Exemplo n.º 1
0
lapack_int LAPACKE_zhbgst( int matrix_layout, char vect, char uplo, lapack_int n,
                           lapack_int ka, lapack_int kb,
                           lapack_complex_double* ab, lapack_int ldab,
                           const lapack_complex_double* bb, lapack_int ldbb,
                           lapack_complex_double* x, lapack_int ldx )
{
    lapack_int info = 0;
    double* rwork = NULL;
    lapack_complex_double* work = NULL;
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zhbgst", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    /* Optionally check input matrices for NaNs */
    if( LAPACKE_zhb_nancheck( matrix_layout, uplo, n, ka, ab, ldab ) ) {
        return -7;
    }
    if( LAPACKE_zhb_nancheck( matrix_layout, uplo, n, kb, bb, ldbb ) ) {
        return -9;
    }
#endif
    /* Allocate memory for working array(s) */
    rwork = (double*)LAPACKE_malloc( sizeof(double) * MAX(1,n) );
    if( rwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_0;
    }
    work = (lapack_complex_double*)
           LAPACKE_malloc( sizeof(lapack_complex_double) * MAX(1,n) );
    if( work == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_1;
    }
    /* Call middle-level interface */
    info = LAPACKE_zhbgst_work( matrix_layout, vect, uplo, n, ka, kb, ab, ldab,
                                bb, ldbb, x, ldx, work, rwork );
    /* Release memory and exit */
    LAPACKE_free( work );
exit_level_1:
    LAPACKE_free( rwork );
exit_level_0:
    if( info == LAPACK_WORK_MEMORY_ERROR ) {
        LAPACKE_xerbla( "LAPACKE_zhbgst", info );
    }
    return info;
}
lapack_int LAPACKE_zhbtrd( int matrix_layout, char vect, char uplo, lapack_int n,
                           lapack_int kd, lapack_complex_double* ab,
                           lapack_int ldab, double* d, double* e,
                           lapack_complex_double* q, lapack_int ldq )
{
    lapack_int info = 0;
    lapack_complex_double* work = NULL;
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zhbtrd", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    /* Optionally check input matrices for NaNs */
    if( LAPACKE_zhb_nancheck( matrix_layout, uplo, n, kd, ab, ldab ) ) {
        return -6;
    }
    if( LAPACKE_lsame( vect, 'u' ) || LAPACKE_lsame( vect, 'v' ) ) {
        if( LAPACKE_zge_nancheck( matrix_layout, n, n, q, ldq ) ) {
            return -10;
        }
    }
#endif
    /* Allocate memory for working array(s) */
    work = (lapack_complex_double*)
        LAPACKE_malloc( sizeof(lapack_complex_double) * MAX(1,n) );
    if( work == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_0;
    }
    /* Call middle-level interface */
    info = LAPACKE_zhbtrd_work( matrix_layout, vect, uplo, n, kd, ab, ldab, d, e,
                                q, ldq, work );
    /* Release memory and exit */
    LAPACKE_free( work );
exit_level_0:
    if( info == LAPACK_WORK_MEMORY_ERROR ) {
        LAPACKE_xerbla( "LAPACKE_zhbtrd", info );
    }
    return info;
}
Exemplo n.º 3
0
lapack_int LAPACKE_zlascl( int matrix_layout, char type, lapack_int kl,
                           lapack_int ku, double cfrom, double cto,
                           lapack_int m, lapack_int n, lapack_complex_double* a,
                           lapack_int lda )
{
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zlascl", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    if( LAPACKE_get_nancheck() ) {
        /* Optionally check input matrices for NaNs */
        switch (type) {
        case 'G':
            if( LAPACKE_zge_nancheck( matrix_layout, m, n, a, lda ) ) {
                return -9;
            }
            break;
        case 'L':
            // TYPE = 'L' - lower triangle of general matrix
            if( matrix_layout == LAPACK_COL_MAJOR &&
                LAPACKE_zgb_nancheck( matrix_layout, m, n, m-1, 0, a, lda+1 ) ) {
                return -9;
            }
            if( matrix_layout == LAPACK_ROW_MAJOR &&
                LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, 0, m-1, a-m+1, lda+1 ) ) {
                return -9;
            }
            break;
        case 'U':
            // TYPE = 'U' - upper triangle of general matrix
            if( matrix_layout == LAPACK_COL_MAJOR &&
                LAPACKE_zgb_nancheck( matrix_layout, m, n, 0, n-1, a-n+1, lda+1 ) ) {
                return -9;
            }
            if( matrix_layout == LAPACK_ROW_MAJOR &&
                LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, n-1, 0, a, lda+1 ) ) {
                return -9;
            }
            break;
        case 'H':
            // TYPE = 'H' - part of upper Hessenberg matrix in general matrix
            if( matrix_layout == LAPACK_COL_MAJOR &&
                LAPACKE_zgb_nancheck( matrix_layout, m, n, 1, n-1, a-n+1, lda+1 ) ) {
                return -9;
            }
            if( matrix_layout == LAPACK_ROW_MAJOR &&
                LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, n-1, 1, a-1, lda+1 ) ) {
                return -9;
            }
        case 'B':
            // TYPE = 'B' - lower part of symmetric band matrix (assume m==n)
            if( LAPACKE_zhb_nancheck( matrix_layout, 'L', n, kl, a, lda ) ) {
                return -9;
            }
            break;
        case 'Q':
            // TYPE = 'Q' - upper part of symmetric band matrix (assume m==n)
            if( LAPACKE_zhb_nancheck( matrix_layout, 'U', n, ku, a, lda ) ) {
                return -9;
            }
            break;
        case 'Z':
            // TYPE = 'Z' -  band matrix laid out for ?GBTRF
            if( matrix_layout == LAPACK_COL_MAJOR &&
                LAPACKE_zgb_nancheck( matrix_layout, m, n, kl, ku, a+kl, lda ) ) {
                return -9;
            }
            if( matrix_layout == LAPACK_ROW_MAJOR &&
                LAPACKE_zgb_nancheck( matrix_layout, m, n, kl, ku, a+lda*kl, lda ) ) {
                return -9;
            }
            break;
        }
    }
#endif
    return LAPACKE_zlascl_work( matrix_layout, type, kl, ku, cfrom, cto, m,  n, a, lda );
}
Exemplo n.º 4
0
lapack_int LAPACKE_zhbgvx( int matrix_order, char jobz, char range, char uplo,
                           lapack_int n, lapack_int ka, lapack_int kb,
                           lapack_complex_double* ab, lapack_int ldab,
                           lapack_complex_double* bb, lapack_int ldbb,
                           lapack_complex_double* q, lapack_int ldq, double vl,
                           double vu, lapack_int il, lapack_int iu,
                           double abstol, lapack_int* m, double* w,
                           lapack_complex_double* z, lapack_int ldz,
                           lapack_int* ifail )
{
    lapack_int info = 0;
    lapack_int* iwork = NULL;
    double* rwork = NULL;
    lapack_complex_double* work = NULL;
    if( matrix_order != LAPACK_COL_MAJOR && matrix_order != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zhbgvx", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    /* Optionally check input matrices for NaNs */
    if( LAPACKE_zhb_nancheck( matrix_order, uplo, n, ka, ab, ldab ) ) {
        return -8;
    }
    if( LAPACKE_d_nancheck( 1, &abstol, 1 ) ) {
        return -18;
    }
    if( LAPACKE_zhb_nancheck( matrix_order, uplo, n, kb, bb, ldbb ) ) {
        return -10;
    }
    if( LAPACKE_lsame( range, 'v' ) ) {
        if( LAPACKE_d_nancheck( 1, &vl, 1 ) ) {
            return -14;
        }
    }
    if( LAPACKE_lsame( range, 'v' ) ) {
        if( LAPACKE_d_nancheck( 1, &vu, 1 ) ) {
            return -15;
        }
    }
#endif
    /* Allocate memory for working array(s) */
    iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * MAX(1,5*n) );
    if( iwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_0;
    }
    rwork = (double*)LAPACKE_malloc( sizeof(double) * MAX(1,7*n) );
    if( rwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_1;
    }
    work = (lapack_complex_double*)
        LAPACKE_malloc( sizeof(lapack_complex_double) * MAX(1,n) );
    if( work == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_2;
    }
    /* Call middle-level interface */
    info = LAPACKE_zhbgvx_work( matrix_order, jobz, range, uplo, n, ka, kb, ab,
                                ldab, bb, ldbb, q, ldq, vl, vu, il, iu, abstol,
                                m, w, z, ldz, work, rwork, iwork, ifail );
    /* Release memory and exit */
    LAPACKE_free( work );
exit_level_2:
    LAPACKE_free( rwork );
exit_level_1:
    LAPACKE_free( iwork );
exit_level_0:
    if( info == LAPACK_WORK_MEMORY_ERROR ) {
        LAPACKE_xerbla( "LAPACKE_zhbgvx", info );
    }
    return info;
}
Exemplo n.º 5
0
lapack_int LAPACKE_zhbevd_2stage( int matrix_layout, char jobz, char uplo, lapack_int n,
                           lapack_int kd, lapack_complex_double* ab,
                           lapack_int ldab, double* w, lapack_complex_double* z,
                           lapack_int ldz )
{
    lapack_int info = 0;
    lapack_int liwork = -1;
    lapack_int lrwork = -1;
    lapack_int lwork = -1;
    lapack_int* iwork = NULL;
    double* rwork = NULL;
    lapack_complex_double* work = NULL;
    lapack_int iwork_query;
    double rwork_query;
    lapack_complex_double work_query;
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zhbevd_2stage", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    /* Optionally check input matrices for NaNs */
    if( LAPACKE_zhb_nancheck( matrix_layout, uplo, n, kd, ab, ldab ) ) {
        return -6;
    }
#endif
    /* Query optimal working array(s) size */
    info = LAPACKE_zhbevd_2stage_work( matrix_layout, jobz, uplo, n, kd, ab, ldab, w, z,
                                ldz, &work_query, lwork, &rwork_query, lrwork,
                                &iwork_query, liwork );
    if( info != 0 ) {
        goto exit_level_0;
    }
    liwork = (lapack_int)iwork_query;
    lrwork = (lapack_int)rwork_query;
    lwork = LAPACK_Z2INT( work_query );
    /* Allocate memory for work arrays */
    iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * liwork );
    if( iwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_0;
    }
    rwork = (double*)LAPACKE_malloc( sizeof(double) * lrwork );
    if( rwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_1;
    }
    work = (lapack_complex_double*)
        LAPACKE_malloc( sizeof(lapack_complex_double) * lwork );
    if( work == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_2;
    }
    /* Call middle-level interface */
    info = LAPACKE_zhbevd_2stage_work( matrix_layout, jobz, uplo, n, kd, ab, ldab, w, z,
                                ldz, work, lwork, rwork, lrwork, iwork,
                                liwork );
    /* Release memory and exit */
    LAPACKE_free( work );
exit_level_2:
    LAPACKE_free( rwork );
exit_level_1:
    LAPACKE_free( iwork );
exit_level_0:
    if( info == LAPACK_WORK_MEMORY_ERROR ) {
        LAPACKE_xerbla( "LAPACKE_zhbevd_2stage", info );
    }
    return info;
}
lapack_int LAPACKE_zhbevx_2stage( int matrix_layout, char jobz, char range, char uplo,
                           lapack_int n, lapack_int kd,
                           lapack_complex_double* ab, lapack_int ldab,
                           lapack_complex_double* q, lapack_int ldq, double vl,
                           double vu, lapack_int il, lapack_int iu,
                           double abstol, lapack_int* m, double* w,
                           lapack_complex_double* z, lapack_int ldz,
                           lapack_int* ifail )
{
    lapack_int info = 0;
    lapack_int lwork = -1;
    lapack_int* iwork = NULL;
    double* rwork = NULL;
    lapack_complex_double* work = NULL;
    lapack_complex_double work_query;
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zhbevx_2stage", -1 );
        return -1;
    }
#ifndef LAPACK_DISABLE_NAN_CHECK
    if( LAPACKE_get_nancheck() ) {
        /* Optionally check input matrices for NaNs */
        if( LAPACKE_zhb_nancheck( matrix_layout, uplo, n, kd, ab, ldab ) ) {
            return -7;
        }
        if( LAPACKE_d_nancheck( 1, &abstol, 1 ) ) {
            return -15;
        }
        if( LAPACKE_lsame( range, 'v' ) ) {
            if( LAPACKE_d_nancheck( 1, &vl, 1 ) ) {
                return -11;
            }
        }
        if( LAPACKE_lsame( range, 'v' ) ) {
            if( LAPACKE_d_nancheck( 1, &vu, 1 ) ) {
                return -12;
            }
        }
    }
#endif
    /* Query optimal working array(s) size */
    info = LAPACKE_zhbevx_2stage_work( matrix_layout, jobz, range, uplo, n, kd, ab,
                                ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
                                ldz, &work_query, lwork, rwork, iwork, ifail );
    if( info != 0 ) {
        goto exit_level_0;
    }
    lwork = LAPACK_Z2INT( work_query );
    /* Allocate memory for working array(s) */
    iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * MAX(1,5*n) );
    if( iwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_0;
    }
    rwork = (double*)LAPACKE_malloc( sizeof(double) * MAX(1,7*n) );
    if( rwork == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_1;
    }
    work = (lapack_complex_double*)
        LAPACKE_malloc( sizeof(lapack_complex_double) * lwork );
    if( work == NULL ) {
        info = LAPACK_WORK_MEMORY_ERROR;
        goto exit_level_2;
    }
    /* Call middle-level interface */
    info = LAPACKE_zhbevx_2stage_work( matrix_layout, jobz, range, uplo, n, kd, ab,
                                ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
                                ldz, work, lwork, rwork, iwork, ifail );
    /* Release memory and exit */
    LAPACKE_free( work );
exit_level_2:
    LAPACKE_free( rwork );
exit_level_1:
    LAPACKE_free( iwork );
exit_level_0:
    if( info == LAPACK_WORK_MEMORY_ERROR ) {
        LAPACKE_xerbla( "LAPACKE_zhbevx_2stage", info );
    }
    return info;
}
Exemplo n.º 7
0
lapack_int LAPACKE_zlascl( int matrix_layout, char type, lapack_int kl,
                           lapack_int ku, double cfrom, double cto, 
                           lapack_int m, lapack_int n, lapack_complex_double* a, 
                           lapack_int lda )
{
    if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
        LAPACKE_xerbla( "LAPACKE_zlascl", -1 );
        return -1;
    }
#ifndef LAPACK_zISABLE_NAN_CHECK
    /* Optionally check input matrices for NaNs */
    switch (type) {
    case 'G':
       if( LAPACKE_zge_nancheck( matrix_layout, lda, n, a, lda ) ) {
           return -9;
           }
        break;
    case 'L':
       // TYPE = 'L' - lower triangular matrix.
       if( LAPACKE_ztr_nancheck( matrix_layout, 'L', 'N', n, a, lda ) ) {
           return -9;
          }
        break;
    case 'U':
       // TYPE = 'U' - upper triangular matrix
       if( LAPACKE_ztr_nancheck( matrix_layout, 'U', 'N', n, a, lda ) ) {
           return -9;
           } 
        break;
    case 'H':
       // TYPE = 'H' - upper Hessenberg matrix   
       if( LAPACKE_zhs_nancheck( matrix_layout, n, a, lda ) ) {
           return -9;
           }    
        break;
    case 'B':
       // TYPE = 'B' - A is a symmetric band matrix with lower bandwidth KL
       //             and upper bandwidth KU and with the only the lower
       //             half stored.   
       if( LAPACKE_zhb_nancheck( matrix_layout, 'L', n, kl, a, lda ) ) {
           return -9;
           }
         break;
   case 'Q':
       // TYPE = 'Q' - A is a symmetric band matrix with lower bandwidth KL
       //             and upper bandwidth KU and with the only the upper
       //             half stored.   
       if( LAPACKE_zhb_nancheck( matrix_layout, 'U', n, ku, a, lda ) ) {
           return -9;
           }
        break;
    case 'Z':
       // TYPE = 'Z' -  A is a band matrix with lower bandwidth KL and upper
       //             bandwidth KU. See DGBTRF for storage details.        
       if( LAPACKE_zgb_nancheck( matrix_layout, n, n, kl, kl+ku, a, lda ) ) {
           return -6;
           }
        break;
    }
#endif
    return LAPACKE_zlascl_work( matrix_layout, type, kl, ku, cfrom, cto, m,  n, a, lda );
}