Exemplo n.º 1
0
END_TEST


/**
 * setMathFromFormula() is no longer necessary.  LibSBML now keeps formula
 * strings and math ASTs synchronized automatically.  This (now modified)
 * test is kept around to demonstrate the behavioral change.
 */
START_TEST (test_KineticLaw_setMathFromFormula)
{
  const char *initial_formula = "k3 / k2";
  char* formula;


  fail_unless( !KineticLaw_isSetMath   (kl) );
  fail_unless( !KineticLaw_isSetFormula(kl) );


  KineticLaw_setFormula(kl, initial_formula);
  fail_unless( KineticLaw_isSetMath   (kl) );
  fail_unless( KineticLaw_isSetFormula(kl) );

  formula = SBML_formulaToString( KineticLaw_getMath(kl) );

  fail_unless( !strcmp(formula, initial_formula) );

  safe_free(formula);
}
END_TEST


START_TEST (test_KineticLaw_setMath1)
{
  ASTNode_t *math = ASTNode_createWithType(AST_TIMES);
  ASTNode_t *a = ASTNode_create();
  ASTNode_t *b = ASTNode_create();
  ASTNode_setName(a, "a");
  ASTNode_setName(b, "b");
  ASTNode_addChild(math, a);
  ASTNode_addChild(math, b);
  char *formula;
  const ASTNode_t *math1;

  int i = KineticLaw_setMath(kl, math);

  fail_unless( i == LIBSBML_OPERATION_SUCCESS);
  fail_unless( KineticLaw_isSetMath(kl)   );

  math1 = KineticLaw_getMath(kl);
  fail_unless( math1 != NULL );

  formula = SBML_formulaToString(math1);
  fail_unless( formula != NULL );
  fail_unless( !strcmp(formula, "a * b") );

  ASTNode_free(math);
}
void prepare_reversible_fast_reaction(Model_t *m, myReaction *re[], mySpecies *sp[], myParameter *param[], myCompartment *comp[], double sim_time, double dt, double *time, myInitialAssignment *initAssign[], char *time_variant_target_id[], unsigned int num_of_time_variant_targets, timeVariantAssignments *timeVarAssign, allocated_memory *mem, copied_AST *cp_AST){
  unsigned int i;
  unsigned int num_of_reactions = Model_getNumReactions(m);
  ASTNode_t *node, *cp_node1, *cp_node2;
  myASTNode *myNode = NULL;
  myASTNode *copied_myAST[MAX_COPIED_AST];
  unsigned int num_of_copied_myAST = 0;
  for(i=0; i<num_of_reactions; i++){
    if(re[i]->is_fast && re[i]->is_reversible){
      node = (ASTNode_t*)KineticLaw_getMath(Reaction_getKineticLaw(re[i]->origin));
      node = ASTNode_deepCopy(node);
      TRACE(("original math of %s: ", Reaction_getId(re[i]->origin)));
      check_AST(node, NULL);
      /* alter_tree_structure(m, &node, cp_AST); */
      alter_tree_structure(m, &node, NULL, 0, cp_AST);
      set_local_para_as_value(node, Reaction_getKineticLaw(re[i]->origin));
      TRACE(("alterated math of %s : ", Reaction_getId(re[i]->origin)));
      check_AST(node, NULL);
      cp_node1 = ASTNode_deepCopy(node);
      cp_node2 = ASTNode_deepCopy(node);
      /* get products numerator */
      myNode = (myASTNode*)malloc(sizeof(myASTNode));
      copied_myAST[num_of_copied_myAST++] = myNode;
      myNode->origin = cp_node1;
      myNode->parent = NULL;
      myNode->left = NULL;
      myNode->right = NULL;
      myASTNode_create(myNode, cp_node1, copied_myAST, &num_of_copied_myAST);
      re[i]->products_equili_numerator = (equation*)malloc(sizeof(equation));
      TRACE(("target_id is %s\n", Species_getId(re[i]->reactants[0]->mySp->origin)));
      check_AST(cp_node1, NULL);
      _prepare_reversible_fast_reaction(m, myNode, re[i], sp, param, comp, re, sim_time, dt, time, initAssign, time_variant_target_id, num_of_time_variant_targets, timeVarAssign, (char*)Species_getId(re[i]->reactants[0]->mySp->origin), 0, mem);
      /* get reactants numerator */
      myNode = (myASTNode*)malloc(sizeof(myASTNode));
      copied_myAST[num_of_copied_myAST++] = myNode;
      myNode->origin = cp_node2;
      myNode->parent = NULL;
      myNode->left = NULL;
      myNode->right = NULL;
      re[i]->reactants_equili_numerator = (equation*)malloc(sizeof(equation));
      myASTNode_create(myNode, cp_node2, copied_myAST, &num_of_copied_myAST);
      TRACE(("target_id is %s\n", Species_getId(re[i]->products[0]->mySp->origin)));
      check_AST(cp_node2, NULL);
      _prepare_reversible_fast_reaction(m, myNode, re[i], sp, param, comp, re, sim_time, dt, time, initAssign, time_variant_target_id, num_of_time_variant_targets, timeVarAssign, (char*)Species_getId(re[i]->products[0]->mySp->origin), 1, mem);
      myASTNode_free(copied_myAST, num_of_copied_myAST);
    }
  }
}
int
main (int argc, char *argv[]){
  int i, j;
  char *model;
  double time;
  double printstep;
  /* libSBML types */
  SBMLDocument_t *d;
  SBMLReader_t *sr;
  Model_t *m;
  Reaction_t *r;
  KineticLaw_t *kl;
  ASTNode_t *nary;
  ASTNode_t *diff;
  /* SOSlib types */
  SBMLResults_t *results;
  timeCourse_t *tc;
  cvodeSettings_t *set;

  /* parsing command-line arguments */
  if (argc < 4 ) {
    fprintf(stderr,
	    "usage %s sbml-model-file simulation-time time-steps\n",
            argv[0]);
    exit(EXIT_FAILURE);
  }
  model = argv[1];
  time = atof(argv[2]);
  printstep = atoi(argv[3]); 

  /* parsing the SBML model with libSBML */
  sr = SBMLReader_create();
  d = SBMLReader_readSBML(sr, model);
  SBMLReader_free(sr);

  m = SBMLDocument_getModel(d);

  r = Model_getReaction(m,0);
  kl = Reaction_getKineticLaw(r);
  nary = KineticLaw_getMath(kl);
  printf("N-ary formula: %s\n", SBML_formulaToString(nary));
  diff = differentiateAST(nary, "Product");
  printf("N-ary diff: %s\n", SBML_formulaToString(diff));
  ASTNode_free(diff);

  return (EXIT_SUCCESS);  
}
Exemplo n.º 5
0
void
printReactionMath (unsigned int n, Reaction_t *r)
{
  char         *formula;
  KineticLaw_t *kl;


  if (Reaction_isSetKineticLaw(r))
  {
    kl = Reaction_getKineticLaw(r);

    if ( KineticLaw_isSetMath(kl) )
    {
      formula = SBML_formulaToString( KineticLaw_getMath(kl) );
      printf("Reaction %d, formula: %s\n", n, formula);
      free(formula);
    }
  }
}
Exemplo n.º 6
0
void
printReactionMath (unsigned int n, Reaction_t *r)
{
  char         *formula;
  KineticLaw_t *kl;


  if (Reaction_isSetKineticLaw(r))
  {
    kl = Reaction_getKineticLaw(r);

    if ( KineticLaw_isSetMath(kl) )
    {
      formula = SBML_formulaToDot( KineticLaw_getMath(kl) );
      fprintf(fout, "subgraph cluster%u {\n", noClusters);
      fprintf(fout, "label=\"Reaction: %s\";\n%s\n", Reaction_getId(r), formula);
      free(formula);
      noClusters++;
    }
  }
}
Exemplo n.º 7
0
END_TEST


START_TEST (test_KineticLaw_setMath)
{
  ASTNode_t *math = SBML_parseFormula("k3 / k2");
  char *formula;
  const ASTNode_t *math1;


  KineticLaw_setMath(kl, math);

  math1 = KineticLaw_getMath(kl);
  fail_unless( math1 != NULL );

  formula = SBML_formulaToString(math1);
  fail_unless( formula != NULL );
  fail_unless( !strcmp(formula, "k3 / k2") );
  fail_unless( KineticLaw_getMath(kl) != math );
  fail_unless( KineticLaw_isSetMath(kl) );
  safe_free(formula);

  /* Reflexive case (pathological) */
  KineticLaw_setMath(kl, (ASTNode_t *) KineticLaw_getMath(kl));
  math1 = KineticLaw_getMath(kl);
  fail_unless( math1 != NULL );

  formula = SBML_formulaToString(math1);
  fail_unless( formula != NULL );
  fail_unless( !strcmp(formula, "k3 / k2") );
  fail_unless( KineticLaw_getMath(kl) != math );
  safe_free(formula);

  KineticLaw_setMath(kl, NULL);
  fail_unless( !KineticLaw_isSetMath(kl) );

  if (KineticLaw_getMath(kl) != NULL)
  {
    fail( "KineticLaw_setMath(kl, NULL) did not clear ASTNode." );
  }

  ASTNode_free(math);
}
Exemplo n.º 8
0
static int printXMGReactionTimeCourse ( cvodeData_t *data )
{

  int i, j, k, n;
  double maxY, minY, result;
  
  Model_t *m;
  Reaction_t *r;
  KineticLaw_t *kl;
  ASTNode_t **kls;
  
  odeModel_t *om = data->model;
  cvodeResults_t *results = data->results;

  maxY = 0.0;
  minY = 0.0;

  fprintf(stderr,
	  "Printing time development of reaction fluxes to XMGrace!\n");


  if ( om->m == NULL ) {
    fprintf(stderr, "Error: No reaction model availabe\n");
    return 1;
  }
  else m = om->m;

  if ( openXMGrace(data) > 0 ) {
    fprintf(stderr,  "Error: Couldn't open XMGrace\n");
    return 1;
  }
  
  GracePrintf("yaxis label \"%s\"", "flux [substance/time]");
  if ( Model_isSetName(m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getName(m),
		"reaction flux time courses");
  else if  ( Model_isSetId(m) )
    GracePrintf("subtitle \"%s, %s\"", Model_getId(m),
		"reaction flux time courses");
  else 
    GracePrintf("subtitle \"model has no name, %s/id\"",
		"reaction flux time courses");


  /* print legend */  
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    if ( Reaction_isSetName(r) )
      GracePrintf("g0.s%d legend  \"%s: %s \"\n", i+1,
		  Reaction_getId(r), Reaction_getName(r));
    else
      GracePrintf("g0.s%d legend  \"%s \"\n", i+1, Reaction_getId(r));      
  }  
  GracePrintf("legend 1.155, 0.85");
  GracePrintf("legend font 8");
  GracePrintf("legend char size 0.6");

  if(!(kls = (ASTNode_t **)calloc(Model_getNumReactions(m),
				  sizeof(ASTNode_t *)))) 
    fprintf(stderr, "failed!\n");
  
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    kl = Reaction_getKineticLaw(r);
    kls[i] = copyAST(KineticLaw_getMath(kl));
    AST_replaceNameByParameters(kls[i], KineticLaw_getListOfParameters(kl));
    AST_replaceConstants(m, kls[i]);
  }
  
  /* evaluate flux for each time point and print to XMGrace */
  
  for ( i=0; i<=results->nout; i++ ) {  
    n = 1;
    /* set time and variable values to values at time[k] */
    data->currenttime = results->time[i];
    for ( j=0; j<data->model->neq; j++ )
      data->value[j] = results->value[j][i];

    /* evaluate kinetic law expressions */
    for ( j=0; j<Model_getNumReactions(m); j++ ) {
      result = evaluateAST(kls[j], data);
      if ( result > maxY ) {
	maxY = result;
	GracePrintf("world ymax %g", 1.25*maxY);
      }
      if ( result < minY ) {
	minY = result;
	GracePrintf("world ymin %g", 1.25*minY);
      }
      GracePrintf("g0.s%d point %g, %g",
		  n, results->time[i], result);
      n++;
    }
  }

  GracePrintf("yaxis tick major %g", 1.25*(fabs(maxY)+fabs(minY))/10);
  GracePrintf("redraw");
  closeXMGrace(data, "flux");

  /* free temporary ASTNodes */
  for ( i=0; i<Model_getNumReactions(m); i++ ) 
    ASTNode_free(kls[i]);
  free(kls);

  return 0;
  
}
Exemplo n.º 9
0
void printReactionTimeCourse(cvodeData_t *data, Model_t *m, FILE *f)
{
  int i, j;
  cvodeResults_t *results;
  Reaction_t *r;
  KineticLaw_t *kl;
  ASTNode_t **kls;

  if ( data == NULL || data->results == NULL ) {
    Warn(stderr, "No results, please integrate first.\n");
    return;
  }

#if USE_GRACE
  if ( Opt.Xmgrace == 1 ) {
    printXMGReactionTimeCourse(data);
    return;
  }
#endif  
  
  results = data->results;
  if ( Opt.PrintMessage )
    fprintf(stderr,
	    "\nPrinting time course of the reactions (kinetic laws).\n\n");

  if(!(kls =
       (ASTNode_t **)calloc(Model_getNumReactions(m),
			    sizeof(ASTNode_t *)))) {
    fprintf(stderr, "failed!\n");
  }

  fprintf(f, "#t ");
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    kl = Reaction_getKineticLaw(r);
    kls[i] = copyAST(KineticLaw_getMath(kl));
    AST_replaceNameByParameters(kls[i], KineticLaw_getListOfParameters(kl));
    AST_replaceConstants(m, kls[i]);
    fprintf(f, "%s ", Reaction_getId(r));
  }
  fprintf(f, "\n");
  fprintf(f, "##REACTION RATES\n"); 
  for ( i=0; i<=results->nout; ++i ) {
    fprintf(f, "%g ", results->time[i]);
    data->currenttime = results->time[i];
    for ( j=0; j<data->model->neq; j++ ) {
      data->value[j] = results->value[j][i];
    }
    for ( j=0; j<Model_getNumReactions(m); j++ ) {      
      
      fprintf(f, "%g ", evaluateAST(kls[j], data));
    }
    fprintf(f, "\n");
  }
  fprintf(f, "##REACTION RATES\n"); 
  fprintf(f, "#t ");
  for ( i=0; i<Model_getNumReactions(m); i++ ) {
    r = Model_getReaction(m, i);
    fprintf(f, "%s ", Reaction_getId(r));
    ASTNode_free(kls[i]);
  }
  free(kls);
  fprintf(f, "\n");
  fflush(f);
  
#if !USE_GRACE
  if ( Opt.Xmgrace == 1 ) {
    fprintf(stderr,
	    "odeSolver has been compiled without XMGRACE functionality.\n");
    fprintf(stderr,
	    "The requested data have been printed to stdout instead.\n");
  }
#endif
  
}
Exemplo n.º 10
0
void printReactions(Model_t *m, FILE *f)
{
  
  int i,j,k;
  Reaction_t *r;
  SpeciesReference_t *sref;
  KineticLaw_t *kl;
  Rule_t *rl;
  AssignmentRule_t *asr;
  AlgebraicRule_t *alr;
  RateRule_t *rr;
  Event_t *e;
  EventAssignment_t *ea;
  Parameter_t *p;
  FunctionDefinition_t *fd;
  SBMLTypeCode_t type;
  const ASTNode_t *math;

  math = NULL;
  
  fprintf(f, "\n");
  for(i=0;i<Model_getNumParameters(m);i++){
    if(i==0)
      fprintf(f, "# Global parameters:\n");
    p = Model_getParameter(m,i);
    if(Parameter_isSetId(p))
      fprintf(f, "%s ",  Parameter_getId(p));
    if(Parameter_isSetName(p))
      fprintf(f, "(%s) ", Parameter_getName(p));
    if(Parameter_isSetValue(p))
      fprintf(f, "= %g; ", Parameter_getValue(p));
    if(Parameter_isSetUnits(p))
      fprintf(f, "[%s]; ", Parameter_getUnits(p));
    if(!Parameter_getConstant(p))
      fprintf(f, "(variable);");
    fprintf(f, "\n");
    
    if ( i==Model_getNumParameters(m)-1 )
      fprintf(f, "\n");
  }

  fprintf(f, "# Reactions:\n");
  for ( i=0; i<Model_getNumReactions(m); i++ ) {    
    r = Model_getReaction(m,i);
  
    fprintf(f, "%s: %s",
	   Reaction_isSetName(r) ? Reaction_getName(r) : Reaction_getId(r),
	   Reaction_getFast(r) ? "(fast)" : "");
    for ( k=0; k<Reaction_getNumReactants(r); k++ ) {
      sref = Reaction_getReactant(r,k);

      if ( SpeciesReference_isSetStoichiometryMath(sref) )	
	fprintf(f, "%s ",
		SBML_formulaToString(\
		SpeciesReference_getStoichiometryMath(sref)));
      else 
	if ( SpeciesReference_getStoichiometry(sref) != 1. )
	  fprintf(f, "%g ",  SpeciesReference_getStoichiometry(sref));
	
      fprintf(f, "%s", SpeciesReference_getSpecies(sref));
      if(k+1<Reaction_getNumReactants(r))
	fprintf(f, "%s", " + ");
    }
    
    fprintf(f, "%s", Reaction_getReversible(r) ? " <-> " : " -> ");
    for ( k=0; k<Reaction_getNumProducts(r); k++ ) {
      sref = Reaction_getProduct(r,k);
      if ( SpeciesReference_isSetStoichiometryMath(sref) )
	fprintf(f, "%s ",
	       SBML_formulaToString(\
		   SpeciesReference_getStoichiometryMath(sref)));
      else
	if ( SpeciesReference_getStoichiometry(sref) != 1. )
	  fprintf(f, "%g ", SpeciesReference_getStoichiometry(sref));
      
      fprintf(f, "%s", SpeciesReference_getSpecies(sref));
      if(k+1<Reaction_getNumProducts(r))
	fprintf(f, "%s", " + ");
    }
    fprintf(f, ";  ");
    if(Reaction_isSetKineticLaw(r)){
      kl = Reaction_getKineticLaw(r);
      math = KineticLaw_getMath(kl);
      fprintf(f, "%s;", SBML_formulaToString(math));
      for(k=0;k<KineticLaw_getNumParameters(kl);k++){
	
	p = KineticLaw_getParameter(kl,k);
	fprintf(f, " %s",  Parameter_getId(p));
	if(Parameter_isSetName(p))
	  fprintf(f, " (%s)", Parameter_getName(p));
	if(Parameter_isSetValue(p))
	  fprintf(f, " = %g", Parameter_getValue(p));
	if(Parameter_isSetUnits(p))
	  fprintf(f, " [%s]", Parameter_getUnits(p));
	if ( !Parameter_getConstant(p) )
	  fprintf(f, " (variable)");
	fprintf(f, ";");
      }
     /*  fprintf(f, "\n"); */
    }else
      fprintf(f, "#   no rate law is set for this reaction.");
    fprintf(f, "\n");
  }
    
  for(i=0;i<Model_getNumRules(m);i++){
    rl = Model_getRule(m,i);
    if ( i == 0 ) {
      fprintf(f, "# Rules:\n");
    }
    type = SBase_getTypeCode((SBase_t *)rl);
     
     
    if ( type == SBML_RATE_RULE ) {
      rr =  (RateRule_t *) rl;
      fprintf(f, " rateRule:       d%s/dt = ", RateRule_getVariable(rr));
    }
    if ( type == SBML_ALGEBRAIC_RULE ) {
      alr = (AlgebraicRule_t *) rl;
      fprintf(f, " algebraicRule:       0 = ");
    }
    if ( type == SBML_ASSIGNMENT_RULE ) {
      asr = (AssignmentRule_t *) rl;
      fprintf(f, " assignmentRule (%s): %s = ",
	     RuleType_toString(AssignmentRule_getType(asr)),
	     AssignmentRule_getVariable(asr));
    }
    if(!Rule_isSetMath(rl)){
      if(Rule_isSetFormula(rl)){
	Rule_setMathFromFormula(rl);
	
      }
    }
    if(Rule_isSetMath(rl))
      fprintf(f, "%s\n", SBML_formulaToString(Rule_getMath(rl)));
	     
  }
  fprintf(f, "\n");

  for(i=0;i<Model_getNumEvents(m);i++){
    if(i==0)
      fprintf(f, "# Events:\n");
    e = Model_getEvent(m,i);
    if(Event_isSetId(e))
      fprintf(f, "%s: ", Event_getId(e));
    if(Event_isSetName(e))
      fprintf(f, "(%s) ", Event_getName(e));   
    if(Event_isSetTrigger(e)) {
      math = Event_getTrigger(e);
      fprintf(f, "trigger: %s\n", SBML_formulaToString(math));
    }
    if(Event_isSetDelay(e))
      fprintf(f, "delay: %s;\n", SBML_formulaToString(Event_getDelay(e)));
    if(Event_isSetTimeUnits(e))
      fprintf(f, "time Units: %s;\n", Event_getTimeUnits(e));
    for(k=0;k<Event_getNumEventAssignments(e);k++){      
      ea = Event_getEventAssignment(e,k);
      if(EventAssignment_isSetVariable(ea))
	fprintf(f, "  event:  %s = %s;\n",
	       EventAssignment_getVariable(ea),
	       EventAssignment_isSetMath(ea) ?
	       SBML_formulaToString(EventAssignment_getMath(ea)) :
	       "# no math set;\n");
    }

    if(i==Model_getNumEvents(m)-1)
       fprintf(f, "\n"); 
  }  


  for ( i=0; i<Model_getNumFunctionDefinitions(m); i++ ) {

    if ( i==0 ) fprintf(f, "# Functions:\n");

    fd = Model_getFunctionDefinition(m,i);
    if ( FunctionDefinition_isSetName(fd) )
      fprintf(f, "%s: ", FunctionDefinition_getName(fd));
    if(FunctionDefinition_isSetId(fd) && FunctionDefinition_isSetMath(fd)){
      fprintf(f, "%s( ", FunctionDefinition_getId(fd));
      math = FunctionDefinition_getMath(fd);
	for(j=0;j<ASTNode_getNumChildren(math)-1;j++){
	  fprintf(f, "%s", SBML_formulaToString(ASTNode_getChild(math, j)));
	  if(j<ASTNode_getNumChildren(math)-2)
	    fprintf(f, ", ");
	  if(j==ASTNode_getNumChildren(math)-2)
	    fprintf(f, ") = ");
	}
      fprintf(f, "%s;", SBML_formulaToString(ASTNode_getRightChild(math)));
    }
    fprintf(f, "\n");
  } 
  
}