager  ;
/*--------------------------------------------------------------------*/
/*
   --------------------
   get input parameters
   --------------------
*/
if ( argc != 14 ) {
   fprintf(stdout, "\n"
      "\n usage: %s msglvl msgFile type symmetryflag patchAndGoFlag"
      "\n        fudge toosmall storeids storevalues"
      "\n        matrixFileName rhsFileName seed"
      "\n    msglvl -- message level"
      "\n    msgFile -- message file"
      "\n    type    -- type of entries"
      "\n      1 (SPOOLES_REAL)    -- real entries"
      "\n      2 (SPOOLES_COMPLEX) -- complex entries"
      "\n    symmetryflag -- type of matrix"
      "\n      0 (SPOOLES_SYMMETRIC)    -- symmetric entries"
      "\n      1 (SPOOLES_HERMITIAN)    -- Hermitian entries"
      "\n      2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
      "\n    patchAndGoFlag -- flag for the patch-and-go strategy"
      "\n      0 -- none, stop factorization"
      "\n      1 -- optimization strategy"
      "\n      2 -- structural analysis strategy"
      "\n    fudge       -- perturbation parameter"
      "\n    toosmall    -- upper bound on a small pivot"
      "\n    storeids    -- flag to store ids of small pivots"
      "\n    storevalues -- flag to store perturbations"
      "\n    matrixFileName -- matrix file name, format"
      "\n       nrow ncol nent"
      "\n       irow jcol entry"
      "\n        ..."
      "\n        note: indices are zero based"
      "\n    rhsFileName -- right hand side file name, format"
      "\n       nrow nrhs "
      "\n       ..."
      "\n       jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
      "\n       ..."
      "\n    seed    -- random number seed, used for ordering"
      "\n    nthread -- number of threads"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
type           = atoi(argv[3]) ;
symmetryflag   = atoi(argv[4]) ;
patchAndGoFlag = atoi(argv[5]) ;
fudge          = atof(argv[6]) ;
toosmall       = atof(argv[7]) ;
storeids       = atoi(argv[8]) ;
storevalues    = atoi(argv[9]) ;
matrixFileName = argv[10] ;
rhsFileName    = argv[11] ;
seed           = atoi(argv[12]) ;
nthread        = atoi(argv[13]) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 1: read the entries from the input file 
           and create the InpMtx object
   --------------------------------------------
*/
if ( (inputFile = fopen(matrixFileName, "r")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s", matrixFileName) ;
   spoolesFatal();
}
fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, 0) ;
if ( type == SPOOLES_REAL ) {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
      InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
   }
} else {
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
      InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
   }
}
fclose(inputFile) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n input matrix") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------
   STEP 2 : find a low-fill ordering
   (1) create the Graph object
   (2) order the graph using multiple minimum degree
   -------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
            NULL, NULL) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n graph of the input matrix") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 3: get the permutation, permute the matrix and 
           front tree and get the symbolic factorization
   -----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew = IV_entries(oldToNewIV) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
newToOld   = IV_entries(newToOldIV) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute(mtxA, oldToNew, oldToNew) ;
InpMtx_mapToUpperTriangle(mtxA) ;
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n old-to-new permutation vector") ;
   IV_writeForHumanEye(oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation vector") ;
   IV_writeForHumanEye(newToOldIV, msgFile) ;
   fprintf(msgFile, "\n\n front tree after permutation") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fprintf(msgFile, "\n\n input matrix after permutation") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 4: initialize the front matrix object
      and the PatchAndGoInfo object to handle
      small pivots
   ------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, LOCK_IN_PROCESS, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag, 
            FRONTMTX_DENSE_FRONTS, SPOOLES_NO_PIVOTING, LOCK_IN_PROCESS,
            0, NULL, mtxmanager, msglvl, msgFile) ;
if ( patchAndGoFlag == 1 ) {
   frontmtx->patchinfo = PatchAndGoInfo_new() ;
   PatchAndGoInfo_init(frontmtx->patchinfo, 1, toosmall, fudge,
                       storeids, storevalues) ;
} else if ( patchAndGoFlag == 2 ) {
   frontmtx->patchinfo = PatchAndGoInfo_new() ;
   PatchAndGoInfo_init(frontmtx->patchinfo, 2, toosmall, fudge,
                       storeids, storevalues) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 5: setup the domain decomposition map
   ------------------------------------------
*/
if ( nthread > (nfront = FrontMtx_nfront(frontmtx)) ) {
   nthread = nfront ;
}
cumopsDV = DV_new() ;
DV_init(cumopsDV, nthread, NULL) ;
ownersIV = ETree_ddMap(frontETree, type, symmetryflag,
                       cumopsDV, 1./(2.*nthread)) ;
DV_free(cumopsDV) ;
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------------
   STEP 6: compute the numeric factorization in parallel
   -----------------------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, LOCK_IN_PROCESS, 1) ;
DVfill(10, cpus, 0.0) ;
IVfill(20, stats, 0) ;
lookahead = 0 ;
rootchv = FrontMtx_MT_factorInpMtx(frontmtx, mtxA, tau, 0.0, 
                                 chvmanager, ownersIV, lookahead, 
                                 &error, cpus, stats, msglvl, msgFile) ;
if ( patchAndGoFlag == 1 ) {
   if ( frontmtx->patchinfo->fudgeIV != NULL ) {
      fprintf(msgFile, "\n small pivots found at these locations") ;
      IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
   }
   PatchAndGoInfo_free(frontmtx->patchinfo) ;
} else if ( patchAndGoFlag == 2 ) {
   if ( frontmtx->patchinfo->fudgeIV != NULL ) {
      fprintf(msgFile, "\n small pivots found at these locations") ;
      IV_writeForHumanEye(frontmtx->patchinfo->fudgeIV, msgFile) ;
   }
   if ( frontmtx->patchinfo->fudgeDV != NULL ) {
      fprintf(msgFile, "\n perturbations") ;
      DV_writeForHumanEye(frontmtx->patchinfo->fudgeDV, msgFile) ;
   }
   PatchAndGoInfo_free(frontmtx->patchinfo) ;
}
ChvManager_free(chvmanager) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
if ( rootchv != NULL ) {
   fprintf(msgFile, "\n\n matrix found to be singular\n") ;
   spoolesFatal();
}
if ( error >= 0 ) {
   fprintf(msgFile, "\n\n fatal error at front %d\n", error) ;
   spoolesFatal();
}
/*
   --------------------------------------
   STEP 7: post-process the factorization
   --------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 8: read the right hand side matrix B
   -----------------------------------------
*/
if ( (inputFile = fopen(rhsFileName, "r")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s", rhsFileName) ;
   spoolesFatal();
}
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxB) ;
if ( type == SPOOLES_REAL ) {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le", &value) ;
         DenseMtx_setRealEntry(mtxB, jrow, jrhs, value) ;
      }
   }
} else {
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le %le", &real, &imag) ;
         DenseMtx_setComplexEntry(mtxB, jrow, jrhs, real, imag) ;
      }
   }
}
fclose(inputFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------------
   STEP 9: permute the right hand side into the original ordering
   --------------------------------------------------------------
*/
DenseMtx_permuteRows(mtxB, oldToNewIV) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n right hand side matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxB, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------
   STEP 10: get the solve map object for the parallel solve
   --------------------------------------------------------
*/
solvemap = SolveMap_new() ;
SolveMap_ddMap(solvemap, type, FrontMtx_upperBlockIVL(frontmtx),
               FrontMtx_lowerBlockIVL(frontmtx), nthread, ownersIV, 
               FrontMtx_frontTree(frontmtx), seed, msglvl, msgFile) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 11: solve the linear system in parallel
   --------------------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_MT_solve(frontmtx, mtxX, mtxB, mtxmanager, solvemap,
                  cpus, msglvl, msgFile) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n solution matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------------------
   STEP 12: permute the solution into the original ordering
   --------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n solution matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------
   free memory
   -----------
*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
Graph_free(graph) ;
SolveMap_free(solvemap) ;
IV_free(ownersIV) ;
/*--------------------------------------------------------------------*/
return(1) ; }
Exemplo n.º 14
0
/*
   ----------------------------------------------------------------
   purpose --

   given InpMtx objects that contain A and B, initialize the bridge
   data structure for the serial factor's, solve's and mvm's.

   data -- pointer to a Bridge object
   pprbtype -- pointer to value containing problem type
     *prbtype = 1 --> A X = B X Lambda, vibration problem
     *prbtype = 2 --> A X = B X Lambda, buckling problem
     *prbtype = 3 --> A X = X Lambda, simple eigenvalue problem
   pneqns  -- pointer to value containing number of equations
   pmxbsz  -- pointer to value containing blocksize
   A       -- pointer to InpMtx object containing A
   B       -- pointer to InpMtx object containing B
   pseed   -- pointer to value containing a random number seed
   pmsglvl -- pointer to value containing a message level
   msgFile -- message file pointer

   return value --
      1 -- normal return
     -1 -- data is NULL
     -2 -- pprbtype is NULL
     -3 -- *pprbtype is invalid
     -4 -- pneqns is NULL
     -5 -- *pneqns is invalid
     -6 -- pmxbsz is NULL
     -7 -- *pmxbsz is invalid
     -8 -- A and B are NULL
     -9 -- pseed is NULL
    -10 -- pmsglvl is NULL
    -11 -- *pmsglvl > 0 and msgFile is NULL

   created -- 98aug10, cca
   ----------------------------------------------------------------
*/
int
Setup (
   void     *data,
   int      *pprbtype,
   int      *pneqns,
   int      *pmxbsz,
   InpMtx   *A,
   InpMtx   *B,
   int      *pseed,
   int      *pmsglvl,
   FILE     *msgFile
) {
Bridge   *bridge = (Bridge *) data ;
double   sigma[2] ;
Graph    *graph ;
int      maxdomainsize, maxsize, maxzeros, msglvl, mxbsz, 
         nedges, neqns, prbtype, seed ;
IVL      *adjIVL ;
#if MYDEBUG > 0
double   t1, t2 ;
MARKTIME(t1) ;
count_Setup++ ;
fprintf(stdout, "\n (%d) Setup()", count_Setup) ;
fflush(stdout) ;
#endif
/*
   --------------------
   check the input data
   --------------------
*/
if ( data == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n data is NULL\n") ;
   return(-1) ;
}
if ( pprbtype == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n prbtype is NULL\n") ;
   return(-2) ;
}
prbtype = *pprbtype ;
if ( prbtype < 1 || prbtype > 3 ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n prbtype = %d, is invalid\n", prbtype) ;
   return(-3) ;
}
if ( pneqns == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n pneqns is NULL\n") ;
   return(-4) ;
}
neqns = *pneqns ;
if ( neqns <= 0 ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n neqns = %d, is invalid\n", neqns) ;
   return(-5) ;
}
if ( pmxbsz == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n pmxbsz is NULL\n") ;
   return(-6) ;
}
mxbsz = *pmxbsz ;
if ( mxbsz <= 0 ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n *pmxbsz = %d, is invalid\n", mxbsz) ;
   return(-7) ;
}
if ( A == NULL && B == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n A and B are NULL\n") ;
   return(-8) ;
}
if ( pseed == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n pseed is NULL\n") ;
   return(-9) ;
}
seed = *pseed ;
if ( pmsglvl == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n pmsglvl is NULL\n") ;
   return(-10) ;
}
msglvl = *pmsglvl ;
if ( msglvl > 0 && msgFile == NULL ) {
   fprintf(stderr, "\n fatal error in Setup()"
           "\n msglvl = %d, msgFile = NULL\n", msglvl) ;
   return(-11) ;
}
bridge->msglvl  = msglvl  ;
bridge->msgFile = msgFile ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n inside Setup()"
           "\n neqns = %d, prbtype = %d, mxbsz = %d, seed = %d",
           neqns, prbtype, mxbsz, seed) ;
   if ( A != NULL ) {
      fprintf(msgFile, "\n\n matrix A") ;
      InpMtx_writeForHumanEye(A, msgFile) ;
   }
   if ( B != NULL ) {
      fprintf(msgFile, "\n\n matrix B") ;
      InpMtx_writeForHumanEye(B, msgFile) ;
   }
   fflush(msgFile) ;
}
bridge->prbtype = prbtype ;
bridge->neqns   = neqns   ;
bridge->mxbsz   = mxbsz   ;
bridge->A       = A       ;
bridge->B       = B       ;
bridge->seed    = seed    ;
/*
   ----------------------------
   create and initialize pencil
   ----------------------------
*/
sigma[0] = 1.0; sigma[1] = 0.0;
bridge->pencil = Pencil_new() ;
Pencil_setDefaultFields(bridge->pencil) ;
Pencil_init(bridge->pencil, SPOOLES_REAL, SPOOLES_SYMMETRIC,
            A, sigma, B) ;
/*
   --------------------------------
   convert to row or column vectors
   --------------------------------
*/
if ( A != NULL ) {
   if ( ! INPMTX_IS_BY_ROWS(A) && ! INPMTX_IS_BY_COLUMNS(A) ) {
      InpMtx_changeCoordType(A, INPMTX_BY_ROWS) ;
   }
   if ( ! INPMTX_IS_BY_VECTORS(A) ) {
      InpMtx_changeStorageMode(A, INPMTX_BY_VECTORS) ;
   }
}
if ( B != NULL ) {
   if ( ! INPMTX_IS_BY_ROWS(B) && ! INPMTX_IS_BY_COLUMNS(B) ) {
      InpMtx_changeCoordType(B, INPMTX_BY_ROWS) ;
   }
   if ( ! INPMTX_IS_BY_VECTORS(B) ) {
      InpMtx_changeStorageMode(B, INPMTX_BY_VECTORS) ;
   }
}
/*
   -------------------------------
   create a Graph object for A + B
   -------------------------------
*/
graph  = Graph_new() ;
adjIVL = Pencil_fullAdjacency(bridge->pencil) ;
nedges = IVL_tsize(adjIVL),
Graph_init2(graph, 0, bridge->neqns, 0, nedges,
            bridge->neqns, nedges, adjIVL, NULL, NULL) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n graph of the input matrix") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
/*
   ---------------
   order the graph
   ---------------
*/
maxdomainsize = neqns / 64 ;
if ( maxdomainsize == 0 ) {
   maxdomainsize = 1 ;
}
maxzeros  = (int) (0.01*neqns) ;
maxsize   = 64 ;
bridge->frontETree = orderViaBestOfNDandMS(graph, maxdomainsize, 
                     maxzeros, maxsize, bridge->seed, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(bridge->frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*
   ----------------------------------------------
   get the old-to-new and new-to-old permutations
   ----------------------------------------------
*/
bridge->oldToNewIV = ETree_oldToNewVtxPerm(bridge->frontETree) ;
bridge->newToOldIV = ETree_newToOldVtxPerm(bridge->frontETree) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n old-to-new permutation") ;
   IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation") ;
   IV_writeForHumanEye(bridge->newToOldIV, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------
   permute the vertices in the front tree
   --------------------------------------
*/
ETree_permuteVertices(bridge->frontETree, bridge->oldToNewIV) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n permuted front etree") ;
   ETree_writeForHumanEye(bridge->frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------------
   permute the entries in the pencil. 
   note, after the permutation the 
   entries are mapped into the upper triangle.
   -------------------------------------------
*/
Pencil_permute(bridge->pencil, bridge->oldToNewIV, bridge->oldToNewIV) ;
Pencil_mapToUpperTriangle(bridge->pencil) ;
Pencil_changeCoordType(bridge->pencil, INPMTX_BY_CHEVRONS) ;
Pencil_changeStorageMode(bridge->pencil, INPMTX_BY_VECTORS) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n permuted pencil") ;
   Pencil_writeForHumanEye(bridge->pencil, msgFile) ;
   fflush(msgFile) ;
}
/*
   ----------------------------------
   compute the symbolic factorization
   ----------------------------------
*/
bridge->symbfacIVL = SymbFac_initFromPencil(bridge->frontETree, 
                                            bridge->pencil) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(bridge->symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------------------
   create a FrontMtx object to hold the factorization
   --------------------------------------------------
*/
bridge->frontmtx = FrontMtx_new() ;
/*
   ------------------------------------------------------------
   create a SubMtxManager object to hold the factor submatrices
   ------------------------------------------------------------
*/
bridge->mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(bridge->mtxmanager, NO_LOCK, 0) ;
/*
   ------------------------------------------------------------
   allocate the working objects X and Y for the matrix multiply
   ------------------------------------------------------------
*/
bridge->X = DenseMtx_new() ;
DenseMtx_init(bridge->X, SPOOLES_REAL, 0, 0, neqns, mxbsz, 1, neqns) ;
bridge->Y = DenseMtx_new() ;
DenseMtx_init(bridge->Y, SPOOLES_REAL, 0, 0, neqns, mxbsz, 1, neqns) ;
/*
   ------------------------
   free the working storage
   ------------------------
*/
Graph_free(graph) ;

#if MYDEBUG > 0
MARKTIME(t2) ;
time_Setup += t2 - t1 ;
fprintf(stdout, ", %8.3f seconds, %8.3f total time", 
        t2 - t1, time_Setup) ;
fflush(stdout) ;
#endif

return(1) ; }
Exemplo n.º 15
0
/*
   -------------------------------------------------------------------
   purpose --

   given an InpMtx object that contains the structure of A, initialize
     the bridge data structure for the serial factor's and solve's.

   note: all parameters are pointers to be compatible with
         fortran's call by reference.

   return value --
      1 -- normal return
     -1 -- bridge is NULL
     -2 -- mtxA is NULL

   created -- 98sep17, cca
   -------------------------------------------------------------------
*/
int
BridgeMT_setup (
    BridgeMT   *bridge,
    InpMtx     *mtxA
) {
    double   t0, t1, t2 ;
    ETree    *frontETree ;
    FILE     *msgFile ;
    Graph    *graph ;
    int      compressed, msglvl, nedges, neqns, Neqns ;
    IV       *eqmapIV ;
    IVL      *adjIVL, *symbfacIVL ;

    MARKTIME(t0) ;
    /*
       --------------------
       check the input data
       --------------------
    */
    if ( bridge == NULL ) {
        fprintf(stderr, "\n fatal error in BridgeMT_setup()"
                "\n data is NULL\n") ;
        return(-1) ;
    }
    if ( mtxA == NULL ) {
        fprintf(stderr, "\n fatal error in BridgeMT_setup()"
                "\n A is NULL\n") ;
        return(-2) ;
    }
    msglvl  = bridge->msglvl  ;
    msgFile = bridge->msgFile ;
    neqns   = bridge->neqns   ;
    if ( ! (INPMTX_IS_BY_ROWS(mtxA) || INPMTX_IS_BY_COLUMNS(mtxA)) ) {
        /*
           ------------------------------
           change coordinate type to rows
           ------------------------------
        */
        InpMtx_changeCoordType(mtxA, INPMTX_BY_ROWS) ;
    }
    if ( ! INPMTX_IS_BY_VECTORS(mtxA) ) {
        /*
           ------------------------------
           change storage mode to vectors
           ------------------------------
        */
        InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
    }
    /*
       ---------------------------
       create a Graph object for A
       ---------------------------
    */
    MARKTIME(t1) ;
    graph  = Graph_new() ;
    adjIVL = InpMtx_fullAdjacency(mtxA);
    nedges = bridge->nedges = IVL_tsize(adjIVL),
    Graph_init2(graph, 0, neqns, 0, nedges,
                neqns, nedges, adjIVL, NULL, NULL) ;
    MARKTIME(t2) ;
    bridge->cpus[0] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to create Graph", t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n graph of the input matrix") ;
        Graph_writeForHumanEye(graph, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ------------------
       compress the graph
       ------------------
    */
    MARKTIME(t1) ;
    eqmapIV = Graph_equivMap(graph) ;
    Neqns = bridge->Neqns = 1 + IV_max(eqmapIV) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n graph's equivalence map") ;
        IV_writeForHumanEye(eqmapIV, msgFile) ;
        fflush(msgFile) ;
    }
    if ( Neqns < bridge->compressCutoff * neqns ) {
        Graph   *cgraph ;
        /*
           ------------------
           compress the graph
           ------------------
        */
        cgraph = Graph_compress2(graph, eqmapIV, 1) ;
        Graph_free(graph) ;
        graph = cgraph ;
        compressed = 1 ;
        bridge->Nedges = graph->nedges ;
    } else {
        compressed = 0 ;
    }
    MARKTIME(t2) ;
    bridge->cpus[1] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to create compressed graph",
                t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n graph to order") ;
        Graph_writeForHumanEye(graph, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ---------------
       order the graph
       ---------------
    */
    MARKTIME(t1) ;
    if ( bridge->maxdomainsize <= 0 ) {
        bridge->maxdomainsize = neqns/32 ;
    }
    if ( bridge->maxdomainsize <= 0 ) {
        bridge->maxdomainsize = 1 ;
    }
    if ( bridge->maxnzeros < 0 ) {
        bridge->maxnzeros = 0.01*neqns ;
    }
    if ( bridge->maxsize < 0 ) {
        bridge->maxsize = neqns ;
    }
    frontETree = orderViaBestOfNDandMS(graph, bridge->maxdomainsize,
                                       bridge->maxnzeros, bridge->maxsize,
                                       bridge->seed, msglvl, msgFile) ;
    MARKTIME(t2) ;
    bridge->cpus[2] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time to order graph", t2 - t1) ;
        fflush(msgFile) ;
    }
    if ( msglvl > 3 ) {
        fprintf(msgFile, "\n\n front tree from ordering") ;
        ETree_writeForHumanEye(frontETree, msgFile) ;
        fflush(msgFile) ;
    }
    MARKTIME(t1) ;
    if ( compressed == 1 ) {
        ETree   *etree ;
        IVL     *tempIVL ;
        /*
           ----------------------------------------------------------
           compute the symbolic factorization of the compressed graph
           ----------------------------------------------------------
        */
        tempIVL = SymbFac_initFromGraph(frontETree, graph) ;
        /*
           -------------------------------------------------------
           expand the symbolic factorization to the original graph
           -------------------------------------------------------
        */
        symbfacIVL = IVL_expand(tempIVL, eqmapIV) ;
        IVL_free(tempIVL) ;
        /*
           ---------------------
           expand the front tree
           ---------------------
        */
        etree = ETree_expand(frontETree, eqmapIV) ;
        ETree_free(frontETree) ;
        frontETree = etree ;
    } else {
        /*
           --------------------------------------------------------
           compute the symbolic factorization of the original graph
           --------------------------------------------------------
        */
        symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
    }
    MARKTIME(t2) ;
    bridge->frontETree = frontETree ;
    bridge->symbfacIVL = symbfacIVL ;
    /*
       ----------------------------------------------
       get the old-to-new and new-to-old permutations
       ----------------------------------------------
    */
    bridge->oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
    bridge->newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n old-to-new permutation") ;
        IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ;
        fprintf(msgFile, "\n\n new-to-old permutation") ;
        IV_writeForHumanEye(bridge->newToOldIV, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       ------------------------------------------------------
       overwrite the symbolic factorization with the permuted
       indices and sort the lists into ascending order
       ------------------------------------------------------
    */
    IVL_overwrite(symbfacIVL, bridge->oldToNewIV) ;
    IVL_sortUp(symbfacIVL) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n symbolic factorization") ;
        IVL_writeForHumanEye(symbfacIVL, msgFile) ;
        fflush(msgFile) ;
    }
    /*
       --------------------------------------
       permute the vertices in the front tree
       --------------------------------------
    */
    ETree_permuteVertices(frontETree, bridge->oldToNewIV) ;
    if ( msglvl > 2 ) {
        fprintf(msgFile, "\n\n permuted front etree") ;
        ETree_writeForHumanEye(frontETree, msgFile) ;
        fflush(msgFile) ;
    }
    MARKTIME(t2) ;
    bridge->cpus[3] += t2 - t1 ;
    if ( msglvl > 1 ) {
        fprintf(msgFile, "\n CPU %8.3f : time for symbolic factorization",
                t2 - t1) ;
        fflush(msgFile) ;
    }
    /*
       ------------------------
       free the working storage
       ------------------------
    */
    Graph_free(graph) ;
    IV_free(eqmapIV) ;

    MARKTIME(t2) ;
    bridge->cpus[4] += t2 - t0 ;

    return(1) ;
}
Exemplo n.º 16
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ----------------------------------------
   get statistics for a semi-implicit solve

   created -- 97dec11, cca
   ----------------------------------------
*/
{
char     *inGraphFileName, *inETreeFileName, *inMapFileName ;
double   nA21, nL, nL11, nL22, nPhi, nV, t1, t2 ;
ETree    *etree ;
int      ii, inside, J, K, msglvl, nfront, nJ, 
         nvtx, rc, sizeJ, v, vsize, w ;
int      *adjJ, *frontmap, *map, *nodwghts, 
         *vadj, *vtxToFront, *vwghts ;
IV       *mapIV ;
IVL      *symbfacIVL ;
Graph    *graph ;
FILE     *msgFile ;
Tree     *tree ;

if ( argc != 6 ) {
   fprintf(stdout, 
     "\n\n usage : %s msglvl msgFile GraphFile ETreeFile mapFile "
     "\n    msglvl    -- message level"
     "\n    msgFile   -- message file"
     "\n    GraphFile -- input graph file, must be *.graphf or *.graphb"
     "\n    ETreeFile -- input ETree file, must be *.etreef or *.etreeb"
     "\n    mapFile   -- input map IV file, must be *.ivf or *.ivb"
     "\n",
argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inGraphFileName = argv[3] ;
inETreeFileName = argv[4] ;
inMapFileName   = argv[5] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl        -- %d" 
        "\n msgFile       -- %s" 
        "\n GraphFile     -- %s" 
        "\n ETreeFile     -- %s" 
        "\n mapFile       -- %s" 
        "\n",
        argv[0], msglvl, argv[2], 
        inGraphFileName, inETreeFileName, inMapFileName) ;
fflush(msgFile) ;
/*
   ------------------------
   read in the Graph object
   ------------------------
*/
graph = Graph_new() ;
if ( strcmp(inGraphFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = Graph_readFromFile(graph, inGraphFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in graph from file %s",
        t2 - t1, inGraphFileName) ;
nvtx   = graph->nvtx ;
vwghts = graph->vwghts ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from Graph_readFromFile(%p,%s)",
           rc, graph, inGraphFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading Graph object from file %s",
           inGraphFileName) ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
/*
   ------------------------
   read in the ETree object
   ------------------------
*/
etree = ETree_new() ;
if ( strcmp(inETreeFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = ETree_readFromFile(etree, inETreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in etree from file %s",
        t2 - t1, inETreeFileName) ;
nfront     = ETree_nfront(etree) ;
tree       = ETree_tree(etree) ;
vtxToFront = ETree_vtxToFront(etree) ;
nodwghts   = ETree_nodwghts(etree) ;
nL         = ETree_nFactorEntries(etree, 2) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
           rc, etree, inETreeFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading ETree object from file %s",
           inETreeFileName) ;
   ETree_writeForHumanEye(etree, msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------
   read in the map IV object
   -------------------------
*/
mapIV = IV_new() ;
if ( strcmp(inMapFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
rc = IV_readFromFile(mapIV, inMapFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in mapIV from file %s",
        t2 - t1, inMapFileName) ;
map = IV_entries(mapIV) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from IV_readFromFile(%p,%s)",
           rc, mapIV, inMapFileName) ;
   exit(-1) ;
}
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n after reading IV object from file %s",
           inMapFileName) ;
   IV_writeForHumanEye(mapIV, msgFile) ;
   fflush(msgFile) ;
}
nV = nPhi = 0 ;
if ( vwghts == NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      nV++ ;
      if ( map[v] == 0 ) {
         nPhi++ ;
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      nV += vwghts[v] ;
      if ( map[v] == 0 ) {
         nPhi += vwghts[v] ;
      }
   }
}
fprintf(msgFile, "\n nPhi = %.0f, nV = %.0f", nPhi, nV) ;
/*
   -------------------------
   get the frontmap[] vector
   -------------------------
*/
frontmap = IVinit(nfront, -1) ;
for ( v = 0 ; v < nvtx ; v++ ) {
   J = vtxToFront[v] ;
   if ( frontmap[J] == -1 ) {
      frontmap[J] = map[v] ;
   } else if ( frontmap[J] != map[v] ) {
      fprintf(msgFile, "\n\n error, frontmap[%d] = %d, map[%d] = %d",
              J, frontmap[J], v, map[v]) ;
   }
}
/*
   ----------------------------------
   compute the symbolic factorization
   ----------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(etree, graph) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------------
   compute the number of entries in L11 and L22
   --------------------------------------------
*/
nL11 = nL22 = 0 ;
for ( J = Tree_postOTfirst(tree) ;
      J != -1 ;
      J = Tree_postOTnext(tree, J) ) {
   nJ = nodwghts[J] ;
   if ( msglvl > 3 ) {
      fprintf(msgFile, "\n\n front %d, nJ = %d", J, nJ) ;
   }
   IVL_listAndSize(symbfacIVL, J, &sizeJ, &adjJ) ;
   for ( ii = 0, inside = 0 ; ii < sizeJ ; ii++ ) {
      w = adjJ[ii] ;
      K = vtxToFront[w] ;
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    w = %d, K = %d", w, K) ;
      }
      if ( K > J && frontmap[K] == frontmap[J] ) {
         inside += (vwghts == NULL) ? 1 : vwghts[w] ;
         if ( msglvl > 3 ) {
            fprintf(msgFile, ", inside") ;
         }
      }
   }
   if ( frontmap[J] != 0 ) {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L11",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL11 += nJ*nJ + 2*nJ*inside ;
   } else {
      if ( msglvl > 3 ) {
         fprintf(msgFile, "\n    inside = %d, adding %d to L22",
                 inside, nJ*nJ + 2*nJ*inside) ;
      }
      nL22 += nJ*nJ + 2*nJ*inside ;
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f", 
           nL, nL11, nL22) ;
}
/*
   ------------------------------------
   compute the number of entries in A21
   ------------------------------------
*/
nA21 = 0 ;
if ( vwghts != NULL ) {
   for ( v = 0 ; v < nvtx ; v++ ) {
      if ( map[v] == 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            if ( map[v] != map[w] ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21 += vwghts[v] * vwghts[w] ;
            }
         }
      }
   }
} else {
   for ( v = 0 ; v < nvtx ; v++ ) {
      if ( map[v] == 0 ) {
         Graph_adjAndSize(graph, v, &vsize, &vadj) ;
         for ( ii = 0 ; ii < vsize ; ii++ ) {
            w = vadj[ii] ;
            if ( map[v] != map[w] ) {
               if ( msglvl > 3 ) {
                  fprintf(msgFile, "\n A21 : v = %d, w = %d", v, w) ;
               }
               nA21++ ;
            }
         }
      }
   }
}
if ( msglvl > 0 ) {
   fprintf(msgFile, 
           "\n |L| = %.0f, |L11| = %.0f, |L22| = %.0f, |A21| = %.0f", 
           nL, nL11, nL22, nA21) ;
   fprintf(msgFile, 
      "\n storage: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f"
      "\n opcount: explicit = %.0f, semi-implicit = %.0f, ratio = %.3f",
      nL, nL11 + nA21 + nL22, 
      nL/(nL11 + nA21 + nL22),
      2*nL, 4*nL11 + 2*nA21 + 2*nL22,
      2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ;
   fprintf(msgFile, "\n ratios %8.3f %8.3f %8.3f",
           nPhi/nV,
           nL/(nL11 + nA21 + nL22),
           2*nL/(4*nL11 + 2*nA21 + 2*nL22)) ;
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
Graph_free(graph) ;
ETree_free(etree) ;
IV_free(mapIV) ;
IVL_free(symbfacIVL) ;
IVfree(frontmap) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }